Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample and Measurement
2.3. Statistical Analysis
3. Results
3.1. Rumen Fermentation Parameters
3.2. Rumen Cellulolytic Bacteria
3.3. Sequencing and Diversity of Ruminal Microbiota
3.4. Growth Performance
3.5. Urine pH
3.6. Plasma Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riond, J.L. Animal nutrition and acid-base balance. Eur. J. Nutr. 2001, 40, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Block, E. Manipulating dietary anions and cations for prepartum dairy cows to reduce incidence of milk fever. J. Dairy Sci. 1984, 67, 2939–2948. [Google Scholar] [CrossRef]
- Graham-Thiers, P.M.; Kronfeld, D.S. Dietary protein influences acid-base balance in sedentary horses. J. Equine Vet. Sci. 2005, 25, 434–438. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Sarwar, M.; Mahr-un-Nisa. Influence of varying dietary cation anion difference on serum minerals, mineral balance and hypocalcemia in Nili Ravi buffaloes. Livest. Sci. 2008, 113, 52–61. [Google Scholar] [CrossRef]
- Edwards, L.N.; Engle, T.E.; Paradis, M.A.; Correa, J.A.; Anderson, D.B. Persistence of blood changes associated with alteration of the dietary electrolyte balance in commercial pigs after feed withdrawal, transportation, and lairage, and the effects on performance and carcass quality. J. Anim. Sci. 2010, 88, 4068–4077. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, J.V.; Højberg, O.; Sørensen, K.U.; Eriksen, J.; Medina, J.M.S.; Poulsen, H.D. The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs. Anim. Feed. Sci. Tech. 2014, 195, 58–66. [Google Scholar] [CrossRef]
- Heer, F.; Dobenecker, B.; Kienzle, E. Effect of cation-anion balance in feed on urine pH in rabbits in comparison with other species. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Leno, B.; Ryan, C.; Stokol, T.; Kirk, D.; Zanzalari, K.; Chapman, J.; Overton, T. Effects of prepartum dietary cation-anion difference on aspects of peripartum mineral and energy metabolism and performance of multiparous Holstein cows. J. Dairy Sci. 2017, 100, 4604–4622. [Google Scholar] [CrossRef]
- Melendez, P.; Poock, S. A dairy herd case investigation with very low dietary cation-anion difference in prepartum dairy cows. Front. Nutr. 2017, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Al-Rabadi, G.; Al-Hijazeen, M. Variation in dietary cation-anion differences (DCAD) of feed ingredients in relation to milk fever disease in dairy cattle. Ukr. J. Ecol. 2018, 8, 51–56. [Google Scholar] [CrossRef]
- Diehl, A.L.; Bernard, J.K.; Tao, S.; Smith, T.N.; Kirk, D.J.; McLean, D.J. Effect of varying prepartum dietary cation-anion difference and calcium concentration on postpartum mineral and metabolite status and milk production of multiparous cows. J. Dairy Sci. 2018, 101, 9915–9925. [Google Scholar] [CrossRef]
- Rodney, R.M.; Martinez, N.P.; Celi, P.; Block, E.; Thomson, P.C.; Wijffels, G. Associations between bone and energy metabolism in cows fed diets differing in level of dietary cation-anion difference and supplemented with cholecalciferol or calcidiol. J. Dairy. Sci. 2018, 101, 6581–6601. [Google Scholar] [CrossRef]
- Slater, C.J.; Endres, E.L.; Weaver, S.R.; Cheng, A.A.; Lauber, M.R.; Endres, S.F.; Olstad, E.; DeBruin, A.; Crump, P.M.; Bloc, K.E.; et al. Interaction of 5-hydroxy-l-tryptophan and negative dietary cation-anion difference on calcium homeostasis in multiparous peripartum dairy cows. J. Dairy Sci. 2018, 101, 5486–5501. [Google Scholar] [CrossRef]
- Rodney, R.; Martinez, N.; Block, E.; Hernandez, L.; Celi, P.; Nelson, C.; Santos, J.; Lean, I. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Vitamin D, mineral, and bone metabolism. J. Dairy Sci. 2018, 101, 2519–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, N.; Rodney, R.M.; Block, E.; Hernandez, L.L.; Nelson, C.D.; Lean, I.J.; Santos, J.E.P. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Lactation performance and energy metabolism. J. Dairy Sci. 2018, 101, 2544–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, N.; Rodney, R.M.; Block, E.; Hernandez, L.L.; Nelson, C.D.; Lean, I.J.; Santos, J.E.P. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Health and reproductive responses. J. Dairy Sci. 2018, 101, 2563–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collazos, C.; Lopera, C.; Santos, J.E.P.; Laporta, J. Effects of the level and duration of maternal diets with negative dietary cation-anion differences prepartum on calf growth, immunity, and mineral and energy metabolism. J. Dairy Sci. 2018, 100, 9835–9850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopera, C.; Zimpel, R.; Vieira-Neto, A.; Lopes, F.R.; Ortiz, W.; Poindexter, M.; Faria, B.N.; Gambarini, M.L.; Block, E.; Nelson, C.D. Effects of level of dietary cation-anion difference and duration of prepartum feeding on performance and metabolism of dairy cows. J. Dairy Sci. 2018, 101, 7907–7929. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.E.P.; Lean, I.J.; Golder, H.M.; Block, E. Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. J. Dairy Sci. 2019, 102, 2134–2154. [Google Scholar] [CrossRef]
- Lean, I.J.; Santos, J.E.P.; Block, E.; Golder, H.M. Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis. J. Dairy Sci. 2019, 102, 2103–2133. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.B.; Muck, R.E.; Weimer, P.J. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS. Microbiol. Ecol. 2009, 67, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Tian, Y.; Li, J.T.; Su, X.Y.; Wang, X.; Zhao, S. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen. Appl. Environ. Microb. 2015, 81, 1375–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, D.O.; Oliveira, C.A.; Velasquez, A.V.; Souza, J.M.; Chevaux, E.; Mari, L.J. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Anim. Feed Sci. Technol. 2018, 236, 149–158. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analtical Chemists: Arlington, MA, USA, 1990; Volume I. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergentfiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wang, C.; Beede, D.K. Effects of supplemental protein on acid-base status and calcium metabolism of nonlactating Jersey cows. J. Dairy Sci. 1990, 73, 3178–3186. [Google Scholar] [CrossRef]
- Lodge-Ivey, S.L.; Browne-Silva, J.; Horvath, M.B. Technical note: Bacterial diversity and fermentation end products in rumen fluid samples collected via oral lavage or rumen cannula. J. Anim. Sci. 2009, 87, 2333–2337. [Google Scholar] [CrossRef]
- Tucker, W.B.; Hogue, J.F.; Aslam, M.; Lema, M.; Martin, M.; Owens, F.N. A buffer value index to evaluate effects of buffers on ruminal milieu in cows fed high or low concentrate, silage, or hay diets. J. Dairy Sci. 1992, 75, 811–819. [Google Scholar] [CrossRef]
- Apper-Bossard, E.; Faverdin, P.; Meschy, F.; Peyraud, J.L. Effects of dietary cation-anion difference on ruminal metabolism and blood acid-base regulation in dairy cows receiving 2 contrasting levels of concentrate in diets. J. Dairy Sci. 2010, 93, 4196–4210. [Google Scholar] [CrossRef] [Green Version]
- Tucker, W.B.; Aslam, M.; Lema, M.; Shin, I.S.; Le Ruyet, P.; Hogue, J.F.; Buchanan, D.S.; Miller, T.P.; Adams, G.D. Sodium bicarbonate or multielement buffer via diet or rumen: Effects on performance and acid-base status of lactating cows. J. Dairy Sci. 1992, 75, 2409–2420. [Google Scholar] [CrossRef]
- Church, D.C. Digestive physiology and nutrition of ruminants. Vol. 1-Digestive physiology. Portland Oregon. 1976, 169, 148. [Google Scholar]
- Catterton, T.L.; Erdman, R.A. The effect of cation source and dietary cation-anion difference on rumen ion concentrations in lactating dairy cows. J. Dairy Sci. 2016, 99, 6274–6284. [Google Scholar] [CrossRef]
- Tucker, W.B.; Harrison, G.A.; Hemken, R.W. Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J. Dairy Sci. 1988, 71, 346–354. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.J.; Zhu, B.C.; Guo, Y.Y.; Zhou, X. In situ degradation, ruminal fermentation, and the rumen bacterial community of cattle fed corn stover fermented by lignocellulolytic microorganisms. Anim. Feed Sci. Tech. 2019, 248, 10–19. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of mammals and their gut microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickdam, E.; Khiaosa-Ard, R.; Metzler-Zebeli, B.U.; Klevenhusen, F.; Chizzola, R.; Zebeli, Q. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro. Anaerobe 2016, 39, 4–13. [Google Scholar] [CrossRef]
- West, J.W.; Mullinix, B.G.; Sandifer, T.G. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J. Dairy Sci. 1991, 74, 1662–1674. [Google Scholar] [CrossRef]
- Wu, W.X.; Liu, J.X.; Xu, G.Z.; Ye, J.A. Calcium homeostasis, acid–base balance, and health status in periparturient Holstein cows fed diets with low cation-anion difference. Livest. Sci. 2008, 117, 7–14. [Google Scholar] [CrossRef]
- Takagi, H.; Block, E. Effects of various dietary cation-anion balances on response to experimentally induced hypocalcemia in sheep. J. Dairy Sci. 1991, 74, 4215–4224. [Google Scholar] [CrossRef]
- Takagi, H.; Block, E. Effects of reducing dietary cation-anion balance on calcium kinetics in sheep. J. Dairy Sci. 1991, 74, 4225–4237. [Google Scholar] [CrossRef]
- Takagi, H.; Block, E. Effects of manipulating dietary cation-anion balance on macromineral balance in sheep. J. Dairy Sci. 1991, 74, 4202–4214. [Google Scholar] [CrossRef]
- Liesegang, A. Influence of anionic salts on bone metabolism in periparturient dairy goats and sheep. J. Dairy Sci. 2008, 91, 2449–2460. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.O.; Cooke, R.F.; Rodrigues, S.M.B.; Bastos, L.N.; de Camargo, V.F.S.; Gomes, K.S.; Vasconcelos, J.L.M. Reducing prepartum urine pH by supplementing anionic feed ingredients: Effects on physiological and productive responses of Holstein×Gir cows. J. Dairy Sci. 2018, 101, 9296–9308. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.A. Modern quantitative acid-base chemistry. Can. J. Physiol. Pharm. 1983, 61, 1444–1461. [Google Scholar] [CrossRef] [PubMed]
- DeGaris, P.J.; Lean, I.J. Milk fever in dairy cows: A review of pathophysiology and control principles. Vet. J. 2008, 176, 58–69. [Google Scholar] [CrossRef]
- Seifi, H.A.; Mohri, M.; Farzaneh, N.; Nemati, H.; Nejhad, S.V. Effects of anionic salts supplementation on blood pH and mineral status, energy metabolism, reproduction and production in transition dairy cows. Res. Vet. Sci. 2010, 89, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, W.; Donkin, S.S.; Constable, P.D. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows. J. Dairy Sci. 2011, 94, 727–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espino, L.; Guerrero, F.; Suarez, M.L.; Santamarina, G.; Goicoa, A.; Fidalgo, L.E. Long-term effects of dietary anion-cation balance on acid-base status and bone morphology in reproducing ewes. J. Vet. Med. A. Physiol. Pathol. Clin. Med. 2003, 50, 488–495. [Google Scholar] [CrossRef]
- Roche, J.R.; Petch, S.; Kay, J.K. Manipulating the dietary cation-anion difference via drenching to early-lactation dairy cows grazing pasture. J. Dairy Sci. 2005, 88, 264–276. [Google Scholar] [CrossRef]
- USDA. Changes in the U.S. Dairy Cattle Industry, 1991–2007; USDA; APHIS: VS CEAH; National Animal Health Monitoring System: Fort Collins, CO, USA, 2007; p. 480.
- Horst, R.L.; Goff, J.P.; Reinhardt, T.A.; Buxton, D.R. Strategies for preventing milk fever in dairy cattle. J. Dairy Sci. 1997, 80, 1269–1280. [Google Scholar] [CrossRef]
- Goff, J.P.; Horst, R.L. Role of acid-base physiology on the pathogenesis of parturient hypocalcemia (milk fever)-The DCAD theory in principle and practice. Acta. Vet. Scand. 2003, 97, 1–66. [Google Scholar]
Items | DCAD 1 | ||
---|---|---|---|
HD | CON | LD | |
Ingredients | |||
Concentrate 2 | 30 | 30 | 30 |
Peanut straw | 50 | 50 | 50 |
Faba bean straw | 20 | 20 | 20 |
NaHCO3 (g/d) | 12 | -- | -- |
NH4Cl (g/d) | -- | -- | 15 |
Chemical components 3 | |||
Dry matter | 93.70 | 93.77 | 93.90 |
Crude protein | 13.40 | 13.64 | 14.21 |
Neutral detergent fiber | 39.40 | 39.64 | 39.82 |
Acid detergent fiber | 30.35 | 30.62 | 30.64 |
Crude ash | 11.98 | 12.97 | 12.29 |
Na | 0.52 | 0.19 | 0.14 |
K | 1.08 | 0.98 | 0.87 |
Cl | 0.23 | 0.27 | 1.25 |
S | 0.16 | 0.17 | 0.18 |
DCAD (mmol/kg DM) | +338 | +152 | −181 |
Items | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | |||
pH | 7.2 | 7.2 | 7.2 | 0.14 | 0.97 |
BC 3 (mL/L) | 44.7 | 43.3 | 43.1 | 1.38 | 0.67 |
Acetic acid (mmol/L) | 42.2 | 43.4 | 44.8 | 2.32 | 0.74 |
Propionic acid (mmol/L) | 13.0 | 13.1 | 12.7 | 0.84 | 0.95 |
Butyric acid (mmol/L) | 8.0 | 8.5 | 8.1 | 0.83 | 0.91 |
Sum of Ac + Pro + But 4 (mmol/L) | 63.2 | 65.0 | 65.6 | 3.41 | 0.87 |
A/P 5 | 3.25 | 3.31 | 3.53 | 0.29 | 0.60 |
Genus | Species | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | ||||
Fibrobacter (%) | 0.444 | 0.362 | 0.326 | 0.10 | 0.69 | |
F. succinogene (%) | 0.443 | 0.362 | 0.324 | 0.10 | 0.70 | |
Butyrivibrio (%) | 1.015 | 0.459 | 0.478 | 0.13 | 0.12 | |
B. fibrisolvens (%) | 0.12 | 0.085 | 0.065 | 0.03 | 0.59 | |
Ruminococcus (%) | 1.054 | 1.538 | 1.276 | 0.27 | 0.79 | |
R. flavefaciens (%) | 0.343 | 0.414 | 0.119 | 0.21 | 0.51 | |
R. albus (%) | 0.005 | 0.018 | 0.007 | 0.01 | 0.50 | |
Sum of F. succinogenes, R. flavefaciens, B. fibrisolvens and R. albus | 0.911 | 0.879 | 0.515 | 0.16 | 0.57 |
Items | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | |||
Coverage (%) | 99.52 | 99.49 | 99.45 | 0.06 | 0.96 |
Sobs | 785 | 686 | 701 | 35.90 | 0.29 |
Chao | 906 | 843 | 811 | 4.28 | 0.33 |
Ace 3 | 900 | 834 | 815 | 4.33 | 0.36 |
Simpson | 0.027 | 0.033 | 0.028 | 0.04 | 0.76 |
Shannon | 4.87 | 4.45 | 4.69 | 0.21 | 0.05 |
PD_whole_tree | 55.05 | 49.90 | 50.42 | 1.08 | 0.10 |
Phylum | Genus | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | ||||
Bacteroidetes | 60.4 | 65.1 | 59.3 | 2.81 | 0.33 | |
Prevotella | 18.9 | 24.2 | 16.1 | 3.05 | 0.22 | |
Paraprevotella | 3.58 | 2.8 | 3.5 | 1.24 | 0.88 | |
Firmicutes | 28.4 a | 18.7 b | 28.8 a | 2.23 | 0.008 | |
Selenomonas | 1.6 | 0.6 | 1.3 | 0.78 | 0.63 | |
Ruminococcus | 1.1 | 1.5 | 1.3 | 0.49 | 0.79 | |
Succiniclasticum | 1.3 | 0.7 | 0.7 | 0.25 | 0.14 | |
Butyrivibrio | 1.0 | 0.5 | 0.5 | 0.20 | 0.12 | |
Quinella | 2.3 | 0.7 | 3.7 | 1.27 | 0.28 | |
Synergistetes | 5.2 | 6.3 | 6.0 | 2.03 | 0.92 | |
Fretibacterium | 5.2 | 6.3 | 6.0 | 2.04 | 0.92 | |
Spirochaetae | 1.4 | 2.1 | 1.9 | 0.49 | 0.61 | |
Treponema | 0.7 | 1.0 | 1.4 | 0.37 | 0.46 | |
Proteobacteria | 1.1 | 4.5 | 0.7 | 1.40 | 0.14 | |
Tenericutes | 1.1 | 1.2 | 1.3 | 0.29 | 0.82 |
Items | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | |||
Initial body weight (kg) | 30.3 | 30.4 | 29.4 | 1.36 | 0.86 |
Final body weight (kg) | 31.3 | 31.5 | 30.4 | 1.48 | 0.82 |
DMI 3 (g/d) | 899.0 | 857.5 | 864.0 | 64.85 | 0.89 |
ANG (kg) | 1.0 | 1.1 | 1.0 | 0.21 | 0.89 |
ADG (g/d) | 65.3 | 71.3 | 64.7 | 8.28 | 0.63 |
FCR | 13.8 | 12.0 | 13.4 | 3.00 | 0.81 |
Items | DCAD 1 | SEM 2 | p-Value | ||
---|---|---|---|---|---|
HD (+338) | CON (+152) | LD (−181) | |||
Ca (mmol/L) | 2.3 b | 2.4 b | 2.9 a | 0.08 | <0.01 |
Glc 3 (mmol/L) | 4.6 | 5.1 | 4.6 | 0.34 | 0.56 |
UN (mmol/L) | 6.2 | 5.6 | 6.2 | 0.41 | 0.50 |
ALT (IU/L) | 8.6 | 10.2 | 10.8 | 1.70 | 0.85 |
AST (IU/L) | 11.2 | 14.0 | 11.9 | 2.01 | 0.80 |
AKP(King unit/100 mL) | 20.8 | 21.7 | 17.8 | 3.75 | 0.75 |
TP (g/L) | 99.4 | 112.9 | 92.6 | 11.47 | 0.37 |
Alb (g/L) | 36.4 | 37.1 | 35.2 | 2.35 | 0.85 |
GSH-Px (U/mL) | 670.6 | 755.3 | 709.4 | 152.50 | 0.59 |
CAT (U/mL) | 2.3 | 1.9 | 2.5 | 0.66 | 0.84 |
SOD (U/mL) | 68.5 | 63.6 | 68.0 | 3.38 | 0.43 |
MDA (nmol/mL) | 37.1 | 34.6 | 36.8 | 2.54 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Tian, X.; Ma, Z.; Wu, W. Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level. Animals 2021, 11, 664. https://doi.org/10.3390/ani11030664
Yang K, Tian X, Ma Z, Wu W. Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level. Animals. 2021; 11(3):664. https://doi.org/10.3390/ani11030664
Chicago/Turabian StyleYang, Kang, Xingzhou Tian, Zhengfa Ma, and Wenxuan Wu. 2021. "Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level" Animals 11, no. 3: 664. https://doi.org/10.3390/ani11030664
APA StyleYang, K., Tian, X., Ma, Z., & Wu, W. (2021). Feeding a Negative Dietary Cation-Anion Difference to Female Goats Is Feasible, as Indicated by the Non-Deleterious Effect on Rumen Fermentation and Rumen Microbial Population and Increased Plasma Calcium Level. Animals, 11(3), 664. https://doi.org/10.3390/ani11030664