Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals
2.3. AT Harvesting
2.4. Isolation of SVF Cells
2.5. Assessment of SVF Cells Viability and Quantity
2.6. Immunophenotyping of the Potential AD-MSCs in SVF Samples
2.7. Semi-Quantitative RT-PCR
2.8. Statistical Analysis
3. Results
3.1. Effect of Harvesting Site on AT yield
3.2. Effect of AT Harvesting Site on SVF Cell Viability and Quantity
3.3. The Potential AD-MSCs in the Freshly Isolated SVF Cells from Different Harvesting Sites
3.4. Semi-Quantitative RT-PCR Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, L.L.-Y.; Cohen, D.A.; Kuksin, D.; Paradis, B.D.; Qiu, J. Automated enumeration and viability measurement of canine stromal vascular fraction cells using fluorescence-based image cytometry method. J. Fluoresc. 2014, 24, 983–989. [Google Scholar] [CrossRef]
- Mohal, J.S.; Tailor, H.D.; Khan, W.S. Sources of adult mesenchymal stem cells and their applicability for musculoskeletal applications. Curr. Stem Cell Res. Ther. 2012, 7, 103–109. [Google Scholar] [CrossRef]
- Nakao, N.; Nakayama, T.; Yahata, T.; Muguruma, Y.; Saito, S.; Miyata, Y.; Yamamoto, K.; Naoe, T. Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: Advantages over bone marrow-derived mesenchymal stem cells. Am. J. Pathol. 2010, 177, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Choudhery, M.S.; Badowski, M.; Muise, A.; Harris, D.T. Comparison of human mesenchymal stem cells derived from adipose and cord tissue. Cytotherapy 2013, 15, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marx, C.; Silveira, M.D.; Nardi, N.B. Adipose-derived stem cells in veterinary medicine: Characterization and therapeutic applications. Stem Cells Dev. 2015, 24, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Markarian, C.F.; Frey, G.Z.; Silveira, M.D.; Milani, A.R.; Ely, P.B.; Horn, A.P.; Nardi, N.B.; Camassola, M. Isolation of adipose-derived stem cells: A comparison among different methods. Biotechnol. Lett. 2014, 36, 693–702. [Google Scholar] [CrossRef]
- Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.; Nagase, T.; Koshima, I. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell. Physiol. 2006, 208, 64–76. [Google Scholar] [CrossRef]
- De Girolamo, L.; Lucarelli, E.; Alessandri, G.; Antonietta Avanzini, M.; Ester Bernardo, M.; Biagi, E.; Teresa Brini, A.; D’Amico, G.; Fagioli, F.; Ferrero, I. Mesenchymal stem/stromal cells: A new’ cells as drugs paradigm. Efficacy and critical aspects in cell therapy. Curr. Pharm. Des. 2013, 19, 2459–2473. [Google Scholar] [CrossRef] [Green Version]
- Marx, C.; Silveira, M.D.; Selbach, I.; Da Silva, A.S.; Braga, L.M.G.D.M.; Camassola, M.; Nardi, N.B. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014, 2014, 391274. [Google Scholar] [CrossRef] [Green Version]
- Upchurch, D.A.; Renberg, W.C.; Roush, J.K.; Milliken, G.A.; Weiss, M.L. Effects of administration of adipose-derived stromal vascular fraction and platelet-rich plasma to dogs with osteoarthritis of the hip joints. Am. J. Vet. Res. 2016, 77, 940–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaade, M.L.; Jensen, C.H.; Andersen, D.C.; Sheikh, S.P. A 3-month age difference profoundly alters the primary rat stromal vascular fraction phenotype. Acta Histochem. 2016, 118, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Kemilew, J.; Sobczyńska-Rak, A.; Żylińska, B.; Szponder, T.; Nowicka, B.; Urban, B. The use of allogenic stromal vascular fraction (SVF) cells in degenerative joint disease of the spine in dogs. In Vivo 2019, 33, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Kang, H.W.; Lee, H.T.; Kim, H.-J.; Kim, C.-L.; Song, J.-Y.; Lee, K.W.; Cha, S.-H. Sequential sub-passage decreases the differentiation potential of canine adipose-derived mesenchymal stem cells. Res. Vet. Sci. 2014, 96, 267–275. [Google Scholar] [CrossRef]
- Guercio, A.; Di Bella, S.; Casella, S.; Di Marco, P.; Russo, C.; Piccione, G. Canine mesenchymal stem cells (MSCs): Characterization in relation to donor age and adipose tissue-harvesting site. Cell Biol. Int. 2013, 37, 789–798. [Google Scholar] [CrossRef]
- Bergknut, N.; Rutges, J.P.; Kranenburg, H.J.C.; Smolders, L.A.; Hagman, R.; Smidt, H.J.; Lagerstedt, A.S.; Penning, L.C.; Voorhout, G.; Hazewinkel, H.A.; et al. The dog as an animal model for intervertebral disc degeneration? Spine 2012, 37, 351–358. [Google Scholar] [CrossRef] [PubMed]
- McMahill, B.G.; Borjesson, D.L.; Sieber-Blum, M.; Nolta, J.A.; Sturges, B.K. Stem cells in canine spinal cord injury-promise for regenerative therapy in a large animal model of human disease. Stem Cell Rev. Rep. 2015, 11, 180–193. [Google Scholar] [CrossRef]
- Albano, D.; Messina, C.; Usuelli, F.G.; De Girolamo, L.; Grassi, M.; Maccario, C.; Bignotti, B.; Tagliafico, A.; Sconfienza, L.M. Magnetic resonance and ultrasound in Achilles tendinopathy: Predictive role and response assessment to platelet-rich plasma and adipose-derived stromal vascular fraction injection. Eur. J. Radiol. 2017, 95, 130–135. [Google Scholar] [CrossRef]
- Abdallah, A.N.; Shamaa, A.A.; El-Tookhy, O.S. Evaluation of treatment of experimentally induced canine model of multiple sclerosis using laser activated non-expanded adipose derived stem cells. Res. Vet. Sci. 2019, 125, 71–81. [Google Scholar] [CrossRef]
- Astor, D.E.; Hoelzler, M.G.; Harman, R.; Bastian, R.P. Patient factors influencing the concentration of stromal vascular fraction (SVF) for adipose-derived stromal cell (ASC) therapy in dogs. Can. J. Vet. Res. 2013, 77, 177–182. [Google Scholar]
- Sullivan, M.O.; Gordon-Evans, W.J.; Fredericks, L.P.; Kiefer, K.; Conzemius, M.G.; Griffon, D.J. Comparison of mesenchymal stem cell surface markers from bone marrow aspirates and adipose stromal vascular fraction sites. Front. Vet. Sci. 2016, 2, 82. [Google Scholar] [CrossRef] [Green Version]
- Watkins, S.; Hall, L.; Clarke, K. Propofol as an intravenous anaesthetic agent in dogs. Vet. Rec. 1987, 120, 326–329. [Google Scholar] [CrossRef]
- Tomihari, M.; Nishihara, A.; Shimada, T.; Yanagawa, M.; Miyoshi, M.; Miyahara, K.; Oishi, A. A comparison of the immunological effects of propofol and isoflurane for maintenance of anesthesia in healthy dogs. J. Vet. Med. Sci. 2015, 77, 1227–1233. [Google Scholar] [CrossRef] [Green Version]
- Krešić, N.; Šimić, I.; Lojkić, I.; Bedeković, T. Canine adipose derived mesenchymal stem cells transcriptome composition alterations: A step towards standardizing therapeutic. Stem Cells Int. 2017, 2017, 4176292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaneselli, K.M.; Kuhl, C.P.; Terraciano, P.B.; De Oliveira, F.S.; Pizzato, S.B.; Pazza, K.; Magrisso, A.B.; Torman, V.; Rial, A.; Moreno, M. Comparison of the characteristics of canine adipose tissue-derived mesenchymal stem cells extracted from different sites and at different passage numbers. J. Vet. Sci. 2018, 19, 13–20. [Google Scholar] [CrossRef]
- Ivanovska, A.; Grolli, S.; Borghetti, P.; Ravanetti, F.; Conti, V.; De Angelis, E.; Macchi, F.; Ramoni, R.; Martelli, P.; Gazza, F. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies. Res. Vet. Sci. 2017, 114, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Lin, D.; Wang, H.; Qiao, C.; Wang, J.; Zhang, T. Quantification of VEGF-C expression in canine mammary tumours. Aust. Vet. J. 2008, 86, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Senesi, L.; De Francesco, F.; Farinelli, L.; Manzotti, S.; Gagliardi, G.; Papalia, G.F.; Riccio, M.; Gigante, A. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: Preliminary results. Front. Cell Dev. Biol. 2019, 7, 88. [Google Scholar] [CrossRef]
- Bora, P.; Majumdar, A.S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem Cell Res. Ther. 2017, 8, 145. [Google Scholar] [CrossRef]
- Zhang, N.; Dietrich, M.A.; Lopez, M.J. Canine intra-articular multipotent stromal cells (MSC) from adipose tissue have the highest in vitro expansion rates, multipotentiality, and MSC immunophenotypes. Vet. Surg. 2013, 42, 137–146. [Google Scholar] [CrossRef]
- DePompeo, C.M.; Giassetti, M.I.; Elnaggar, M.M.; Oatley, J.M.; Davis, W.C.; Fransson, B.A. Isolation of canine adipose-derived mesenchymal stem cells from falciform tissue obtained via laparoscopic morcellation: A pilot study. Vet. Surg. 2020, 49, O28–O37. [Google Scholar] [CrossRef]
- Pond, C.M.; Mattacks, C.A. Interactions between adipose tissue around lymph nodes and lymphoid cells in vitro. J. Lipid Res. 1995, 36, 2219–2231. [Google Scholar] [CrossRef]
- Löhn, M.; Dubrovska, G.; Lauterbach, B.; Luft, F.C.; Gollasch, M.; Sharma, A.M. Periadventitial fat releases a vascular relaxing factor. FASEB J. 2002, 16, 1057–1063. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Gona, P.; Hoffmann, U.; Porter, S.A.; Salton, C.J.; Massaro, J.M.; Levy, D.; Larson, M.G.; D’Agostino, R.B.; O’Donnell, C.J. Pericardial fat, intra-thoracic fat, and measures of left ventricular structure and function: The Framingham heart study. Circulation 2009, 119, 1586. [Google Scholar] [CrossRef] [Green Version]
- Jurgens, W.J.; Oedayrajsingh-Varma, M.J.; Helder, M.N.; Zandieh Doulabi, B.; Schouten, T.E.; Kuik, D.J.; Ritt, M.J.; Van Milligen, F.J. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: Implications for cell-based therapies. Cell Tissue Res. 2008, 332, 415–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, N.K.; Mishra, V.K.; Dubey, R.; Deng, Y.-H.; Tsai, F.-C.; Deng, W.-P. Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int. J. Mol. Sci. 2018, 19, 2200. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, A.; Mizuno, M.; Mochizuki, M.; Sekiya, I. Mesenchymal stem cells for cartilage regeneration in dogs. World J. Stem Cells 2019, 11, 254. [Google Scholar] [CrossRef]
- Hagood, J.S. Thy-1 as an integrator of diverse extracellular signals. Front. Cell Dev. Biol. 2019, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harjunpää, H.; Asens, M.L.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zanata, F.; Curley, J.L.; Martin, E.C.; Wu, X.; Dietrich, M.; Devireddy, R.V.; Wade, J.W.; Gimble, J.M. The relative functionality of freshly isolated and cryopreserved human adipose-derived stromal/stem cells. Cells Tissues Organs 2016, 201, 436–444. [Google Scholar]
- Sun, Y.; Chen, S.; Zhang, X.; Pei, M. Significance of cellular cross-talk in stromal vascular fraction of adipose tissue in neovascularization. Arter. Thromb. Vasc. Biol. 2019, 39, 1034–1044. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Lopez, M.J. Effects of cryopreservation on canine multipotent stromal cells from subcutaneous and infrapatellar adipose tissue. Stem Cell Rev. Rep. 2016, 12, 257–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reich, C.M.; Raabe, O.; Wenisch, S.; Bridger, P.S.; Kramer, M.; Arnhold, S. Isolation, culture and chondrogenic differentiation of canine adipose tissue and bone marrow-derived mesenchymal stem cells–A comparative study. Vet. Res. Commun. 2012, 36, 139–148. [Google Scholar] [CrossRef] [PubMed]
Cell Surface Marker | Antibody Clone | Species Reactivity | Clonality | Antibody Quantity | Cat. No | Source |
---|---|---|---|---|---|---|
CD90 PE | 5E10 | Dog | Monoclonal | 10 µL/106 cells | ARG54208 | Arigo Biolaboratories |
CD44 PE | IM7 | Dog | Monoclonal | 10 µL/106 cells | GTX80086 | GeneTex |
CD29 PE | MEM-101A | Dog | Monoclonal | 10 µL/106 cells | 1P219T025 | EXBIO antibodies |
CD45 FITC | YKIX716.13 | Dog | Monoclonal | 10 µL/106 cells | GTX43583 | GeneTex |
Target Gene | Accession Number | Primers | Amplicon Size | Reference |
---|---|---|---|---|
Oct-4 | XM_538830.1 | Fw: AAGCCTGCAGAAAGACCTGRv: GTTCGCTTTCTCTTTCGGGC | 286 bp | Ivanovska et al. [26] |
CD90 | NM_001287129.1 | Fw: AAGCCAGGATTGGGGATGTGRv: TGTGGCAGAGAAAGCTCC TG | 285 bp | Ivanovska et al. [26] |
CD44 | NM_001197022.1 | Fw: CCCATTACCAAAGACCACGARv: TTCTCGAGGTTCCGTGTCTC | 408 bp | Ivanovska et al. [26] |
CD29 | XM_005616949.1 | Fw: AGGATGTTGACGACTGCTGGRv: ACCTTTGCATTCAGTGTTGTGC | 356 bp | Ivanovska et al. [26] |
CD45 | XM_005622282.1 | Fw: TGTTTCCAGTTCTGTTTCCCCARv: TCAGGTACAAAGCCTTCCCA | 432 bp | Ivanovska et al. [26] |
CD34 | NM_001003341.1 | Fw: GAGATCACCCTAACGCCTGGRv: GGCTCCTTCTCACACAGGAC | 383 bp | Ivanovska et al. [26] |
β-actin | XM_544346 | Fw: GAGACCTGACCGACTACCTRv: GCT GCCTCCAGACAACAC | 553 bp | Qiu et al. [27] |
Breed | Body Weight (Kg) | Age (Years) | Sex | Adipose Tissue Harvest (gm) | Viability% | Viable Cell/Gram × 106 |
---|---|---|---|---|---|---|
Beagle | 9 | 8 | Female | 1 S | 99.8 | 0.24 |
7.3 F | 90 | 4.2 | ||||
9.5 P | 99.8 | 46.2 | ||||
Beagle | 10 | 8 | Female | 1.3 S | 92 | 2.4 |
14.7 F | 90.9 | 3 | ||||
2 P | 99.7 | 24 | ||||
Chihuahua | 3.7 | 9 | Female | 1 S | 96.6 | 27.5 |
8 F | 98.7 | 5.4 | ||||
2.5 P | 99.8 | 28 | ||||
Chihuahua | 6.14 | 8 | Female | 5.5 S | 95.5 | 0.43 |
6.5 F | 90.9 | 8.95 | ||||
2.6 P | 99.6 | 29 | ||||
Miniature Dachshund | 7.7 | 10 | Female | 4.7 S | 97.1 | 2 |
10 F | 97.9 | 3.3 | ||||
7 P | 99.7 | 44.6 | ||||
Pug | 6 | 8 | Female | 1 S | 95.2 | 2.4 |
8.3 F | 95 | 3.6 | ||||
6 P | 99.6 | 31 | ||||
Golden Retriever | 20.6 | 8 | Female | 3 S | 97.2 | 1.6 |
10 F | 98.4 | 8 | ||||
12 P | 99.3 | 87.5 | ||||
Jack Russell Terrier | 9.72 | 10 | Female | 2.6 S | 89.7 | 4.2 |
8.2 F | 98.8 | 1.6 | ||||
2 P | 99.7 | 19.6 | ||||
Pomeranian | 8 | 11 | Female | 3.4 S | 93.4 | 0.78 |
14.7 F | 97 | 8.1 | ||||
14 P | 99.8 | 32.8 | ||||
Mix | 14.7 | 9 | Female | 4.2 S | 92.9 | 0.29 |
7 F | 88.2 | 11 | ||||
5.8 P | 99.2 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendawy, H.; Uemura, A.; Ma, D.; Namiki, R.; Samir, H.; Ahmed, M.F.; Elfadadny, A.; El-Husseiny, H.M.; Chieh-Jen, C.; Tanaka, R. Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals 2021, 11, 460. https://doi.org/10.3390/ani11020460
Hendawy H, Uemura A, Ma D, Namiki R, Samir H, Ahmed MF, Elfadadny A, El-Husseiny HM, Chieh-Jen C, Tanaka R. Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals. 2021; 11(2):460. https://doi.org/10.3390/ani11020460
Chicago/Turabian StyleHendawy, Hanan, Akiko Uemura, Danfu Ma, Ryosuke Namiki, Haney Samir, Mahmoud F. Ahmed, Ahmed Elfadadny, Hussein M. El-Husseiny, Cheng Chieh-Jen, and Ryou Tanaka. 2021. "Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality" Animals 11, no. 2: 460. https://doi.org/10.3390/ani11020460
APA StyleHendawy, H., Uemura, A., Ma, D., Namiki, R., Samir, H., Ahmed, M. F., Elfadadny, A., El-Husseiny, H. M., Chieh-Jen, C., & Tanaka, R. (2021). Tissue Harvesting Site Effect on the Canine Adipose Stromal Vascular Fraction Quantity and Quality. Animals, 11(2), 460. https://doi.org/10.3390/ani11020460