Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Management Conditions
2.2. Sample Collection, Analyses, and Measurements
2.3. Statistical Analyses
3. Results and Discussion
3.1. Rectal Temperature and Respiratory Rate
3.2. Body Weight Change, Feed Intake, and Energy Balance
3.3. Milk Yield and Milk Composition
3.4. Milk Fatty Acid Profile
3.5. Digestibility and Nitrogen Retention
3.6. Blood Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baumgard, L.H.; Rhoads, R.P. Effects of heat stress on postabsorptive metabolism and energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Such, X.; Albanell, E.; Badaoui, B.; Loor, J.J. Thermal stress in ruminants: Responses and strategies for alleviation. In Animal Welfare in Extensive Production Systems, 1st ed.; Villalba, J.J., Manteca, X., Eds.; 5M Publishing: Sheffield, UK, 2016; pp. 11–36. [Google Scholar]
- Salama, A.A.K.; Duque, M.; Wang, L.; Shahzad, K.; Olivera, M.; Loor, J.J. Enhanced supply of methionine or arginine alters mechanistic target. J. Dairy Sci. 2019, 102, 2469–2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staples, C.R.; Thatcher, W.W. Heat stress: Effects on milk production and composition. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Academic Press: Oxford, UK, 2011; pp. 561–566. [Google Scholar]
- Sano, H.; Ambo, K.; Tsuda, T. Blood glucose kinetics in whole body and mammary gland of lactating goats exposed to heat stress. J. Dairy Sci. 1985, 68, 2557–2564. [Google Scholar] [CrossRef]
- Mehaba, N.; Salama, A.A.K.; Such, X.; Albanell, E.; Caja, G. Lactational responses of heat-stressed dairy goats to dietary L-carnitine supplementation. Animals 2019, 9, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamzaoui, S.; Caja, G.; Such, X.; Albanell, E.; Salama, A.A.K. Milk production and energetic metabolism of heat-stressed dairy goats supplemented with propylene glycol. Animals 2020, 10, 2449. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Drackley, J.K.; Cicela, T.M.; LaCount, D.W. Responses of primiparous and multiparous Holstein cows to additional energy from fat or concentrate during summer. J. Dairy Sci. 2003, 86, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Kargar, S.; Ghorbani, G.R.; Fievez, V.; Schingoethe, D.J. Performance, bioenergetic status, and indicators of oxidative stress of environmentally heat-loaded Holstein cows in response to diets inducing milk fat depression. J. Dairy Sci. 2015, 98, 4772–4784. [Google Scholar] [CrossRef] [Green Version]
- Demeyer, D.I.; van Nevel, C.J. Chemical manipulation of rumen metabolism. In Physiological and Pharmacological Aspects of the Reticulo-Rumen; Ooms, L.A.A., Degryse, A.D., van Miert, A.S.J.P.A.M., Eds.; Springer: Dordrecht, The Netherlands, 1987; pp. 227–251. [Google Scholar]
- Bauman, D.E.; Currie, W.B. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- Moore, C.E.; Kay, J.K.; Collier, R.J.; VanBaale, M.J.; Baumgard, L.H. Effect of supplemental conjugated linoleic acids on heat-stressed Brown Swiss and Holstein cows. J. Dairy Sci. 2005, 88, 1732–1740. [Google Scholar] [CrossRef] [Green Version]
- Bouattour, M.A.; Casals, R.; Albanell, E.; Such, X.; Caja, G. Feeding soybean oil to dairy goats increases conjugated linoleic acid in milk. J. Dairy Sci. 2008, 91, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Mele, M.; Serra, A.; Buccioni, A.; Conte, G.; Pollicardo, A.; Secchiari, P. Effect of soybean oil supplementation on milk fatty acid composition from Saanen goats fed diets with different forage: Concentrate ratios. Ital. J. Anim. Sci. 2008, 7, 297–311. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and goats respond differently to feeding strategies directed to improve the fatty acid profile of milk fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Tsiplakou, E.; Zervas, G. The effect of fish and soybean oil inclusion in goat diet on their milk and plasma fatty acid profile. Livest. Sci. 2013, 155, 236–243. [Google Scholar] [CrossRef]
- National Research Council (NRC). A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Institut National de la Recherche Agronomique (INRA). INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- National Research Council (NRC). Effect of Environment on Nutrient Requirements of Domestic Animals; National Academy of Science: Washington, DC, USA, 1981. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International. Vol. I, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Chan, S.C.; Huber, J.T.; Chen, K.H.; Simas, J.M.; Wu, Z. Effects of ruminally inert fat and evaporative cooling on dairy cows in hot environmental temperatures. J. Dairy Sci. 1997, 80, 1172–1178. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L. Effects of sodium chloride and fat supplementation on finishing steers exposed to hot and cold conditions. J. Anim. Sci. 2009, 87, 612–621. [Google Scholar] [CrossRef] [Green Version]
- O’Kelly, J.C. Influence of dietary fat on some metabolic responses of cattle to hyperthermia induced by heat exposure. Comp. Biochem. Physiol. 1987, 87, 677–682. [Google Scholar] [CrossRef]
- Hamzaoui, S.; Salama, A.A.K.; Albanell, E.; Such, X.; Caja, G. Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J. Dairy Sci. 2013, 96, 6355–6365. [Google Scholar] [CrossRef]
- Kadzere, C.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Liu, E.; Van de Haar, M.J.; Lock, A.L. Effects of supplementing Holstein cows with soybean oil compared with palmitic acid–enriched triglycerides on milk production and nutrient partitioning. J. Dairy Sci. 2020, 103, 8151–8160. [Google Scholar] [CrossRef]
- Joshi, B.C.; McDowell, R.E.; Sadhu, D.P. Effect of drugs on sweating rates in Hariana cattle. J. Dairy Sci. 1968, 51, 905–909. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Caja, G.; Hamzaoui, S.; Badaoui, B.; Castro-Costa, A.; Façanha, D.E.; Guilhermino, M.M.; Bozzi, R. Different levels of response to heat stress in dairy goats. Small Rumin. Res. 2014, 121, 73–79. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Contreras-Jodar, A.; Love, S.; Mehaba, N.; Such, X.; Caja, G. Milk yield, milk composition, and milk metabolomics of dairy goats intramammary-challenged with lipopolysaccharide under heat stress conditions. Sci. Rep. 2020, 10, 5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehaba, N.; Coloma-Garcia, W.; Such, X.; Caja, G.; Salama, A.A.K. Heat stress impacts some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 2021, 104, 1099–1110. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; de la Fuente, M.A.; Hervás, G. Milk production, conjugated linoleic acid content, and in vitro ruminal fermentation in response to high levels of soybean oil in dairy ewe diet. J. Dairy Sci. 2008, 91, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Schoonmaker, J.P.; Bradford, B.J.; Beitz, D.C. Response of milk fatty acid composition to dietary supplementation of soy oil, conjugated linoleic acid, or both. J. Dairy Sci. 2008, 91, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.A.A.; van Baal, J.; Smits, M.A.; Taweel, H.Z.H.; Hendriks, W.H.; van Vuuren, A.M.; Dijkstra, J. Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase expression in the mammary gland of dairy cows. J. Dairy Sci. 2011, 94, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in the ruminant lactating mammary gland. Adv. Exp. Med. Biol. 2008, 606, 67–108. [Google Scholar]
- Glasser, F.; Doreau, M.; Ferlay, A.; Chilliard, Y. Estimation of milk fatty acid yield from milk fat data. J. Dairy Sci. 2007, 90, 2302–2304. [Google Scholar] [CrossRef]
- Boerman, J.P.; Lock, A.L. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle. J. Dairy Sci. 2014, 97, 7031–7042. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Ann. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Ezernieks, V.; Wang, J.; Arachchillage, W.N.; Garner, J.B.; Wales, W.J.; Cocks, B.G.; Rochfort, S. Heat stress in dairy cattle alters lipid composition of milk. Sci. Rep. 2017, 7, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Fievez, V.; Colman, E.; Castro-Montoya, J.M.; Stefanov, I.; Vlaeminck, B. Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update. Anim. Feed Sci. Technol. 2012, 172, 51–65. [Google Scholar] [CrossRef]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 13, 57–64. [Google Scholar] [CrossRef]
- Castro-Costa, A.; Salama, A.A.K.; Moll, X.; Aguiló, J.; Caja, G. Using wireless rumen sensors for evaluating the effects of diet and ambient temperature in nonlactating dairy goats. J. Dairy Sci. 2015, 98, 4646–4658. [Google Scholar] [CrossRef] [Green Version]
- Krysl, L.J.; Judkins, M.B.; Bohman, V.R. Influence of ruminal or duodenal soybean oil infusion on intake, ruminal fermentation, site and extent of digestion, and microbial protein synthesis in beef heifers consuming grass hay. J. Anim. Sci. 1991, 69, 2585–2590. [Google Scholar] [CrossRef]
- Markiewicz-kęszycka, M.; Czyżak-runowska, G.; Lipińska, P.; Wójtowski, J. Review: Fatty acid profile of milk. Bull. Vet. Inst. Pulawy. 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Tyburczy, C.; Major, C.; Lock, A.L.; Destaillats, F.; Lawrence, P.; Brenna, J.T.; Salter, A.M.; Bauman, D.E. Individual trans octadecenoic acids and partially hydrogenated vegetable oil differentially affect hepatic lipid and lipoprotein metabolism in golden Syrian hamsters. J. Nutr. 2009, 139, 257–263. [Google Scholar] [CrossRef] [Green Version]
- McCrorie, T.A.; Keaveney, E.M.; Wallace, J.M.W.; Binns, N.; Livingstone, M.B.E. Human effects of conjugated linoleic acid from milk and supplements. Nutr. Res. Rev. 2011, 24, 206–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirayama, T.; Katoh, K.; Obara, Y. Effects of heat exposure on nutrient digestibility, rumen contraction and hormone secretion of goats. Anim. Sci. J. 2004, 75, 237–243. [Google Scholar] [CrossRef]
- Bernabucci, U.; Bani, P.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of short- and long-term exposure to a hot environment on rumen passage rate and diet digestibility by Friesian heifers. J. Dairy Sci. 1999, 82, 967–973. [Google Scholar] [CrossRef]
- Almeida, O.C.; Ferraz, M.V.C., Jr.; Susin, I.; Gentil, R.S.; Polizel, D.M.; Ferreira, E.M.; Barroso, J.P.R.; Pires, A.V. Plasma and milk fatty acid profiles in goats fed diets supplemented with oils from soybean, linseed or fish. Small Rumin. Res. 2019, 170, 125–130. [Google Scholar] [CrossRef]
- Collier, R.J.; Dahl, G.E.; VanBaale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Russell, K.E.; Roussel, A.J. Evaluation of the ruminant serum chemistry profile. Vet. Clin. Food Anim. 2007, 23, 403–426. [Google Scholar] [CrossRef]
Item | CON | SBO |
---|---|---|
Ingredient, % | ||
Alfalfa hay | 60.4 | 60.4 |
Barley, ground | 15.0 | 11.0 |
Soybean oil | — | 4.0 |
Beet pulp | 9.1 | 9.1 |
Corn, ground | 7.5 | 7.5 |
Soybean meal | 3.0 | 3.0 |
Sunflower meal | 3.0 | 3.0 |
Molasses | 1.0 | 1.0 |
Salt | 0.6 | 0.6 |
Sodium bicarbonate | 0.2 | 0.2 |
Vitamin-mineral complex | 0.2 | 0.2 |
Component, % | ||
Dry matter 1 | 89.7 | 89.9 |
Crude protein | 17.2 | 16.8 |
Ether extract | 2.07 | 5.88 |
Neutral detergent fiber | 34.7 | 33.5 |
Acid detergent fiber | 19.9 | 19.6 |
Nutritive value 2 | ||
UFL, 3 /kg | 0.86 | 0.95 |
NEL, Mcal/kg | 1.51 | 1.68 |
PDI, 4 g/kg | 82.3 | 78.9 |
PDIA, 5 g/kg | 40.8 | 39.7 |
Calcium, g/kg | 7.22 | 7.18 |
Phosphorous, g/kg | 2.68 | 2.52 |
Variable | TN | HS | SEM | Effect 2 (p<) | ||||
---|---|---|---|---|---|---|---|---|
CON (n = 8) | SBO (n = 8) | CON (n = 8) | SBO (n = 8) | T | S | T × S | ||
Rectal temperature, °C | 38.63 | 38.67 | 39.57 | 39.70 | 0.08 | 0.001 | 0.611 | 0.495 |
Respiratory rate, breaths/min | 34 | 35 | 110 | 114 | 4 | 0.001 | 0.733 | 0.678 |
Body weight change, kg | 3.49 | 3.36 | −2.08 | −2.28 | 0.97 | 0.001 | 0.597 | 0.745 |
Dry matter intake, kg/d | 2.28 | 2.26 | 1.49 | 1.34 | 0.09 | 0.001 | 0.495 | 0.483 |
Energy balance, Mcal/d | 0.86 | 0.95 | −0.53 | −0.67 | 0.11 | 0.001 | 0.829 | 0.300 |
Water consumption, L/d | 6.14 | 6.28 | 10.63 | 12.06 | 1.04 | 0.001 | 0.310 | 0.480 |
Milk yield, kg/d | 1.88 | 1.99 | 1.78 | 1.75 | 0.11 | 0.013 | 0.606 | 0.230 |
Fat-corrected milk, kg/d 3 | 2.18 | 2.31 | 1.84 | 2.13 | 0.13 | 0.004 | 0.035 | 0.560 |
Milk composition, % | ||||||||
Fat | 4.08 | 5.17 | 3.75 | 4.95 | 0.21 | 0.139 | 0.001 | 0.775 |
Protein | 3.42 | 3.41 | 2.87 | 2.97 | 0.10 | 0.001 | 0.560 | 0.569 |
Lactose | 4.35 | 4.51 | 4.15 | 4.28 | 0.05 | 0.001 | 0.007 | 0.791 |
Fat yield, g/d | 74 | 100 | 65 | 84 | 6 | 0.026 | 0.003 | 0.510 |
Protein yield, g/d | 60 | 64 | 48 | 48 | 3 | 0.001 | 0.491 | 0.556 |
Lactose yield, g/d | 76 | 84 | 68 | 68 | 5 | 0.011 | 0.386 | 0.385 |
Somatic cell count, Log10 | 5.54 | 5.57 | 5.67 | 5.63 | 0.20 | 0.456 | 0.711 | 0.587 |
Variable | TN | HS | SEM | Effect 2 (p=) | ||||
---|---|---|---|---|---|---|---|---|
CON (n = 8) | SBO (n = 8) | CON (n = 8) | SBO (n = 8) | T | S | T × S | ||
C4:0 | 1.20 | 1.22 | 1.19 | 1.21 | 0.04 | 0.616 | 0.364 | 0.762 |
C6:0 | 2.02 | 2.17 | 1.94 | 2.14 | 0.11 | 0.462 | 0.042 | 0.771 |
C8:0 | 2.61 | 2.81 | 2.68 | 2.53 | 0.17 | 0.451 | 0.856 | 0.224 |
C10:0 | 11.45 | 9.79 | 10.70 | 7.73 | 0.60 | 0.005 | 0.001 | 0.140 |
C11:0 | 0.35 | 0.30 | 0.28 | 0.23 | 0.02 | 0.001 | 0.001 | 0.912 |
C12:0 | 6.91 | 4.24 | 5.74 | 2.80 | 0.51 | 0.005 | 0.001 | 0.724 |
C13:0 | 0.23 | 0.19 | 0.19 | 0.14 | 0.01 | 0.001 | 0.001 | 0.378 |
C14:0 | 12.94 | 9.71 | 11.94 | 7.50 | 0.69 | 0.011 | 0.001 | 0.279 |
C14:1 | 0.27 | 0.15 | 0.15 | 0.08 | 0.05 | 0.006 | 0.008 | 0.399 |
C15:0 | 0.94 | 0.68 | 0.79 | 0.58 | 0.05 | 0.003 | 0.001 | 0.589 |
C16:0 | 38.23 | 25.68 | 30.59 | 22.11 | 1.81 | 0.001 | 0.001 | 0.154 |
C16:1 | 1.00 | 0.60 | 0.63 | 0.44 | 0.19 | 0.028 | 0.018 | 0.335 |
C17:0 | 0.55 | 0.43 | 0.75 | 0.46 | 0.06 | 0.008 | 0.001 | 0.033 |
C18:0 | 4.87 | 11.80 | 9.07 | 17.29 | 1.73 | 0.003 | 0.001 | 0.622 |
Trans-9 C18:1 | 0.14 | 0.56 | 0.15 | 0.65 | 0.04 | 0.095 | 0.001 | 0.225 |
Trans-11 C18:1 (TVA 3) | 0.68 | 4.76 | 0.71 | 5.68 | 1.49 | 0.614 | 0.001 | 0.640 |
Cis-9 C18:1 | 12.58 | 19.59 | 18.84 | 23.00 | 1.29 | 0.001 | 0.001 | 0.183 |
Cis-11 C18:1 | 0.37 | 0.78 | 0.54 | 0.97 | 0.05 | 0.001 | 0.001 | 0.775 |
C18:2n6t | 0.18 | 0.42 | 0.17 | 0.43 | 0.04 | 0.968 | 0.001 | 0.840 |
C18:2n6c | 2.48 | 2.55 | 2.90 | 2.67 | 0.17 | 0.045 | 0.529 | 0.226 |
C20:0 | 0.15 | 0.22 | 0.18 | 0.26 | 0.01 | 0.023 | 0.001 | 0.536 |
C18:3n3 + C20:1 | 0.69 | 0.55 | 0.72 | 0.50 | 0.05 | 0.733 | 0.001 | 0.315 |
Cis-9, trans-11 C18:2 (CLA 4) | 0.47 | 2.17 | 0.37 | 1.95 | 0.62 | 0.685 | 0.001 | 0.875 |
C22:0 | 0.05 | 0.09 | 0.05 | 0.11 | 0.02 | 0.719 | 0.004 | 0.591 |
C20:4n6 | 0.15 | 0.10 | 0.23 | 0.13 | 0.02 | 0.003 | 0.001 | 0.840 |
Saturated FA | 80.95 | 67.76 | 74.52 | 63.5 | 1.32 | 0.001 | 0.001 | 0.381 |
Mono-unsaturated FA | 15.03 | 26.46 | 21.01 | 30.82 | 1.27 | 0.001 | 0.001 | 0.399 |
Poly-unsaturated FA | 3.95 | 5.79 | 4.37 | 5.68 | 0.45 | 0.736 | 0.005 | 0.565 |
De novo FA 5 | 38.54 | 30.90 | 35.22 | 24.66 | 1.02 | 0.001 | 0.001 | 0.093 |
Mixed FA 5 | 39.23 | 26.28 | 31.21 | 22.56 | 1.81 | 0.001 | 0.001 | 0.140 |
Preformed FA 5 | 22.87 | 43.60 | 34.00 | 53.64 | 2.06 | 0.001 | 0.001 | 0.703 |
Elongase 6 | 30.87 | 54.28 | 47.17 | 63.93 | 3.07 | 0.001 | 0.001 | 0.169 |
Atherogenicity index 7 | 5.26 | 2.29 | 3.40 | 1.60 | 0.29 | 0.001 | 0.001 | 0.015 |
Δ9-Desaturase index 8 | ||||||||
C14 | 0.020 | 0.015 | 0.013 | 0.010 | 0.006 | 0.096 | 0.300 | 0.724 |
C16 | 0.025 | 0.023 | 0.020 | 0.018 | 0.003 | 0.049 | 0.295 | 1.000 |
CLA 4 | 0.40 | 0.31 | 0.34 | 0.25 | 0.040 | 0.039 | 0.004 | 0.885 |
Variable | TN | HS | SEM | Effect 2 (p=) | ||||
---|---|---|---|---|---|---|---|---|
CON (n = 8) | SBO (n = 8) | CON (n = 8) | SBO (n = 8) | T | S | T × S | ||
Digestibility, % | ||||||||
Dry matter | 67.8 | 68.5 | 74.0 | 72.6 | 1.4 | 0.001 | 0.778 | 0.455 |
Organic matter | 68.9 | 69.6 | 75.1 | 73.9 | 1.3 | 0.001 | 0.850 | 0.469 |
Crude protein | 73.4 | 74.7 | 78.8 | 78.6 | 1.3 | 0.001 | 0.654 | 0.559 |
Neutral detergent fiber | 50.5 | 50.2 | 58.1 | 56.6 | 2.4 | 0.007 | 0.708 | 0.804 |
Acid detergent fiber | 43.5 | 43.6 | 52.2 | 52.8 | 2.9 | 0.004 | 0.941 | 0.989 |
Apparent absorption, % | ||||||||
Nitrogen retention, g/d | 21.8 | 20.2 | 13.7 | 15.5 | 2.3 | 0.009 | 0.951 | 0.454 |
Variable | TN | HS | SEM | Effect 2 (p=) | ||||
---|---|---|---|---|---|---|---|---|
CON (n = 8) | SBO (n = 8) | CON (n = 8) | SBO (n = 8) | T | S | T × S | ||
pH | 7.46 | 7.45 | 7.47 | 7.44 | 0.01 | 0.511 | 0.038 | 0.205 |
Na, mmol/L | 152 | 151 | 147 | 147 | 1 | 0.001 | 0.790 | 0.710 |
K, mmol/L | 3.65 | 3.69 | 3.94 | 3.83 | 0.11 | 0.057 | 0.729 | 0.489 |
Cl, mmol/L | 110 | 112 | 110 | 113 | 2 | 0.777 | 0.106 | 0.777 |
Total CO2, mmol/L | 28.6 | 27.1 | 22.9 | 21.3 | 1.0 | 0.001 | 0.129 | 0.951 |
CO2 partial pressure, mmHg | 39.0 | 37.8 | 29.7 | 29.7 | 1.6 | 0.001 | 0.711 | 0.692 |
HCO3, mmol/L | 27.3 | 26.0 | 22.0 | 20.3 | 1.0 | 0.001 | 0.146 | 0.852 |
Anion gap | 17.0 | 16.9 | 18.8 | 17.8 | 0.6 | 0.039 | 0.360 | 0.476 |
Base excess, mmol/L | 3.25 | 1.75 | −1.88 | −3.88 | 1.03 | 0.001 | 0.102 | 0.811 |
Hematocrit, %PCV | 18.1 | 17.6 | 18.1 | 17.3 | 0.8 | 0.821 | 0.410 | 0.821 |
Hemoglobin, g/dL | 6.16 | 6.00 | 6.16 | 5.88 | 0.28 | 0.826 | 0.431 | 0.862 |
Glucose, mg/dL | 55.1 | 53.8 | 56.4 | 55.4 | 1.6 | 0.374 | 0.462 | 0.907 |
Blood urea N, mg/dL | 21.1 | 21.4 | 17.1 | 16.8 | 1.0 | 0.001 | 0.949 | 0.748 |
Non-esterified fatty acids, mmol/L | 0.07 | 0.11 | 0.09 | 0.12 | 0.02 | 0.202 | 0.025 | 0.731 |
β-hydroxybutyrate, mmol/L | 0.65 | 0.61 | 0.96 | 0.72 | 0.08 | 0.168 | 0.224 | 0.493 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzaoui, S.; Caja, G.; Such, X.; Albanell, E.; Salama, A.A.K. Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions. Animals 2021, 11, 350. https://doi.org/10.3390/ani11020350
Hamzaoui S, Caja G, Such X, Albanell E, Salama AAK. Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions. Animals. 2021; 11(2):350. https://doi.org/10.3390/ani11020350
Chicago/Turabian StyleHamzaoui, Soufiane, Gerardo Caja, Xavier Such, Elena Albanell, and Ahmed A. K. Salama. 2021. "Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions" Animals 11, no. 2: 350. https://doi.org/10.3390/ani11020350
APA StyleHamzaoui, S., Caja, G., Such, X., Albanell, E., & Salama, A. A. K. (2021). Effect of Soybean Oil Supplementation on Milk Production, Digestibility, and Metabolism in Dairy Goats under Thermoneutral and Heat Stress Conditions. Animals, 11(2), 350. https://doi.org/10.3390/ani11020350