The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. “One Medicine, One Health”: The Role of the Horse
1.2. Properties of Mesenchymal Stem Cells
2. Applications of Equine MSCs in Ophthalmology
2.1. Corneal Ulcers and Ulcerative Keratitis
2.2. Equine Recurrent Uveitis
2.3. Equine Immune Mediated Keratitis
3. Applications of Equine MSCs in Reproduction
3.1. Endometritis
3.1.1. Equine Persistent Breeding-Induced Endometritis
3.1.2. Endometrosis
3.2. Ovarian Diseases
3.3. Testicular Diseases
4. Application of Equine MSCs in Metabolic Disorders
Equine Metabolic Syndrome
5. Application of Equine MSCs in the Respiratory System
Equine Asthma
6. Application of Equine MSCs in Disorders of the Integumentary System
6.1. Wounds
6.2. Decubitus Ulcers
6.3. Laminitis
7. Application of Equine MSCs in Neurological Disorders
7.1. Peripheral Nerve Injury
7.2. Wobblers Syndrome
7.3. Laryngeal Hemiplegia or Left Recurrent Laryngeal Neuropathy
8. Application of Equine MSCs in Endotoxemia
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stewart, M.C.; Stewart, A.A. Mesenchymal stem cells: Characteristics, sources, and mechanisms of action. Vet. Clin. N. Am. Equine Pract. 2011, 27, 243–261. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borjesson, D.L.; Peroni, J.F. The regenerative medicine laboratory: Facilitating stem cell therapy for equine disease. Clin. Lab. Med. 2011, 31, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horseman, S.V.; Buller, H.; Mullan, S.; Whay, H.R. Current welfare problems facing horses in Great Britain as identified by equine stakeholders. PLoS ONE 2016, 11, e0160269. [Google Scholar] [CrossRef] [Green Version]
- Theoret, C.L.; Olutoye, O.O.; Parnell, L.K.S.; Hicks, J. Equine exuberant granulation tissue and human keloids: A comparative histopathologic study. Vet. Surg. 2013, 42, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Couëtil, L.L.; Cardwell, J.M.; Gerber, V.; Lavoie, J.-P.; Léguillette, R.; Richard, E.A. Inflammatory airway disease of horses—Revised consensus statement. J. Vet. Intern. Med. 2016, 30, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Gershwin, L. Veterinary autoimmunity: Autoimmune diseases in domestic animals. Ann. N. Y. Acad. Sci. 2007, 1109, 109–116. [Google Scholar] [CrossRef]
- Hurtig, M.B.; Buschmann, M.D.; Fortier, L.A.; Hoemann, C.D.; Hunziker, E.B.; Jurvelin, J.S.; Mainil-Varlet, P.; McIlwraith, C.W.; Sah, R.L.; Whiteside, R.A. Preclinical studies for cartilage repair: Recommendations from the International Cartilage Repair Society. Cartilage 2011, 2, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Al Naem, M.; Bourebaba, L.; Kucharczyk, K.; Röcken, M.; Marycz, K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev. Rep. 2019, 16, 301–322. [Google Scholar] [CrossRef]
- Bullone, M.; Lavoie, J.-P. Asthma ‘of horses and men’—How can equine heaves help us better understand human asthma immunopathology and its functional consequences? Mol. Immunol. 2015, 66, 97–105. [Google Scholar] [CrossRef]
- Smith, R.K.W.; Garvican, E.R.; Fortier, L.A. The current “state of play” of regenerative medicine in horses: What the horse can tell the human. Regen. Med. 2014, 9, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Colbath, A.C.; Frisbie, D.D.; Dow, S.W.; Kisiday, J.D.; McIlwraith, C.W.; Goodrich, L.R. Equine models for the investigation of mesenchymal stem cell therapies in orthopaedic disease. Oper. Tech. Sports Med. 2017, 25, 41–49. [Google Scholar] [CrossRef] [Green Version]
- van der Weyden, L.; Brenn, T.; Patton, E.E.; Wood, G.A.; Adams, D.J. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J. Pathol. 2020, 252, 4–21. [Google Scholar] [CrossRef]
- Witkowski, L.; Cywinska, A.; Paschalis-Trela, K.; Crisman, M.; Kita, J. Multiple etiologies of equine recurrent uveitis—A natural model for human autoimmune uveitis: A brief review. Comp. Immunol. Microbiol. Infect. Dis. 2016, 44, 14–20. [Google Scholar] [CrossRef]
- Horohov, D.W. The equine immune responses to infectious and allergic disease: A model for humans? Mol. Immunol. 2015, 66, 89–96. [Google Scholar] [CrossRef]
- Carnevale, E.M. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology 2008, 69, 23–30. [Google Scholar] [CrossRef]
- Fureix, C.; Jego, P.; Henry, S.; Lansade, L.; Hausberger, M. Towards an ethological animal model of depression? A study on horses. PLoS ONE 2012, 7, e39280. [Google Scholar] [CrossRef] [PubMed]
- Danek, M.; Danek, J.; Araszkiewicz, A. Large animal as a potential models of humans mental and behavioral disorders. Psychiatr. Pol. 2017, 51, 1009–1027. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.A.; Goodrich, L.R.; Ribitsch, I.; Schnabel, L.V.; Shepard, D.O.; Watts, A.E.; Smith, R.K.W. One health in regenerative medicine: Report on the second Havemeyer symposium on regenerative medicine in horses. Regen. Med. 2020, 15, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Ribitsch, I.; Baptista, P.M.; Lange-Consiglio, A.; Melotti, L.; Patruno, M.; Jenner, F.; Schnabl-Feichter, E.; Dutton, L.C.; Connolly, D.J.; van Steenbeek, F.G.; et al. Large animal models in regenerative medicine and tissue engineering: To do or not to do. Front. Bioeng. Biotechnol. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, R.C. A historical overview and concepts of mesenchymal stem cells. In Essentials of Mesenchymal Stem Cell Biology and Its Clinical Translation; Zhao, R.C., Ed.; Springer: Heidelberg, Germany, 2013; pp. 3–15. ISBN 9789400767164. [Google Scholar]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Radcliffe, C.H.; Flaminio, M.J.B.F.; Fortier, L.A. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cells Dev. 2010, 19, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Ranera, B.; Lyahyai, J.; Romero, A.; Vázquez, F.J.; Remacha, A.R.; Bernal, M.L.; Zaragoza, P.; Rodellar, C.; Martín-Burriel, I. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet. Immunol. Immunopathol. 2011, 144, 147–154. [Google Scholar] [CrossRef] [PubMed]
- da Silva Meirelles, L.; Fontes, A.M.; Covas, D.T.; Caplan, A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009, 20, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Amarpal; Makhdoomi, D.M.; Sharma, G.T. Equine mesenchymal stem cells: Properties, sources, characterization, and potential therapeutic applications. J. Equine Vet. Sci. 2019, 72, 16–27. [Google Scholar] [CrossRef]
- Fortier, L.A.; Travis, A.J. Stem cells in veterinary medicine. Stem Cell Res. Ther. 2011, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnecchi, M.; Danieli, P.; Malpasso, G.; Ciuffreda, M.C. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol. Biol. 2016, 1416, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Martinet, L.; Fleury-Cappellesso, S.; Gadelorge, M.; Dietrich, G.; Bourin, P.; Fournie, J.J.; Poupot, R. A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells. Eur. J. Immunol. 2009, 39, 752–762. [Google Scholar] [CrossRef]
- Rasmusson, I.; Uhlin, M.; Le Blanc, K.; Levitsky, V. Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. J. Leukoc. Biol. 2007, 82, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Sotiropoulou, P.A.; Perez, S.A.; Gritzapis, A.D.; Baxevanis, C.N.; Papamichail, M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006, 24, 74–85. [Google Scholar] [CrossRef]
- Nemeth, K.; Keane-Myers, A.; Brown, J.M.; Metcalfe, D.D.; Gorham, J.D.; Bundoc, V.G.; Hodges, M.G.; Jelinek, I.; Madala, S.; Karpati, S.; et al. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc. Natl. Acad. Sci. USA 2010, 107, 5652–5657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asari, S.; Itakura, S.; Ferreri, K.; Liu, C.; Kuroda, Y.; Kandeel, F.; Mullen, Y. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol. 2009, 37, 604–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.S.; Cai, L.; Ji, W.Y.; Hui, Y.N.; Wang, Y.S.; Hu, D.; Zhu, J. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats. Mol. Vis. 2010, 16, 1304–1316. [Google Scholar] [PubMed]
- Gu, S.; Xing, C.; Han, J.; Mark, O.M.T.; Hong, J. Differentiation of rabbit bone marrow mesenchymalstem cells into corneal epithelial cells in vivo and ex vivo. Mol. Vis. 2009, 15, 99–107. [Google Scholar] [PubMed]
- Cejka, C.; Holan, V.; Trosan, P.; Zajicova, A.; Javorkova, E.; Cejkova, J. The favorable effect of mesenchymal stem cell treatment on the antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after Alkali Burns. Oxid. Med. Cell. Longev. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cejkova, J.; Trosan, P.; Cejka, C.; Lencova, A.; Zajicova, A.; Javorkova, E.; Kubinova, S.; Sykova, E.; Holan, V. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Exp. Eye Res. 2013, 116, 312–323. [Google Scholar] [CrossRef]
- Clode, A.B. Diseases and surgery of the cornea. In Equine Ophthalmology; Gilger, B.C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 181–266. ISBN 9781437708462. [Google Scholar]
- Greenberg, S. Ulcerative keratitis and keratomalacia in horses: Medical management and surgical considerations. Equine Vet. Educ. 2017, 31, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Marfe, G.; Massaro-Giordano, M.; Ranalli, M.; Cozzoli, E.; Di Stefano, C.; Malafoglia, V.; Polettini, M.; Gambacurta, A. Blood derived stem cells: An ameliorative therapy in veterinary ophthalmology. J. Cell. Physiol. 2012, 227, 1250–1256. [Google Scholar] [CrossRef]
- Brooks, D.E.; Matthews, A.; Clode, A.B. Diseases of the cornea. In Equine Ophthalmology; Gilger, B.C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 252–368. ISBN 9781119047919. [Google Scholar]
- Sherman, A.B.; Gilger, B.C.; Berglund, A.K.; Schnabel, L.V. Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro. Stem Cell Res. Ther. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Spaas, J.H.; Gambacurta, A.; Polettini, M.; Broeckx, S.; Van Hoeck, F.; De Schauwer, C.; Van De Walle, G.R.; Van Soom, A. Purification and expansion of stem cells from equine peripheral blood, with clinical applications. Vlaams Diergeneeskd. Tijdschr. 2011, 80, 129–135. [Google Scholar]
- Gilger, B.C.; Hollingsworth, S.R. Diseases of the uvea, uveitis, and recurrent uveitis. In Equine Ophthalmology; Gilger, B., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 369–415. ISBN 9781119047919. [Google Scholar]
- Sauvage, A.C.; Monclin, S.J.; Elansary, M.; Hansen, P.; Grauwels, M.F. Detection of intraocular Leptospira spp. by real-time polymerase chain reaction in horses with recurrent uveitis in Belgium. Equine Vet. J. 2019, 51, 299–303. [Google Scholar] [CrossRef]
- Regan, D.P.; Aarnio, M.C.; Davis, W.S.; Carmichael, K.P.; Vandenplas, M.L.; Lauderdale, J.D.; Moore, P.A. Characterization of cytokines associated with Th17 cells in the eyes of horses with recurrent uveitis. Vet. Ophthalmol. 2012, 15, 145–152. [Google Scholar] [CrossRef]
- Kol, A.; Walker, N.J.; Nordstrom, M.; Borjesson, D.L. Th17 pathway as a target for multipotent stromal cell therapy in dogs: Implications for translational research. PLoS ONE 2016, 11, e0148568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arzi, B.; Mills-Ko, E.; Verstraete, F.J.M.; Kol, A.; Walker, N.J.; Badgley, M.R.; Fazel, N.; Murphy, W.J.; Vapniarsky, N.; Borjesson, D.L. Therapeutic efficacy of fresh, autologous mesenchymal stem cells for severe refractory gingivostomatitis in cats. Stem Cells Transl. Med. 2016, 5, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Holt, D.D.C.; Wood, J.A.; Granick, J.L.; Walker, N.J.; Clark, K.C.; Borjesson, D.L. Equine mesenchymal stem cells inhibit T cell proliferation through different mechanisms depending on tissue source. Stem Cells Dev. 2014, 23, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Saldinger, L.K.; Nelson, S.G.; Bellone, R.R.; Lassaline, M.; Mack, M.; Walker, N.J.; Borjesson, D.L. Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro. Vet. Ophthalmol. 2020, 23, 160–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malalana, F.; Stylianides, A.; McGowan, C. Equine recurrent uveitis: Human and equine perspectives. Vet. J. 2015, 206, 22–29. [Google Scholar] [CrossRef]
- Matthews, A.; Gilger, B. Equine immune-mediated keratopathies. Equine Vet. J. 2010, 42, 31–37. [Google Scholar] [CrossRef]
- Davis, A.B.; Schnabel, L.V.; Gilger, B.C. Subconjunctival bone marrow-derived mesenchymal stem cell therapy as a novel treatment alternative for equine immune-mediated keratitis: A case series. Vet. Ophthalmol. 2019, 22, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, A.E. Practical general field ophthalmology. In Equine Ophthalmology; Gilger, B.C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 71–111. ISBN 9781119047919. [Google Scholar]
- Lin, H.-B.; Li, W.-L.; Zhuo, X.; He, A.-Q. Application effect of soft corneal contact lens on corneal limbal stem cell transplantation in elderly patients with pterygium. Int. J. Ophthalmol. 2019, 19, 329–331. [Google Scholar]
- Zhao, J.; Zhang, Q.; Wang, Y.; Li, Y. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium. Reprod. Sci. 2015, 22, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Canisso, I.F.; Segabinazzi, L.G.T.M.; Fedorka, C.E. Persistent breeding-induced endometritis in mares—A multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int. J. Mol. Sci. 2020, 21, 1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, M.M.; Causey, R.C. Clinical and subclinical endometritis in the mare: Both threats to fertility. Reprod. Domest. Anim. 2009, 44, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Woodward, E.M.; Troedsson, M.H. Equine breeding-induced endometritis: A review. J. Equine Vet. Sci. 2013, 33, 673–682. [Google Scholar] [CrossRef]
- Canisso, I.F.; Stewart, J.; da Silva, M.A.C. Endometritis: Managing persistent post-breeding endometritis. Vet. Clin. N. Am. Equine Pract. 2016, 32, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Rink, B.E.; Beyer, T.; French, H.M.; Watson, E.; Aurich, C.; Donadeu, F.X. The fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus. Stem Cells Dev. 2018, 27, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Ferris, R.A.; Frisbie, D.D.; McCue, P.M. Use of mesenchymal stem cells or autologous conditioned serum to modulate the inflammatory response to spermatozoa in mares. Theriogenology 2014, 82, 36–42. [Google Scholar] [CrossRef]
- Navarrete, F.; Saravia, F.; Cisterna, G.; Rojas, F.; Silva, P.P.; Rodríguez-Alvarez, L.; Rojas, D.; Cabezas, J.; Mançanares, A.C.F.; Castro, F.O. Assessment of the anti-inflammatory and engraftment potential of horse endometrial and adipose mesenchymal stem cells in an in vivo model of post breeding induced endometritis. Theriogenology 2020, 155, 33–42. [Google Scholar] [CrossRef]
- Hoffmann, C.; Ellenberger, C.; Mattos, R.C.; Aupperle, H.; Dhein, S.; Stief, B.; Schoon, H.-A. The equine endometrosis: New insights into the pathogenesis. Anim. Reprod. Sci. 2009, 111, 261–278. [Google Scholar] [CrossRef]
- Buczkowska, J.; Kozdrowski, R.; Nowak, M.; Raś, A.; Mrowiec, J. Endometrosis—Significance for horse reproduction, pathogenesis, diagnosis, and proposed therapeutic methods. Pol. J. Vet. Sci. 2014, 17, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Falomo, M.E.; Ferroni, L.; Tocco, I.; Gardin, C.; Zavan, B. Immunomodulatory role of adipose-derived stem cells on equine endometriosis. Biomed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarenga, M.A.; do Carmo, M.T.; Segabinazzi, L.G.; Guastali, M.D.; Maia, L.; Landim-Alvarenga, F.C. Feasibility and safety of endometrial injection of autologous bone marrow mesenchymal stem cells in mares. J. Equine Vet. Sci. 2016, 42, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Mambelli, L.I.; Winter, G.H.Z.; Kerkis, A.; Malschitzky, E.; Mattos, R.C.; Kerkis, I. A novel strategy of mesenchymal stem cells delivery in the uterus of mares with endometrosis. Theriogenology 2013, 79, 744–750. [Google Scholar] [CrossRef]
- Mambelli, L.I.; Mattos, R.C.; Winter, G.H.Z.; Madeiro, D.S.; Morais, B.P.; Malschitzky, E.; Miglino, M.A.; Kerkis, A.; Kerkis, I. Changes in expression pattern of selected endometrial proteins following mesenchymal stem cells infusion in mares with endometrosis. PLoS ONE 2014, 9, e97889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradetti, B.; Correani, A.; Romaldini, A.; Marini, M.G.; Bizzaro, D.; Perrini, C.; Cremonesi, F.; Lange-Consiglio, A. Amniotic membrane-derived mesenchymal cells and their conditioned media: Potential candidates for uterine regenerative therapy in the horse. PLoS ONE 2014, 9, e111324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rink, B.E.; Amilon, K.R.; Esteves, C.L.; French, H.M.; Watson, E.; Aurich, C.; Donadeu, F.X. Isolation and characterization of equine endometrial mesenchymal stromal cells. Stem Cell Res. Ther. 2017, 8. [Google Scholar] [CrossRef]
- Cortés-Araya, Y.; Amilon, K.; Rink, B.E.; Black, G.; Lisowski, Z.; Donadeu, F.X.; Esteves, C.L. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue. Stem Cells Dev. 2018, 27, 1518–1525. [Google Scholar] [CrossRef]
- Cabezas, J.; Rojas, D.; Navarrete, F.; Ortiz, R.; Rivera, G.; Saravia, F.; Rodriguez-Alvarez, L.; Castro, F.O. Equine mesenchymal stem cells derived from endometrial or adipose tissue share significant biological properties, but have distinctive pattern of surface markers and migration. Theriogenology 2018, 106, 93–102. [Google Scholar] [CrossRef]
- Snider, T.A.; Sepoy, C.; Holyoak, G.R. Equine endometrial biopsy reviewed: Observation, interpretation and application of histopathologic data. Theriogenology 2011, 75, 1567–1581. [Google Scholar] [CrossRef]
- Grady, S.T.; Watts, A.E.; Thompson, J.A.; Penedo, M.C.T.; Konganti, K.; Hinrichs, K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J. Assist. Reprod. Genet. 2019, 36, 543–556. [Google Scholar] [CrossRef]
- Takehara, Y.; Yabuuchi, A.; Ezoe, K.; Kuroda, T.; Yamadera, R.; Sano, C.; Murata, N.; Aida, T.; Nakama, K.; Aono, F.; et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab. Investig. 2013, 93, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yu, L.; Sun, M.; Mu, S.; Wang, C.; Wang, D.; Yao, Y. The therapeutic potential of bone marrow mesenchymal stem cells in premature ovarian failure. Stem Cell Res. Ther. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Oristaglio Turner, R.M.O. Pathogenesis, diagnosis, and management of testicular degeneration in stallions. Clin. Tech. Equine Pract. 2007, 6, 278–284. [Google Scholar] [CrossRef]
- Hsiao, C.; Ji, A.; Chang, C.; Cheng, C.; Lee, L.; Ho, J. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res. Ther. 2015, 6, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Papa, P.M.; Guasti, P.N.; De Vita, B.; Nakazato, N.G.; Maia, L.; de Freitas Dell’Aqua, C.P.; da Scheeren, V.F.C.; Segabinazzi, L.G.T.M.; de Andrade Junior, L.R.P.; Silva, L.F.M.C.; et al. Clinical safety of intratesticular transplantation of allogeneic bone marrow multipotent stromal cells in stallions. Reprod. Domest. Anim. 2020, 55, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.; Geor, R.J.; Bailey, S.R.; Durham, A.E.; Johnson, P.J. Equine metabolic syndrome. J. Vet. Intern. Med. 2010, 24, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Marycz, K.; Michalak, I.; Kornicka, K. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome. Res. Vet. Sci. 2018, 118, 115–125. [Google Scholar] [CrossRef]
- Fiorina, P.; Jurewicz, M.; Augello, A.; Vergani, A.; Dada, S.; La Rosa, S.; Selig, M.; Godwin, J.; Law, K.; Placidi, C.; et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 2009, 183, 993–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.H.; Seo, M.J.; Reger, R.L.; Spees, J.L.; Pulin, A.A.; Olson, S.D.; Prockop, D.J. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl. Acad. Sci. USA 2006, 103, 17438–17443. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Wang, G.; Liu, G.; Yang, L.-J.; Chang, L.-J.; Lue, T.F.; Lin, C.-S. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells Dev. 2009, 18, 1399–1406. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, Y.; Zhu, J.; Xu, J.; Huang, H.; Zhu, M.; Chen, Y.; Zhou, Y.; Fan, X.; Wang, Z. Effects of intrahepatic bone-derived mesenchymal stem cells autotransplantation on the diabetic Beagle dogs. J. Surg. Res. 2011, 168, 213–223. [Google Scholar] [CrossRef]
- Berman, D.M.; Willman, M.A.; Han, D.; Kleiner, G.; Kenyon, N.M.; Cabrera, O.; Karl, J.A.; Wiseman, R.W.; Connor, D.H.; Bartholomew, A.M.; et al. Mesenchymal stem cells enhance allogeneic islet rngraftment in nonhuman primates. Diabetes 2010, 59, 2558–2568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhansali, A.; Upreti, V.; Khandelwal, N.; Marwaha, N.; Gupta, V.; Sachdeva, N.; Sharma, R.R.; Saluja, K.; Dutta, P.; Walia, R.; et al. Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev. 2009, 18, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Pileggi, A. Mesenchymal stem cells for the treatment of diabetes. Diabetes 2012, 61, 1355–1356. [Google Scholar] [CrossRef] [Green Version]
- Marycz, K.; Kornicka, K.; Markedziak, M.; Golonka, P.; Nicpoń, J. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. J. Cell. Mol. Med. 2016, 20, 2384–2404. [Google Scholar] [CrossRef]
- Marycz, K.; Kornicka, K.; Grzesiak, J.; Śmieszek, A.; Szłapka, J. Macroautophagy and selective mitophagy ameliorate chondrogenic differentiation potential in adipose stem cells of equine metabolic syndrome: New findings in the field of progenitor cells differentiation. Oxid. Med. Cell. Longev. 2016, 2016, 1–18. [Google Scholar] [CrossRef]
- Marycz, K.; Kornicka, K.; Basinska, K.; Czyrek, A. Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: New insight into EqASCs isolated from EMS horses in the context of their aging. Oxid. Med. Cell. Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Marycz, K.; Szłapka-Kosarzewska, J.; Geburek, F.; Kornicka-Garbowska, K. Systemic sdministration of rejuvenated adipose-derived mesenchymal stem cells improves liver metabolism in equine metabolic syndrome (EMS)—New approach in veterinary regenerative medicine. Stem Cell Rev. Rep. 2019, 15, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Bond, S.; Léguillette, R.; Richard, E.A.; Couetil, L.; Lavoie, J.-P.; Martin, J.G.; Pirie, R.S. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. J. Vet. Intern. Med. 2018, 32, 2088–2098. [Google Scholar] [CrossRef] [Green Version]
- Urbanek, K.; De Angelis, A.; Spaziano, G.; Piegari, E.; Matteis, M.; Cappetta, D.; Esposito, G.; Russo, R.; Tartaglione, G.; De Palma, R.; et al. Intratracheal administration of mesenchymal stem cells modulates tachykinin system, suppresses airway remodeling and reduces airway hyperresponsiveness in an animal model. PLoS ONE 2016, 11, e0158746. [Google Scholar] [CrossRef] [PubMed]
- Bonfield, T.L.; Koloze, M.; Lennon, D.P.; Zuchowski, B.; Yang, S.E.; Caplan, A.I. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 299, L760–L770. [Google Scholar] [CrossRef] [PubMed]
- Zucca, E.; Corsini, E.; Galbiati, V.; Lange-Consiglio, A.; Ferrucci, F. Evaluation of amniotic mesenchymal cell derivatives on cytokine production in equine alveolar macrophages: An in vitro approach to lung inflammation. Stem Cell Res. Ther. 2016, 7, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barussi, F.C.M.; Bastos, F.Z.; Leite, L.M.B.; Fragoso, F.Y.I.; Senegaglia, A.C.; Brofman, P.R.S.; Nishiyama, A.; Pimpão, C.T.; Michelotto, P.V. Intratracheal therapy with autologous bone marrow-derived mononuclear cells reduces airway inflammation in horses with recurrent airway obstruction. Respir. Physiol. Neurobiol. 2016, 232, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Theoret, C.L.; Wilmink, J.M. Aberrant wound healing in the horse: Naturally occurring conditions reminiscent of those observed in man. Wound Repair. Regen. 2013, 21, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Sole, A.; Bolwell, C.; Riley, C.; Theoret, C. Descriptive survey of wounds in horses presented to Australian veterinarians. Austral Equine Vet. 2015, 34, 68–74. [Google Scholar]
- Theoret, C.L.; Bolwell, C.F.; Riley, C.B. A cross-sectional survey on wounds in horses in New Zealand. N. Z. Vet. J. 2016, 64, 90–94. [Google Scholar] [CrossRef]
- Deschene, K.; Céleste, C.; Boerboom, D.; Theoret, C.L. Hypoxia regulates the expression of extracellular matrix associated proteins in equine dermal fibroblasts via HIF1. J. Dermatol. Sci. 2012, 65, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bussche, L.; Harman, R.M.; Syracuse, B.A.; Plante, E.L.; Lu, Y.-C.; Curtis, T.M.; Ma, M.; de Walle, G.R. Van Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res. Ther. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Textor, J.A.; Clark, K.C.; Walker, N.J.; Aristizobal, F.A.; Kol, A.; LeJeune, S.S.; Bledsoe, A.; Davidyan, A.; Gray, S.N.; Bohannon-Worsley, L.K.; et al. Allogeneic stem cells alter gene expression and improve healing of distal limb wounds in horses. Stem Cells Transl. Med. 2018, 7, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Mund, S.J.K.; Kawamura, E.; Awang-Junaidi, A.H.; Campbell, J.; Wobeser, B.; MacPhee, D.J.; Honaramooz, A.; Barber, S. Homing and engraftment of intravenously administered equine cord blood-derived multipotent mesenchymal stromal cells to surgically created cutaneous wound in horses: A pilot project. Cells 2020, 9, 1162. [Google Scholar] [CrossRef] [PubMed]
- Spaas, J.H.; Broeckx, S.; Van De Walle, G.R.; Polettini, M. The effects of equine peripheral blood stem cells on cutaneous wound healing: A clinical evaluation in four horses. Clin. Exp. Dermatol. 2013, 38, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, K.; Chauhan, N. Pressure ulcers: Back to the basics. Indian J. Plast. Surg. 2012, 45, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Knottenbelt, D. Pascoe’s Principles and Practice of Equine Dermatology, 2nd ed.; Saunders Ltd.: Philadelphia, PA, USA, 2009; ISBN 9780702042515. [Google Scholar]
- Chen, M.; Przyborowski, M.; Berthiaume, F. Stem cells for skin tissue engineering and wound healing. Crit. Rev. Biomed Eng. 2009, 37, 399–421. [Google Scholar] [CrossRef] [Green Version]
- Iacono, E.; Merlo, B.; Pirrone, A.; Antonelli, C.; Brunori, L.; Romagnoli, N.; Castagnetti, C. Effects of mesenchymal stem cells isolated from amniotic fluid and platelet-rich plasma gel on severe decubitus ulcers in a septic neonatal foal. Res. Vet. Sci. 2012, 93, 1439–1440. [Google Scholar] [CrossRef] [PubMed]
- Iacono, E.; Lanci, A.; Merlo, B.; Ricci, F.; Pirrone, A.; Antonelli, C.; Mariella, J.; Castagnetti, C. Effects of amniotic fluid mesenchymal stem cells in carboxymethyl cellulose gel on healing of spontaneous pressure sores: Clinical outcome in seven hospitalized neonatal foals. Turkish J. Biol. 2016, 40, 484–492. [Google Scholar] [CrossRef]
- Lanci, A.; Merlo, B.; Mariella, J.; Castagnetti, C.; Iacono, E. Heterologous Wharton’s Jelly derived mesenchymal stem cells application on a large chronic skin wound in a 6-month-old filly. Front. Vet. Sci. 2019, 6, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, L.M.; Bailey, S.R. A review of recent advances and current hypotheses on the pathogenesis of acute laminitis. Equine Vet. J. 2012, 44, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, V.C.; Morrison, S.; Bras, R.; Morrell, S.A. Using stem cells in clinical cases. J. Equine Vet. Sci. 2013, 33, 872–873. [Google Scholar] [CrossRef]
- Engiles, J.B. Pathology of the distal phalanx in equine laminitis: More than just skin deep. Vet. Clin. N. Am. Equine Pract. 2010, 26, 155–165. [Google Scholar] [CrossRef]
- Pollitt, C.C. The anatomy and physiology of the suspensory apparatus of the distal phalanx. Vet. Clin. N. Am. Equine Pract. 2010, 26, 29–49. [Google Scholar] [CrossRef]
- Carter, R.A.; Engiles, J.B.; Megee, S.O.; Senoo, M.; Galantino-Homer, H.L. Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof. Equine Vet. J. 2011, 43, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S. Successful use of allogenic umbilical cord-derived stem cells in nonresponsive chronic laminitic cases. J. Equine Vet. Sci. 2011, 31, 603. [Google Scholar] [CrossRef]
- Sole, A.; Spriet, M.; Galuppo, L.D.; Padgett, K.A.; Borjesson, D.L.; Wisner, E.R.; Brosnan, R.J.; Vidal, M.A. Scintigraphic evaluation of intra-arterial and intravenous regional limb perfusion of allogeneic bone marrow-derived mesenchymal stem cells in the normal equine distal limb using 99mTc-HMPAO. Equine Vet. J. 2012, 44, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Angelone, M.; Conti, V.; Biacca, C.; Battaglia, B.; Pecorari, L.; Piana, F.; Gnudi, G.; Leonardi, F.; Ramoni, R.; Basini, G.; et al. The contribution of adipose tissue-derived mesenchymal stem cells and platelet-rich plasma to the treatment of chronic equine laminitis: A proof of concept. Int. J. Mol. Sci. 2017, 18, 2122. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.; Bentz, B. Treatment of equine nervous system disorders. In Equine Pharmacology; Maxwell, L., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 192–217. ISBN 9780813822624. [Google Scholar]
- Schaakxs, D.; Kalbermatten, D.F.; Raffoul, W.; Wiberg, M.; Kingham, P.J. Regenerative cell injection in denervated muscle reduces atrophy and enhances recovery following nerve repair. Muscle Nerve 2013, 47, 691–701. [Google Scholar] [CrossRef]
- Wright, K.T.; El Masri, W.; Osman, A.; Chowdhury, J.; Johnson, W.E.B. Concise Review: Bone marrow for the treatment of spinal cord injury: Mechanisms and clinical applications. Stem Cells 2011, 29, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Sadan, O.; Melamed, E.; Offen, D. Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opin. Biol. Ther. 2009, 9, 1487–1497. [Google Scholar] [CrossRef]
- Jamnig, A.; Lepperdinger, G. From tendon to nerve: An MSC for all seasons. Can. J. Physiol. Pharmacol. 2012, 90, 295–306. [Google Scholar] [CrossRef]
- James, F.M.; Engiles, J.B.; Beech, J. Meningitis, cranial neuritis, and radiculoneuritis associated with Borrelia burgdorferi infection in a horse. J. Am. Vet. Med. Assoc. 2010, 237, 1180–1185. [Google Scholar] [CrossRef]
- Villagrán, C.C.; Schumacher, J.; Donnell, R.; Dhar, M.S. A novel model for acute peripheral nerve injury in the horse and evaluation of the effect of mesenchymal stromal cells applied in situ on nerve regeneration: A preliminary study. Front. Vet. Sci. 2016, 3, 80. [Google Scholar] [CrossRef] [Green Version]
- Kuffler, D.P. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog. Neurobiol. 2014, 116, 1–12. [Google Scholar] [CrossRef]
- Villagrán, C.C.; Amelse, L.; Neilsen, N.; Dunlap, J.; Dhar, M. Differentiation of equine mesenchymal stromal cells into cells of neural lineage: Potential for clinical applications. Stem Cells Int. 2014, 2014, 13–18. [Google Scholar] [CrossRef]
- Reed, S.M. Medical aspects of traumatic brain injury. In Equine Fracture Repair; Nixon, A.J., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 800–803. ISBN 9781119108757. [Google Scholar]
- Casañas, J.; de la Torre, J.; Soler, F.; Garcia, F.; Rodellar, C.; Pumarola, M.; Climent, J.; Soler, R.; Orozco, L. Peripheral nerve regeneration after experimental section in ovine radial and tibial nerves using synthetic nerve grafts, including expanded bone marrow mesenchymal cells: Morphological and neurophysiological results. Injury 2014, 45, S2–S6. [Google Scholar] [CrossRef]
- Johnson, A.; Reed, S. Cervical vertebral stenotic myelopathy. In Equine Neurology; Reed, S., Furr, M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 349–367. ISBN 9781118993712. [Google Scholar]
- Maia, L.; da Cruz Landim-Alvarenga, F.; Taffarel, M.O.; de Moraes, C.N.; Machado, G.F.; Melo, G.D.; Amorim, R.M. Feasibility and safety of intrathecal transplantation of autologous bone marrow mesenchymal stem cells in horses. BMC Vet. Res. 2015, 11, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberini, D.J.; Aleman, M.; Aristizabal, F.; Spriet, M.; Clark, K.C.; Walker, N.J.; Galuppo, L.D.; Amorim, R.M.; Woolard, K.D.; Borjesson, D.L. Safety and tracking of intrathecal allogeneic mesenchymal stem cell transplantation in healthy and diseased horses. Stem Cell Res. Ther. 2018, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, A.C.E.; Piercy, R.J. Pathological classification of equine recurrent laryngeal neuropathy. J. Vet. Intern. Med. 2018, 32, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Biasutti, S.; Dart, A.J.; Jeffcott, L.B. A review of recent developments in the clinical application of prosthetic laryngoplasty for recurrent laryngeal neuropathy: Indications, complications and outcome. Equine Vet. Educ. 2016, 29, 337–345. [Google Scholar] [CrossRef]
- Sandersen, C.; Ceusters, J.; Fourez, A.; Tosi, I.; Graide, H.; Lejeune, J.P.; Serteyn, D. Nerve stimulator-guided injection of autologous stem cells near the equine left recurrent laryngeal nerve. J. Vis. Exp. 2018, 2018, 58023. [Google Scholar] [CrossRef]
- Sheats, M.K. A comparative review of equine SIRS, sepsis, and neutrophils. Front. Vet. Sci. 2019, 6, 69. [Google Scholar] [CrossRef]
- Roy, M.F.; Kwong, G.P.S.; Lambert, J.; Massie, S.; Lockhart, S. Prognostic value and development of a scoring system in horses with systemic inflammatory response syndrome. J. Vet. Intern. Med. 2017, 31, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Lalu, M.M.; Sullivan, K.J.; Mei, S.H.J.; Moher, D.; Straus, A.; Fergusson, D.A.; Stewart, D.J.; Jazi, M.; Macleod, M.; Winston, B.; et al. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. Elife 2016, 5, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Kilcoyne, I.; Nieto, J.E.; Watson, J.L.; Galuppo, L.D.; Borjesson, D.L. Do allogeneic bone marrow derived mesenchymal stem cells diminish the inflammatory response to lipopolysaccharide infusion in horses? A pilot study. Vet. Immunol. Immunopathol. 2021, 231, 110146. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, A.E.; Lisowski, Z.M.; Hume, D.A.; Scott Pirie, R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet. J. 2021, 53, 231–249. [Google Scholar] [CrossRef] [PubMed]
Pathology | Study | Type of MSCs | Experimental Design | Administration Regime | Outcome | Considerations |
---|---|---|---|---|---|---|
Corneal ulcers | Spaas et al., 2011 [43] | Autologous PB-SCs | Naturally occurring pathology (one case): 20-year-old gelding, with bacterial (Pseudomonas aeruginosa) ulcerative keratitis, resistant for 6 months against conventional therapies and surgical intervention. | A one-time injection in the jugular vein (125 × 103 PB-SCs in 5 mL PBS) and in transverse facial artery (125 × 103 PB-MSCs in 5 mL PBS) + local application (eye drops formulation, 500 × 103 PB-SCs in 5 mL PBS) 3 times/day, 7 days. |
| Single case with no control Cells used not expanded and not fully characterized as MSCs After 7 days, eye drop application was stopped because the cell suspension appeared cloudy, probably because of cell death. Storage conditions of drop bottle between administrations not specified. |
Marfe et al., 2012 [40] | Autologous PB-SCs | Naturally occurring pathology (4 cases)
| 1–2 systemic administration (IV) + local instillation 2–3/day for 2 weeks. | Case 1:
| Low number of cases and with corneal ulcers of different origins Absence of control group, but animals unresponsive to previous treatments Cells used not expanded and not fully characterized as MSCs Number of PB-SCs administrated not stated Administration route and protocol unclear at some points | |
IMMK | Marfe et al., 2012 [40] | Autologous PB-SCs | Naturally occurring pathology (one case): 7-year-old mare, poorly responsive to traditional medical treatments for a year (Case 2 above) | 2 systemic administration (IV) + local instillation 2/day for 2 weeks |
| A single case with no control group Number of PB-SCs administered not stated |
Davis et al., 2019 [53] | Autologous BM-MSCs | Naturally occurring pathology (4 cases): unilateral IMMK poorly responsive to traditional medical treatments
| Subconjunctival injection (15 × 106 MSCs in 1 mL PBS) every 3–4 weeks for 1–5 injections
|
| Low number of cases with no control group, but selected upon disease similarities and unresponsiveness to medical treatment. Variability in the administration protocol Additional topical treatments in some case in conjunction with the BM-MSCs (cyclosporine, bromfenac, diclofenac or flunixin meglumine) |
Pathology | Study | Type of MSCs | Experimental Design | Administration Regime | Outcome | Considerations |
---|---|---|---|---|---|---|
Safety and distribution assays in healthy mares | Rink et al., 2018 [61] | Autologous eMSCs | Intra-uterine administration of labelled eMSCs and follow-up:
| 15 × 106 eMSCs in 1 mL or PBS infused into each uterine horn during early diestrus (day 4 after ovulation). | Mild inflammatory reaction after infusion was attenuated by eMSCs (percentage of PMNs lower in eMSC than PBS-infused mares at 6h) eMSCs detected in the uterine horn lumen for up to 24 h after infusion but did not migrate into healthy endometrium. eMSCs were not found in the peripheral blood at 6, 12, and 24 h after application. | eMSCs intra-uterine administration is safe and cells persist in the uterine lumen for up to 24 h after infusion, but do not engraft into healthy endometrium at that time. |
PBIE | Ferris et al., 2014 [62] | Allogeneic BM-MSCs | Evaluate the ability of ACS, BM-MSCs or dexamethasone to modulate the inflammatory response to spermatozoa after breeding (24 h) 12 healthy mares Experiment 1: Crossover study Experiment 2: Two-way crossover study Administration of treatments, sperm challenge and follow-up:
| Experiment 1: 6 mares treated with an IU infusion of:
Experiment 2: 6 mares treated with an IU infusion of:
| BM-MSC and ACS were able to modulate the uterine inflammatory response to spermatozoa in normal mares Decreased neutrophil migration into the uterine lumen in response to insemination after BM-MSC treatment may be due to increased anti-inflammatory cytokine IL-1Ra and reduced proinflammatory mediator IL-1 | Healthy mares (proof of concept for PBIE-affected mares). Same mares used for different treatments. Age of mares not stated. |
PBIE | Navarrete et al., 2020 [63] | Allogeneic AT-MSCs and eMSCs | Evaluate anti-inflammatory and engraftment properties of AT-MSCs and eMSCs from the same donors in vivo in mares with induced PBIE. 9 healthy mares with induced PBIE. Follow-up:
| 2 × 107 AT-MSCs (n = 3) or eMSCs (n = 3) in 20 mL of NaCl 0.9% Control group (n = 3): 20 mL NaCl 0.9% | Both MSC types significantly reduced inflammation and showed limited engraftment, detectable after one month of infusion Decrease in IL-6 and TNFα in both MSC-treated groups over control. | Age of mares not stated. Virgin mares with no previously reported PBIE (possibility of natural PBIE resistance) |
Endometrosis | Alvarenga et al., 2016 [67] | Autologous BM-MSCs | Evaluate the feasibility and safety of MSC endometrial injections 16 mares (15–24 years) with reproductive history of subfertility and endometrial degeneration Control: baseline values before endometrial injection Follow-up:
| 12 endometrial injections of 1 × 106 MSCs in 0.5 mL PBS, each one at 12 different sites, 1 cm apart from one uterine horn to another (12 × 106 MSCs in total) | Neither clinical alteration nor intrauterine fluid and endometrial edema were observed after MSC administration. No histological worsening The results suggest that the procedure is safe | Proof of concept for safety. Therapeutic effects not thoroughly assessed. |
Mambelli et al., 2013 [68] Mambelli et al., 2014 [69] | Allogeneic AT-MSCs | Evaluate the feasibility of an MSC delivery system for endometrosis-affected mares. 6 mares (6–21 years) with varying degrees of naturally occuring endometrosis Follow-up:
| 20 × 106 AT-MSCs in 20 mL NaCl 0.9% inoculated into uterus using a technique similar to AI Control (n = 2): 20 mL NaCl 0.9% | Migration of AT-MSCs to the uterine body and both horns. Engraftment in both glandular and periglandular spaces in three mares. AT-MSCs beneficially modulated the expression pattern of secretory proteins and promoted proliferation of glandular epithelial cells. | Small control group Different degrees of endometrosis among recruited mares | |
Ovarian and testicular diseases | Grady et al., 2019 [75] | Allogeneic BM-MSCs | Determine if intra-ovarian injection of BM-MSCs improves or restores ovarian function in aged mares 8 aged mares (20–29 years old) and 6 young mares (7–12 years old) Assessment (aged and young mares):
| 2 intraovarian injections of 10 × 106 BM-MSCs (different donors) in 1mL (95%FBS and 5%DMSO) in four different locations per ovary Aged mares: First injection
Young mares:
| No adverse events after intra-ovarian injections were observed Oocyte recovery on follicle aspiration, oocyte maturation, and blastocyst development rates after ICSI remained unchanged in the MSC-treated aged mares, suggesting no detriment of ovarian function but neither a beneficial effect. Injection of BM-MSCs not associated with significant changes in follicle number in young mares. No significant changes in peripheral AMH concentrations in aged and young mares observed, indicating a lack of effect on growing follicles. | BM-MSCs administered immediately after thawing (viability not stated) Small size of groups |
Papa et al., 2020 [80] | Allogeneic BM-MSCs | Evaluate the effect of intratesticular injection of BM-MSCs in healthy stallions, and its outcome on seminal parameters and fertility Experiment 1: 24 stallions (3–4 years) Experiment 2: 3 stallions (3–10 years) Assessment: Experiment 1:
| Experiment 1:
| Experiment 1: No signs of inflammation. No differences on testicular volume, parenchyma echogenicity, testicular blood flow and serum testosterone levels between treated and control at 24 h and 28 h. Experiment 2: no physical alterations or changes in sperm parameters. Satisfactory fertility rate (83%; 5/6) after AI. The results suggest that MSC intra-testicular administration would be safe and would not affect testicular function. | No sperm parameters evaluated after BM-MSCs injection in experiment 1 Absence of control group in experiment 2 Small size of group in experiment 2 |
Pathology | Study | Type MSCs | Experimental Design | Administration Regime | Outcome | Considerations |
---|---|---|---|---|---|---|
Traumatic wounds | Textor et al., 2017 [104] | Allogeneic UCB-MSCs | Six horses (3 mares, 3 geldings; 5–19 years) Induced model: 3 full-thickness cutaneous wounds surgically created on each distal forelimb Assessment and follow-up (6 weeks):
| 10–20 × 106 normoxic UCB-MSCs, hypoxic UCB-MSCs or control in 1 mL NaCl 0.9% were injected into wound margins or topically applied embedded in an autologous fibrin gel, 1 day after wound creation | MSC administration by either delivery method was safe and improved histologic outcomes and reduced wound area over control MSC-injected wounds were consistently smaller than gel-treated or control wounds. Hypoxic pre-conditioned MSCs did not provide a substantial advantage | Treatments applied very early and in aseptically created wounds (proof of concept for application in clinical situation) |
Mund et al., 2020 [105] | Allogeneic UCB-MSCs | Two 7-year-old mares Determine adverse reactions after IV MSC administration and assess their engraftment potential into wounds Induced model: standardized cutaneous wounds surgically created on the left lateral third metacarpus (7 wounds) and left hemi-thorax (7 wounds) | 1.02 × 108 UCB-MSCs (fluorescently labelled) in 60 mL HTS-FRS via IV administration Control: 2 wounds were left to heal by second intention (in the same horses) | No clinically adverse effects (largest recorded dose of IV UCB-MSCs) UCB-MSCs preferentially engrafted into wounds during the acute and early remodeling phases.Results suggest no difference in homing potential between limb and thoracic wounds | Low number of animals Biopsy collection at the control sites created inflammation that may have influenced homing to the sequential control site (untreated control not included) | |
Spaas et al., 2013 [106] | Autologous PB-SCs | 4 horses with naturally occurring traumatic wounds unresponsive to conventional therapies for at least 3 months:
| 5 × 105 PB-SCs in 2 mL PBS were locally (intradermally) injected into 5–6 different locations at the wound’s edges and 1.25 × 105 PB-SCs via IV administration | Granulation tissue began forming within 4 weeks of the PB-SC therapy in cases 1, 2 and 3. Crust formation was achieved within 2 months. In case 4, the granulation tissue could be easily removed without recurrence of the wound. 1 year: no wound recurrence or other adverse effects | Low number of cases of varying presentation with no control group, but unresponsive to previous treatments. Cells used not expanded and not fully characterized as MSCs. In cases with bacterial infection antibiotic, administration was continued.Outcome of each individual case is not deeply explained | |
Decubitus ulcers | Iacono et al., 2012 [110] | Allogeneic AF-MSCs and allogeneic PRP gel | One septic neonatal foal with severe ulcers in fetlocks, carpus and right stifle |
| None of the wounds treated developed exuberant scar tissue Healing was faster using AF-MSCs + PRP. The ulcer treated this way resulted in a linear scar, while the other lesions produced star scars 7 months: ulcer treated with aloe gel was not fully healed | One single case Different wound locations Concomitant disease Oral antibiotic therapy ongoing during ulcers healing |
Iacono et al., 2016 [111] | Allogeneic AF-MSCs | 5 hospitalized neonatal foals (10–15 days old) with a total of 9 pressure sores on the carpus (4), fetlock (2), and hock (3). Sores were divided into group 1 (n = 6) and group 2 (n = 3) |
| Sores treated with AF-MSCs in CMC gel healed quicker 30 days: no further treatments were needed | Low number of cases with no substance vehicle (CMC gel) treated control. Variable presentation of treated sores | |
Lanci et al., 2019 [112] | Allogeneic WJ-MSCs | One 6-month-old filly hospitalized by the re-injury of a pressure wound on the left hock | 5 × 106 WJ-MSCs in a CMC gel were applied every 4 days for 4 times Four days after the last application, no further bandages were applied and the wound was daily cleaned and treated with hydrotherapy (cold tap water 10 min/day) | No side effects and fast wound regression No evident exuberant scar. The hair grew completely without changing color80% regression rate between 8 days and 39 days No relapse | One single case with no control | |
Laminitis | Morrison, 2011 [118] | Allogeneic UCB-MSCs | 12 horses with naturally occurring chronic laminitis unresponsive to other treatments | 20–25 × 106 UCB-MSCs in NaCl 0.9% infused by regional perfusion (digital vein) every 3–4 weeks (3 infusions in total per affected foot) | 83% of horses with positive evolution by the time of publication. | Routine treatments for laminitis continued Long-term success rates still need to be determined Only clinical follow-up Absence of control group No age or breed information stated |
Dryden et al., 2013 [114] | Allogeneic UCB-MSCs and autologous BM-MSCs | 30 horses with naturally occurring chronic laminitis | 20–30 × 106 allogeneic UCB-MSCs in NaCl 0.9% infused by regional perfusion (digital vein) and subsequent injections with either 20–30 × 106 autologous BM-MSCs or allogeneic UCB-MSCs (4 infusions in total at 1 month intervals) | 21 patients (70%): successful outcome. Decreased radiologic distance between the bone and hoof wall Cases receiving MSCs < 30 days after the onset of laminitis: success rate was 100%. Cases receiving MSCs > 90 days after the onset of laminitis: success rate was 50%. Results suggest improved prognosis in cases treated early. | Routine treatments for laminitis continued Absence of control group Only clinical and radiologic follow-up Variation in therapeutic regime among cases. No age or breed information stated | |
Angelone et al., 2017 [120] | Allogeneic AT-MSCs and autologous AT-MSCs | 9 horses (5 mares, 4 geldings; 10–21 years) with severe naturally occurring laminitis unresponsive to conventional therapies | 15 × 106 allogeneic AT-MSCs in 15 mL autologous PRP infused by regional perfusion (digital vein) and subsequent injections with autologous AT-MSCs (3 infusions in total at 1 month intervals) | Clinical and radiologic signs improved All the animals returned to activity at six months from the first treatment. 12 months: 7 horses still performing activity 24 months:
| Absence of control group Horses enrolled presented different laminitis stages. Only clinical and radiologic follow-up |
Pathology | Study | Type MSCs | Experimental Design | Administration Regime | Outcome | Considerations |
---|---|---|---|---|---|---|
Peripheral nerve injury | Villagrán et al., 2016 [127] | Allogeneic BM-MSCs | Induced model: 3 healthy mares (9–13 years old) with surgically created 15-mm longitudinal incision over the ramus communicans | 10 × 106 BM-MSCs in 1 mL NaCl 0.9% or 1 mL NaCl 0.9% (control) instilled into the fascia surrounding the medial and lateral stumps Stumps of ramus communicans of each fore limb were harvested 45 days after treatment or control administration | No evidence of nerve regeneration No histological differences between MSC-treated and control nerve stumps No histological evidence of BM-MSCs or primitive cells (e.g., neural or Schwann-cell progenitors) | Small size Immediate treatment of aseptically created injury (proof of concept) Poor vasculature of the anatomical region may have influenced the outcome |
CVCM | Barberini et al., 2018 [134] | Allogeneic AT-MSCs | Distribution and safety assessment in 6 healthy mares (6–21 years) and 3 diseased horses presenting moderate to severe neurological signs (presumedly CVCM) Assessment:
| Healthy horses: 100 × 106 AT-MSCs in 5 mL NaCl 0.9% were injected either AO (n = 3) or LS (n = 3). One horse in each group received 99 mTc-HMPAO-labeled AT-MSCs. One additional horse was injected with free label as a control. Diseased horses: 100 × 106 AT-MSCs via AO | Healthy horses: AO and LS intrathecal injection of relatively high doses of AT-MSCs was well tolerated AT-MSCs apparently distributed more efficiently through the subarachnoid space after AO injection (suggested as preferred route to deliver MSCs to the cervical area) Diseased horses: AT-MSCs not found at 15 days after injection at the site of injury (either did not have time to reach the lesion site or did not survive long enough) No horses developed detectable anti-AT-MSC alloantibodies. | Low number of horses per group. Tracking and control only in one horse |
RLN | Sandersen et al., 2018 [137] | AutologousM-MSCs | 5 healthy mares (ages 10–22) Evaluate the feasibility and safety of administering MSCs by a peri-neural injection to the left recurrent laryngeal nerve in healthy horses by using an electrical nerve stimulator | 10 × 106 M-MSCs in 1 mL cryopreservation medium directly administered into recurrent laryngeal nerve by a nerve stimulator-guided injection | Feasibility and safety of the procedure suggested by absence of functional changes upon endoscopic evaluation up to 28 days. No signs of adverse events in four out of the five mares up to 1 year after the injection | No control group M-MSCs administered immediately after thawing Composition of cryopreservation (administration) media not mentioned |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cequier, A.; Sanz, C.; Rodellar, C.; Barrachina, L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals 2021, 11, 931. https://doi.org/10.3390/ani11040931
Cequier A, Sanz C, Rodellar C, Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals. 2021; 11(4):931. https://doi.org/10.3390/ani11040931
Chicago/Turabian StyleCequier, Alina, Carmen Sanz, Clementina Rodellar, and Laura Barrachina. 2021. "The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses" Animals 11, no. 4: 931. https://doi.org/10.3390/ani11040931
APA StyleCequier, A., Sanz, C., Rodellar, C., & Barrachina, L. (2021). The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals, 11(4), 931. https://doi.org/10.3390/ani11040931