Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Strategies for Estimating the Efficiency of Nitrogen Utilisation
2.1. Blood Urea Nitrogen (BUN)
2.2. Milk Urea Nitrogen (MUN)
2.3. Direct Prediction of NUE Using Mid-Infrared Spectroscopy (MIRS) Analysis of Milk
2.4. Near-Infrared Spectroscopy (NIRS) of Faeces
2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy of Urine
2.6. Nitrogen Isotope Analysis of Plasma, Milk and Hair
2.7. Breath Ammonia
2.8. By Predicting N Intakes
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Erdman, R.; Proctor, G.; Vandersall, J. Effect of Rumen Ammonia Concentration on In Situ Rate and Extent of Digestion of Feedstuffs. J. Dairy Sci. 1986, 69, 2312–2320. [Google Scholar] [CrossRef]
- Lapierre, H.; Lobley, G. Nitrogen Recycling in the Ruminant: A Review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- Mutsvangwa, T.; Davies, K.; McKinnon, J.; Christensen, D. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2016, 99, 6298–6310. [Google Scholar] [CrossRef] [PubMed]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef] [PubMed]
- Sajeev, E.P.M.; Amon, B.; Ammon, C.; Zollitsch, W.; Winiwarter, W. Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis. Nutr. Cycl. Agroecosyst. 2018, 110, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A. Technical note: Contribution of ammonia emitted from livestock to atmospheric fine particulate matter (PM2.5) in the United States. J. Dairy Sci. 2011, 94, 3130–3136. [Google Scholar] [CrossRef]
- Wattiaux, M.; Uddin, M.; Letelier, P.; Jackson, R.; Larson, R. Invited Review: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006; Volume 5. [Google Scholar]
- Stark, C.H.; Richards, K.G. The continuing challenge of nitrogen loss to the environment: Environmental consequences and mitigation strategies. Dyn. Soil Dyn. Plant 2008, 2, 41–55. [Google Scholar]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Huhtanen, P.; Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J. Evaluation of between-cow variation in milk urea and rumen ammonia nitrogen concentrations and the association with nitrogen utilization and diet digestibility in lactating cows. J. Dairy Sci. 2015, 98, 3182–3196. [Google Scholar] [CrossRef] [Green Version]
- Angelidis, A.; Crompton, L.; Misselbrook, T.; Yan, T.; Reynolds, C.; Stergiadis, S. Evaluation and prediction of nitrogen use efficiency and outputs in faeces and urine in beef cattle. Agric. Ecosyst. Environ. 2019, 280, 1–15. [Google Scholar] [CrossRef]
- Yan, T.; Frost, J.; Agnew, R.; Binnie, R.; Mayne, C. Relationships among Manure Nitrogen Output and Dietary and Animal Factors in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 3981–3991. [Google Scholar] [CrossRef]
- Kebreab, E.; Strathe, A.B.; Dijkstra, J.; Mills, J.A.; Reynolds, C.K.; Crompton, L.A. Energy and protein interactions and their effect on nitrogen excretion in dairy cows. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism, Parma, Italy, 6–10 September 2010. [Google Scholar]
- Colmenero, J.J.O.; Broderick, G.A. Effect of Dietary Crude Protein Concentration on Milk Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.; Gourley, C.; Rotz, C.; Weaver, D. Nitrogen use efficiency: A potential performance indicator and policy tool for dairy farms. Environ. Sci. Policy 2010, 13, 217–228. [Google Scholar] [CrossRef]
- Broderick, G.A.; Clayton, M.K. A Statistical Evaluation of Animal and Nutritional Factors Influencing Concentrations of Milk Urea Nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Kohn, R.A.; Dinneen, M.M.; Russek-Cohen, E. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats1. J. Anim. Sci. 2005, 83, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, A.; St-Pierre, N. The Relationship of Milk Urea Nitrogen to Urine Nitrogen Excretion in Holstein and Jersey Cows. J. Dairy Sci. 2001, 84, 2284–2294. [Google Scholar] [CrossRef]
- Spek, J.W.; Dijkstra, J.; Van Duinkerken, G.; Bannink, A. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle. J. Agric. Sci. 2013, 151, 407–423. [Google Scholar] [CrossRef] [Green Version]
- Burgos, M.S.; Senn, M.; Sutter, F.; Kreuzer, M.; Langhans, W. Effect of water restriction on feeding and metabolism in dairy cows. Am. J. Physiol. Integr. Comp. Physiol. 2001, 280, R418–R427. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Everinghoff, M.; Gädeken, D.; Flachowsky, G. Investigations on the water intake of lactating dairy cows. Livest. Prod. Sci. 2004, 90, 117–121. [Google Scholar] [CrossRef]
- Macrae, A.I.; Whitaker, D.A.; Burrough, E.; Dowell, A.; Kelly, J.M. Use of metabolic profiles for the assessment of dietary adequacy in UK dairy herds. Veter- Rec. 2006, 159, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, D. Metabolic profiles. In Bovine Medicine: Diseases and Husbandry of Cattle; Andrews, A.H., Blowey, R.W., Boyd, H., Eddy, R.G., Eds.; Blackwell Science: Oxford, UK, 2004; pp. 804–817. [Google Scholar]
- Law, R.A.; Young, F.J.; Patterson, D.C.; Kilpatrick, D.J.; Wylie, A.R.G.; Mayne, C.S. Effect of dietary protein content on animal production and blood metabolites of dairy cows during lactation. J. Dairy Sci. 2009, 92, 1001–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kume, S.; Numata, K.; Takeya, Y.; Miyagawa, Y.; Ikeda, S.; Kitagawa, M.; Nonaka, K.; Oshita, T.; Kozakai, T. Evaluation of Urinary Nitrogen Excretion from Plasma Urea Nitrogen in Dry and Lactating Cows. Asian-Australas. J. Anim. Sci. 2008, 21, 1159–1163. [Google Scholar] [CrossRef]
- Burgos, S.; Fadel, J.G.; Depeters, E.J. Prediction of Ammonia Emission from Dairy Cattle Manure Based on Milk Urea Nitrogen: Relation of Milk Urea Nitrogen to Urine Urea Nitrogen Excretion. J. Dairy Sci. 2007, 90, 5499–5508. [Google Scholar] [CrossRef]
- Luke, T.; Rochfort, S.; Wales, W.; Bonfatti, V.; Marett, L.; Pryce, J.E. Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. J. Dairy Sci. 2019, 102, 1747–1760. [Google Scholar] [CrossRef] [Green Version]
- Benedet, A.; Franzoi, M.; Penasa, M.; Pellattiero, E.; De Marchi, M. Prediction of blood metabolites from milk mid-infrared spectra in early-lactation cows. J. Dairy Sci. 2019, 102, 11298–11307. [Google Scholar] [CrossRef]
- Kohn, R.; Kalscheur, K.; Russek-Cohen, E. Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen. J. Dairy Sci. 2002, 85, 227–233. [Google Scholar] [CrossRef]
- Nousiainen, J.; Shingfield, K.; Huhtanen, P. Evaluation of Milk Urea Nitrogen as a Diagnostic of Protein Feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Hof, G.; Vervoorn, M.; Lenaers, P.; Tamminga, S. Milk Urea Nitrogen as a Tool to Monitor the Protein Nutrition of Dairy Cows. J. Dairy Sci. 1997, 80, 3333–3340. [Google Scholar] [CrossRef]
- Guliński, P.; Salamończyk, E.; Młynek, K. Improving nitrogen use efficiency of dairy cows in relation to urea in milk–a review. Anim. Sci. Pap. Rep. 2016, 34, 24. [Google Scholar]
- Aguilar, M.; Hanigan, M.; Tucker, H.; Jones, B.; Garbade, S.; McGilliard, M.; Stallings, C.; Knowlton, K.; James, R. Cow and herd variation in milk urea nitrogen concentrations in lactating dairy cattle. J. Dairy Sci. 2012, 95, 7261–7268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, S. The Effect of Dietary Nitrogen on Nitrogen Partitioning and Milk Production in Grazing Dairy Cows: A Thesis Presented in Partial Fulfilment of the Requirements for the Master of Animal Science at Massey University Palmerston North, New Zealand. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2016. [Google Scholar]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.; Spek, J.; Van Vuuren, A.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Etter, R.P.; Ropp, J.K.; Grandeen, K.L. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows1. J. Anim. Sci. 2004, 82, 3219–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Woodward, S.L.; Dewhurst, R.J.; Zhou, H.; Edwards, G.R. Nitrogen partitioning, energy use efficiency and isotopic fractionation measurements from cows differing in genetic merit fed low-quality pasture in late lactation. Anim. Prod. Sci. 2014, 54, 1651–1656. [Google Scholar] [CrossRef] [Green Version]
- Abdoun, K.A.; Stumpff, F.; Martens, H. Ammonia and urea transport across the rumen epithelium: A review. Anim. Health Res. Rev. 2006, 7, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G. Effects of Varying Dietary Protein and Energy Levels on the Production of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 1370–1381. [Google Scholar] [CrossRef]
- Kohn, R.; French, K.; Russek-Cohen, E. A Comparison of Instruments and Laboratories Used to Measure Milk Urea Nitrogen in Bulk-Tank Milk Samples. J. Dairy Sci. 2004, 87, 1848–1853. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.; French, K.; Russek-Cohen, E.; Kohn, R. Comparison of Analytical Methods and the Influence of Milk Components on Milk Urea Nitrogen Recovery. J. Dairy Sci. 2004, 87, 1747–1750. [Google Scholar] [CrossRef] [Green Version]
- Wood, G.; Boettcher, P.J.; Jamrozik, J.; Jansen, G.; Kelton, D. Estimation of Genetic Parameters for Concentrations of Milk Urea Nitrogen. J. Dairy Sci. 2003, 86, 2462–2469. [Google Scholar] [CrossRef]
- Bastin, C.; Laloux, L.; Gillon, A.; Miglior, F.; Soyeurt, H.; Hammami, H.; Bertozzi, C.; Gengler, N. Modeling milk urea of Walloon dairy cows in management perspectives. J. Dairy Sci. 2009, 92, 3529–3540. [Google Scholar] [CrossRef] [Green Version]
- Rzewuska, K.; Strabel, T. Genetic parameters for milk urea concentration and milk traits in Polish Holstein-Friesian cows. J. Appl. Genet. 2013, 54, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Villalobos, N.; Correa-Luna, M.; Burke, J.L.; Sneddon, N.W.; Schutz, M.; Donaghy, D.; Kemp, P. Genetic parameters for milk urea concentration and milk traits in New Zealand grazing dairy cattle. N. Z. J. Anim. Sci. Prod. 2018, 78, 56–61. [Google Scholar]
- Beatson, P.R.; Meier, S.; Cullen, N.G.; Eding, H. Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion. Animal 2019, 13, 2164–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miglior, F.; Sewalem, A.; Jamrozik, J.; Bohmanova, J.; Lefebvre, D.; Moore, R. Genetic Analysis of Milk Urea Nitrogen and Lactose and Their Relationships with Other Production Traits in Canadian Holstein Cattle. J. Dairy Sci. 2007, 90, 2468–2479. [Google Scholar] [CrossRef]
- Hijar, G.C.; Fouillet, H.; Huneau, J.-F.; Fanchone, A.; Doreau, M.; Noziere, P.; Ortigues-Marty, I. Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: Contribution of digestion v. metabolism? Animal 2016, 10, 221–229. [Google Scholar] [CrossRef]
- Cyriac, J.; Ríus, A.G.; McGilliard, M.; Pearson, R.; Bequette, B.; Hanigan, M. Lactation Performance of Mid-Lactation Dairy Cows Fed Ruminally Degradable Protein at Concentrations Lower Than National Research Council Recommendations. J. Dairy Sci. 2008, 91, 4704–4713. [Google Scholar] [CrossRef]
- Ríus, A.G.; McGilliard, M.; Umberger, C.; Hanigan, M. Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow. J. Dairy Sci. 2010, 93, 2034–2043. [Google Scholar] [CrossRef]
- Wattiaux, M.A.; Ranathunga, S.D. Milk Urea Nitrogen as a Tool to Assess Efficiency of Nitrogen Utilization in Dairy Cows; COGECO Expo Center, University of Wisconsin-Madison: Drummondville, QC, Canada, 2015; Available online: https://wiagribusiness.org/fourstatedairy/2016/16_Wattiaux.pdf (accessed on 29 June 2020).
- Jonker, J.; Kohn, R.; Erdman, R. Using Milk Urea Nitrogen to Predict Nitrogen Excretion and Utilization Efficiency in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- Kohn, R. Use of milk or blood urea nitrogen to identify feed management inefficiencies and estimate nitrogen excretion by dairy cattle and other animals. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 30–31 January 2007. [Google Scholar]
- Ishler, M. Interpretation of Milk Urea Nitrogen (MUN) Values. Available online: https://extension.psu.edu/interpretation-of-milk-urea-nitrogen-mun-values (accessed on 2 November 2020).
- Grelet, C.; Froidmont, E.; Foldager, L.; Salavati, M.; Hostens, M.; Ferris, C.P.; Ingvartsen, K.L.; Crowe, M.A.; Sorensen, M.; Pierna, J.F.; et al. Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation. J. Dairy Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Althaus, B.; Papke, G.; Sundrum, A. Technical note: Use of near infrared reflectance spectroscopy to assess nitrogen and carbon fractions in dairy cow feces. Anim. Feed. Sci. Technol. 2013, 185, 53–59. [Google Scholar] [CrossRef]
- Mason, V.C. Some observations on the distribution and origin of nitrogen in sheep faeces. J. Agric. Sci. 1969, 73, 99–111. [Google Scholar] [CrossRef]
- Reeves, J.; Van Kessel, J. Near-Infrared Spectroscopic Determination of Carbon, Total Nitrogen, and Ammonium-N in Dairy Manures. J. Dairy Sci. 2000, 83, 1829–1836. [Google Scholar] [CrossRef]
- Ye, W.; Lorimor, J.C.; Hurburgh, C.; Zhang, H.; Hattey, J. Application of Near-Infrared Reflectance Spectroscopy for Determination of Nutrient Contents in Liquid and Solid Manures. Trans. ASAE 2005, 48, 1911–1918. [Google Scholar] [CrossRef]
- Monahan, F.; Moloney, A.; Osorio, M.; Röhrle, F.; Schmidt, O.; Brennan, L. Authentication of grass-fed beef using bovine muscle, hair or urine. Trends Food Sci. Technol. 2012, 28, 69–76. [Google Scholar] [CrossRef]
- Bertram, H.C.; Yde, C.C.; Zhang, X.; Kristensen, N.B. Effect of Dietary Nitrogen Content on the Urine Metabolite Profile of Dairy Cows Assessed by Nuclear Magnetic Resonance (NMR)-Based Metabolomics. J. Agric. Food Chem. 2011, 59, 12499–12505. [Google Scholar] [CrossRef]
- Wheadon, N. Nitrogen isotopic fractionation and nitrogen use efficiency in beef and dairy cattle. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2014. [Google Scholar]
- Cheng, L.; Kim, E.J.; Merry, R.J.; Dewhurst, R.J. Nitrogen partitioning and isotopic fractionation in dairy cows consuming diets based on a range of contrasting forages. J. Dairy Sci. 2011, 94, 2031–2041. [Google Scholar] [CrossRef]
- Sutoh, M.; Koyama, T.; Yoneyama, T. Variations of natural 15N abundances in the tissues and digesta of domestic animals. Radioisot. 1987, 36, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Hijar, G.C.; Ortigues-Marty, I.; Sepchat, B.; Agabriel, J.; Huneau, J.-F.; Fouillet, H. Diet–animal fractionation of nitrogen stable isotopes reflects the efficiency of nitrogen assimilation in ruminants. Br. J. Nutr. 2015, 113, 1158–1169. [Google Scholar] [CrossRef] [Green Version]
- Cantalapiedra-Hijar, G.; Dewhurst, R.J.; Cheng, L.; Cabrita, A.R.J.; Fonseca, A.J.M.; Nozière, P.; Makowski, D.; Fouillet, H.; Ortigues-Marty, I. Nitrogen isotopic fractionation as a biomarker for nitrogen use efficiency in ruminants: A meta-analysis. Animal 2018, 12, 1827–1837. [Google Scholar] [CrossRef]
- Cheng, L.; Sheahan, A.J.; Gibbs, S.J.; Rius, A.G.; Kay, J.K.; Meier, S.; Edwards, G.R.; Dewhurst, R.J.; Roche, J.R. Nitrogen isotopic fractionation can be used to predict nitrogen-use efficiency in dairy cows fed temperate pasture. J. Anim. Sci. 2013, 91, 5785–5788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrollahi, S.; Nozière, P.; Dewhurst, R.; Chantelauze, C.; Cheng, L.; Froidmont, E.; Martin, C.; Cantalapiedra-Hijar, G. Natural 15N abundances in plasma and urea-N concentration in milk as biomarkers of urinary N excretion in dairy cows: A meta-analysis. In Energy and Protein Metabolism and Nutrition; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 340–346. [Google Scholar]
- Herremans, S.; Decruyenaere, V.; Cantalapiedra-Hijar, G.; Beckers, Y.; Froidmont, E. Effects of hydrolysable tannin-treated grass silage on milk yield and composition, nitrogen partitioning and nitrogen isotopic discrimination in lactating dairy cows. Animal 2020, 14, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Schwertl, M.; Auerswald, K.; Schäufele, R.; Schnyder, H. Carbon and nitrogen stable isotope composition of cattle hair: Ecological fingerprints of production systems? Agric. Ecosyst. Environ. 2005, 109, 153–165. [Google Scholar] [CrossRef]
- Sponheimer, M.; Robinson, T.; Ayliffe, L.; Roeder, B.; Hammer, J.; Passey, B.; West, A.; Cerling, T.; Dering, D.; Ehleringer, J. Nitrogen isotopes in mammalian herbivores: Hair δ15N values from a controlled feeding study. Int. J. Osteoarchaeol. 2003, 13, 80–87. [Google Scholar] [CrossRef]
- Sutoh, M.; Obara, Y.; Yoneyama, T. The effects of feeding regimen and dietary sucrose supplementation on natural abundance of 15N in some components of ruminal fluid and plasma of sheep1. J. Anim. Sci. 1993, 71, 226–231. [Google Scholar] [CrossRef] [Green Version]
- Neri, G.; Lacquaniti, A.; Rizzo, G.; Donato, N.; Latino, M.; Buemi, M. Real-time monitoring of breath ammonia during haemodialysis: Use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques. Nephrol. Dial. Transplant. 2012, 27, 2945–2952. [Google Scholar] [CrossRef] [Green Version]
- Valente, E.E.L.; Araujo, L.; Carvalho, S.; Stahlhofer, M. Breath ammonia as a bioindicator of protein nutrition in heifers. Livest. Sci. 2018, 218, 97–100. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Evans, R.; Mottram, T.; Španĕl, P.; Smith, D. Assessment of Rumen Processes by Selected-Ion-Flow-Tube Mass Spectrometric Analysis of Rumen Gases. J. Dairy Sci. 2001, 84, 1438–1444. [Google Scholar] [CrossRef]
- Spek, J.; Dijkstra, J.; Van Duinkerken, G.; Hendriks, W.; Bannink, A. Prediction of urinary nitrogen and urinary urea nitrogen excretion by lactating dairy cattle in northwestern Europe and North America: A meta-analysis. J. Dairy Sci. 2013, 96, 4310–4322. [Google Scholar] [CrossRef]
- Hristov, A.; Bannink, A.; Crompton, L.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.; Bayat, A.; Yáñez-Ruiz, D.; et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [Green Version]
- Shirali, M.; Hynes, D.; Ferris, C.P. Using Herd Information and Milk Production Data to Predict Dry Matter Intake Within Feed-to-Yield Concentrate Allocation Strategies. In Proceedings of the British Society of Animal science 76th Annual conference: Advances in Animal BioSciences—The Challenge of Change 2020, Brighton, UK, 30 March–1 April 2020. [Google Scholar]
- McParland, S.; Banos, G.; Wall, E.; Coffey, M.; Soyeurt, H.; Veerkamp, R.; Berry, D. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. 2011, 94, 3651–3661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shetty, N.; Løvendahl, P.; Lund, M.; Buitenhuis, B. Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk. J. Dairy Sci. 2017, 100, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahart, B.; McParland, S.; Kennedy, E.; Boland, T.M.; Condon, T.; Williams, M.; Galvin, N.; McCarthy, B.; Buckley, F. Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis. J. Dairy Sci. 2019, 102, 8907–8918. [Google Scholar] [CrossRef] [PubMed]
- Klaffenböck, M.; Steinwidder, A.; Fasching, C.; Terler, G.; Gruber, L.; Mészáros, G.; Sölkner, J. The use of mid-infrared spectrometry to estimate the ration composition of lactating dairy cows. J. Dairy Sci. 2017, 100, 5411–5421. [Google Scholar] [CrossRef] [Green Version]
- Garnsworthy, P.C.; Unal, Y. Estimation of dry-matter intake and digestibility in group-fed dairy cows using near infrared reflectance spectroscopy. Anim. Sci. 2004, 79, 327–334. [Google Scholar] [CrossRef]
- Decruyenaere, V.; Froidmont, E.; Bartiaux-Thill, N.; Buldgen, A.; Stilmant, D. Faecal near-infrared reflectance spectroscopy (NIRS) compared with other techniques for estimating the in vivo digestibility and dry matter intake of lactating grazing dairy cows. Anim. Feed. Sci. Technol. 2012, 173, 220–234. [Google Scholar] [CrossRef]
- Nyholm, L.; Nousiainen, J.; Rinne, M.; Ahvenjärvi, S.; Huhtanen, P. Prediction of Digestibility and Intake of Mixed Diets in Dairy Cows from Faecal Samples with Near Infrared Reflectance Spectroscopy (NIRS). In Ruminant Physiology: Digestion, Metabolism and Effects of Nutrition on Reproduction and Welfare; Wageningen Academic Publishers: Wageningen, The Netherlands, 2009; p. 299. [Google Scholar]
- Greenwood, P.L.; Paull, D.R.; McNally, J.; Kalinowski, T.; Ebert, D.; Little, B.; Smith, D.V.; Rahman, A.; Valencia, P.; Ingham, A.B.; et al. Use of sensor-determined behaviours to develop algorithms for pasture intake by individual grazing cattle. Crop. Pasture Sci. 2018, 68, 1091–1099. [Google Scholar] [CrossRef]
- Giovanetti, V.; Cossu, R.; Molle, G.; Acciaro, M.; Mameli, M.; Cabiddu, A.; Serra, M.; Manca, C.; Rassu, S.; DeCandia, M.; et al. Prediction of bite number and herbage intake by an accelerometer-based system in dairy sheep exposed to different forages during short-term grazing tests. Comput. Electron. Agric. 2020, 175, 105582. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavery, A.; Ferris, C.P. Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle. Animals 2021, 11, 343. https://doi.org/10.3390/ani11020343
Lavery A, Ferris CP. Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle. Animals. 2021; 11(2):343. https://doi.org/10.3390/ani11020343
Chicago/Turabian StyleLavery, Anna, and Conrad P. Ferris. 2021. "Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle" Animals 11, no. 2: 343. https://doi.org/10.3390/ani11020343
APA StyleLavery, A., & Ferris, C. P. (2021). Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle. Animals, 11(2), 343. https://doi.org/10.3390/ani11020343