Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. C. difficile Culture and Identification
2.3. Molecular Characterisation
2.4. Antimicrobial Susceptibility Testing
2.5. Risk Factors
2.6. Statistical Analysis
3. Results
3.1. C. difficile Prevalence and Risk Factors
3.2. Ribotypes and Toxinotypes
3.3. Antimicrobial Susceptibility
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Moono, P.; Foster, N.F.; Hampson, D.J.; Knight, D.R.; Bloomfield, L.E.; Riley, T.V. Clostridium difficile Infection in Production Animals and Avian Species: A Review. Foodborne Pathog. Dis. 2016, 13, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Dinleyici, M.; Vandenplas, Y. Clostridium difficile Colitis Prevention and Treatment. Adv. Exp. Med. Biol. 2019, 1125, 139–146. [Google Scholar] [PubMed]
- Jones, A.M.; Kuijper, E.J.; Wilcox, M.H. Clostridium difficile: A European perspective. J. Infect. 2013, 66, 115–128. [Google Scholar] [CrossRef]
- De Rosa, F.G.; Cavallerio, P.; Corcione, S.; Parlato, C.; Fossati, L.; Serra, R.; di Perri, G.; Cavallo, R. Molecular characterization of toxigenic Clostridium difficile in a Northern Italian Hospital. Curr. Microbiol. 2015, 70, 154–155. [Google Scholar] [CrossRef]
- Daryl, D.; De Pestel, D.M.A. Epidemiology of Clostridium difficile Infection Daryl. J. Pharm Pract. 2013, 26, 464–475. [Google Scholar]
- Rodriguez Diaz, C.; Seyboldt, C.; Rupnik, M. Non-human C. difficile reservoirs and sources: Animals, food, environment. Adv. Exp. Med. Biol. 2018, 1050, 227–243. [Google Scholar] [PubMed]
- Janezic, S.; Zidaric, V.; Pardon, B.; Indra, A.; Kokotovic, B.; Blanco, J.L.; Seyboldt, C.; Diaz, C.R.; Poxton, I.R.; Perreten, V.; et al. International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol. 2014, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, B.Y.; Ko, W.C.; Chen, T.H.; Wu, Y.C.; Lan, P.H.; Chen, Y.H.; Hung, Y.P.; Tsai, P.J. Zoonotic potential of the Clostridium difficile RT078 family in Taiwan. Anaerobe 2016, 41, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Riley, T.V. Genomic delineation of zoonotic origins of Clostridium difficile. Front. Public Health 2019, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, D.R.; Kullin, B.; Androga, G.O.; Barbut, F.; Eckert, C.; Johnson, S.; Spigaglia, P.; Tateda, K.; Tsai, P.J.; Riley, T.V. Evolutionary and genomic insights into clostridioides difficile sequence type 11: A diverse zoonotic and antimicrobial-resistant lineage of global one health importance. MBio 2019, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef]
- Couturier, J.; Davies, K.; Gateau, C.; Barbut, F. Ribotypes and new virulent strains across Europe. Adv. Exp. Med. Biol. 2018, 1050, 45–58. [Google Scholar]
- Knetsch, C.W.; Connor, T.R.; Mutreja, A.; van Dorp, S.M.; Sanders, I.M.; Browne, H.P.; Harris, D.; Lipman, L.; Keessen, E.C.; Corver, J.; et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Eurosurveillance 2014, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Knetsch, C.W.; Kumar, N.; Forster, S.C.; Connor, T.R.; Browne, H.P.; Harmanus, C.; Sanders, I.M.; Harris, S.R.; Turner, L.; Morris, T.; et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J. Clin. Microbiol. 2018, 56, 1–8. [Google Scholar]
- Zhang, W.Z.; Li, W.G.; Liu, Y.Q.; Gu, W.P.; Zhang, Q.; Li, H.; Liu, Z.J.; Zhang, X.; Wu, Y.; Lu, J.X. The molecular characters and antibiotic resistance of Clostridioides difficile from economic animals in China. BMC Microbiol. 2020, 20, 4–10. [Google Scholar] [CrossRef]
- Knight, D.R.; Elliott, B.; Chang, B.J.; Perkins, T.T.; Riley, T.V. Diversity and evolution in the genome of Clostridium difficile. Clin. Microbiol. Rev. 2015, 28, 721–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magistrali, C.F.; Maresca, C.; Cucco, L.; Bano, L.; Drigo, I.; Filippini, G.; Dettori, A.; Broccatelli, S.; Pezzotti, G. Prevalence and risk factors associated with Clostridium difficile shedding in veal calves in Italy. Anaerobe 2015, 33, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Hille, K.; Roschanski, N.; Ruddat, I.; Woydt, J.; Hartmann, M.; Rösler, U.; Kreienbrock, L. Investigation of potential risk factors for the occurrence of Escherichia coli isolates from German fattening pig farms harbouring the mcr-1 colistin–resistance gene. Int. J. Antimicrob. Agents 2018, 51, 177–180. [Google Scholar] [CrossRef]
- Ferroni, L.; Lovito, C.; Scoccia, E.; Dalmonte, G.; Sargenti, M.; Pezzotti, G.; Maresca, C.; Forte, C.; Magistrali, C.F. Antibiotic consumption on dairy and beef cattle farms of central Italy based on paper registers. Antibiotics 2020, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, L.G.; Rousseau, J.; Willey, B.M.; Low, D.E.; Staempfli, H.; McGeer, A.; Weese, J.S. Use of a selective enrichment broth to recover Clostridium difficile from stool swabs stored under different conditions. J. Clin. Microbiol. 2005, 43, 5341–5343. [Google Scholar] [CrossRef] [Green Version]
- Lemee, L.; Dhalluin, A.; Testelin, S.; Mattrat, M.A.; Maillard, K.; Lemeland, J.F.; Pons, J.L. Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile. J. Clin. Microbiol. 2004, 42, 5710–5714. [Google Scholar] [CrossRef] [Green Version]
- Antikainen, J.; Pasanen, T.; Mero, S.; Tarkka, E.; Kirveskari, J.; Kotila, S.; Mentula, S.; KÖnÖnen, E.; Virolainen-Julkunen, A.R.; Vaara, M.; et al. Detection of virulence genes of Clostridium difficile by multiplex PCR. Apmis 2009, 117, 607–613. [Google Scholar] [CrossRef]
- Stubbs, S. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol. Lett. 2000, 186, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Janezic, S.; Ocepek, M.; Zidaric, V.; Rupnik, M. Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol. 2012, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Bidet, P.; Barbut, F.; Lalande, V.; Burghoffer, B.; Petit, J.C. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol. Lett. 1999, 175, 261–266. [Google Scholar] [CrossRef]
- Guo, M.T.; Yuan, Q.B.; Yang, J. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 2013, 93, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef] [PubMed]
- He, L.Y.; Liu, Y.S.; Su, H.C.; Zhao, J.L.; Liu, S.S.; Chen, J.; Liu, W.R.; Ying, G.G. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: Identification of indicator ARGs and correlations with environmental variables. Environ. Sci. Technol. 2014, 48, 13120–13129. [Google Scholar] [CrossRef]
- Thitaram, S.N.; Frank, J.F.; Siragusa, G.R.; Bailey, J.S.; Dargatz, D.A.; Lombard, J.E.; Haley, C.A.; Lyon, S.A.; Fedorka-Cray, P.J. Antimicrobial susceptibility of Clostridium difficile isolated from food animals on farms. Int. J. Food Microbiol. 2016, 227, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; CLSI: Annapolis Junction, MD, USA, 2020. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility. Clinical Breakpoints—Bacteria (Version 11.0); EUCAST: Växjö, Sweeden, 2021. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- McFarland, L.V.; Ozen, M.; Dinleyici, E.C.; Goh, S. Comparison of pediatric and adult antibiotic-associated diarrhea and Clostridium difficile infections. World J. Gastroenterol. 2016, 22, 3078–3104. [Google Scholar] [CrossRef]
- Hensgens, M.P.M.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.J.; De Boer, E.; Lipman, L.J.A.; Kuijper, E.J. Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandelj, P.; Harmanus, C.; Blagus, R.; Cotman, M.; Kuijper, E.J.; Ocepek, M.; Vengust, M. Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus variable-number ta. BMC Vet. Res. 2018, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Hakimi, D.E.; Vanleyssem, R.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Korsak, N.; Daube, G. Clostridium difficile in beef cattle farms, farmers and their environment: Assessing the spread of the bacterium. Vet. Microbiol. 2017, 210, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Houser, B.A.; Soehnlen, M.K.; Wolfgang, D.R.; Lysczek, H.R.; Burns, C.M.; Jayarao, B.M. Prevalence of Clostridium difficile toxin genes in the feces of veal calves and incidence of ground veal contamination. Foodborne Pathog. Dis. 2012, 9, 32–36. [Google Scholar] [CrossRef]
- Costa, M.C.; Reid-Smith, R.; Gow, S.; Hannon, S.J.; Booker, C.; Rousseau, J.; Benedict, K.M.; Morley, P.S.; Weese, J.S. Prevalence and molecular characterization of Clostridium difficile isolated from feedlot beef cattle upon arrival and mid-feeding period. BMC Vet. Res. 2012, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirs, T.; Ocepek, M.; Rupnik, M. Isolation of Clostridium difficile from food animals in Slovenia. J. Med. Microbiol. 2008, 57, 790–792. [Google Scholar] [CrossRef]
- Schneeberg, A.; Neubauer, H.; Schmoock, G.; Grossmann, E.; Seyboldt, C. Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J. Med. Microbiol. 2013, 62, 1190–1198. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Pickworth, C.; Loerch, S.; LeJeune, J.T. Transient fecal shedding and limited animal-to-animal transmission of Clostridium difficile by naturally infected finishing feedlot cattle. Appl. Environ. Microbiol. 2011, 77, 3391–3397. [Google Scholar] [CrossRef] [Green Version]
- Knight, D.R.; Thean, S.; Putsathit, P.; Fenwick, S.; Riley, T.V. Cross-sectional study reveals high prevalence of Clostridium difficile Non-PCR ribotype 078 strains in Australian veal calves at slaughter. Appl. Environ. Microbiol. 2013, 79, 2630–2635. [Google Scholar] [CrossRef] [Green Version]
- Masarikova, M.; Simkova, I.; Plesko, M.; Eretova, V.; Krutova, M.; Cizek, A. The Colonisation of Calves in Czech Large-Scale Dairy Farms by Clonally-Related Clostridioides difficile of the Sequence Type 11 Represented by Ribotypes 033 and 126. Microorganisms 2020, 8, 901. [Google Scholar] [CrossRef] [PubMed]
- Bandelj, P.; Blagus, R.; Briski, F.; Frlic, O.; Vergles Rataj, A.; Rupnik, M.; Ocepek, M.; Vengust, M. Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet. Res. 2016, 47, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.C.; Stämpfli, H.R.; Arroyo, L.G.; Pearl, D.L.; Weese, J.S. Epidemiology of Clostridium difficile on a veal farm: Prevalence, molecular characterization and tetracycline resistance. Vet. Microbiol. 2011, 152, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Thitaram, S.N.; Frank, J.F.; Lyon, S.A.; Siragusa, G.R.; Bailey, J.S.; Lombard, J.E.; Haley, C.A.; Wagner, B.A.; Dargatz, D.A.; Fedorka-Cray, P.J. Clostridium difficile from healthy food animals: Optimized isolation and prevalence. J. Food Prot. 2011, 74, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Messelhäusser, U.; Hörmansdorfer, S.; Sauter-Louis, C.; Mansfeld, R. Occurrence of zoonotic Clostridia and Yersinia in healthy cattle. J. Food Prot. 2013, 76, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Avbersek, J.; Cotman, M.; Ocepek, M. Detection of Clostridium difficile in animals: Comparison of real-time PCR assays with the culture method. J. Med. Microbiol. 2011, 60, 1119–1125. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Palacios, A.; Reid-Smith, R.J.; Staempfli, H.R.; Daignault, D.; Janecko, N.; Avery, B.P.; Martin, H.; Thomspon, A.D.; McDonald, L.C.; Limbago, B.; et al. Possible seasonality of Clostridium difficile in retail meat, Canada. Emerg. Infect. Dis. 2009, 15, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.C.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, A.; Båverud, V.; Gunnarsson, A.; Pringle, J.; Franklin, A. Study of faecal shedding of Clostridium difficile in horses treated with penicillin. Equine Vet. J. 2004, 36, 180–182. [Google Scholar]
- Rothman, S.W. Presence of Clostridium difficile toxin in guinea pigs with penicillin-associated colitis. Med. Microbiol. Immunol. 1981, 169, 187–196. [Google Scholar] [CrossRef]
- EMA. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2017. Trends from 2010 to 2017; Ninth ESVAC Rep.—EMA/294674/2019; EMA: Amsterdam, The Netherlands, 2019.
- Avbersek, J.; Janezic, S.; Pate, M.; Rupnik, M.; Zidaric, V.; Logar, K.; Vengust, M.; Zemljic, M.; Pirs, T.; Ocepek, M. Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 2009, 15, 252–255. [Google Scholar] [CrossRef]
- Schneeberg, A.; Neubauer, H.; Schmoock, G.; Baier, S.; Harlizius, J.; Nienhoff, H.; Brase, K.; Zimmermann, S.; Seyboldt, C. Clostridium difficile genotypes in piglet populations in germany. J. Clin. Microbiol. 2013, 51, 3796–3803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keel, K.; Brazier, J.S.; Post, K.W.; Weese, S.; Songer, J.G. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J. Clin. Microbiol. 2007, 45, 1963–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, D.A.; Riley, T.V. Clostridium difficile in Asia: Opportunities for one health management. Trop. Med. Infect. Dis. 2019, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.Y.; Cho, A.; Kim, J.W.; Kim, H.; Kim, B. High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Anaerobe 2018, 51, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Romano, V.; Pasquale, V.; Lemee, L.; El Meouche, I.; Pestel-Caron, M.; Capuano, F.; Buono, P.; Dumontet, S. Clostridioides difficile in the environment, food, animals and humans in southern Italy: Occurrence and genetic relatedness. Comp. Immunol. Microbiol. Infect. Dis. 2018, 59, 41–46. [Google Scholar] [CrossRef]
- Hussain, I.; Borah, P.; Sharma, R.K.; Rajkhowa, S.; Rupnik, M.; Saikia, D.P.; Hasin, D.; Hussain, I.; Deka, N.K.; Barkalita, L.M.; et al. Molecular characteristics of Clostridium difficile isolates from human and animals in the North Eastern region of India. Mol. Cell. Probes 2016, 30, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Sharma, R.K.; Borah, P.; Rajkhowa, S.; Hussain, I.; Barkalita, L.M.; Hasin, D.; Choudhury, M.; Rupnik, M.; Deka, N.K.; et al. Isolation and characterization of Clostridium difficile from pet dogs in Assam, India. Anaerobe 2015, 36, 9–13. [Google Scholar] [CrossRef]
- Weese, J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagnostic Investig. 2020, 32, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Dingle, K.E.; Didelot, X.; Phuong Quan, T.; Eyre, D.W.; Stoesser, N.; Marwick, C.A.; Coia, J.; Brown, D.; Buchanan, S.; Ijaz, U.Z.; et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. MBio 2019, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kachrimanidou, M.; Tzika, E.; Filioussis, G. Clostridioides (Clostridium) difficile in food-producing animals, horses and household pets: A comprehensive review. Microorganisms 2019, 7, 667. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Pérez, S.; Blanco, J.L.; Peláez, T.; Lanzarot, M.P.; Harmanus, C.; Kuijper, E.; García, M.E. Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J. Small Anim. Pract. 2015, 56, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Orden, C.; Blanco, J.L.; Álvarez-Pérez, S.; Garcia, M.E.; Blanco, J.L.; Garcia-Sancho, M.; Rodriguez-Franco, F.; Sainz, A.; Villaescusa, A.; Garcia, M.E.; et al. Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe 2017, 43, 78–81. [Google Scholar] [CrossRef]
- Rabold, D.; Espelage, W.; Sin, M.A.; Eckmanns, T.; Schneeberg, A.; Neubauer, H.; Möbius, N.; Hille, K.; Wieler, L.H.; Seyboldt, C.; et al. The zoonotic potential of Clostridium difficile from small companion animals and their owners. PLoS ONE 2018, 13, 1–12. [Google Scholar] [CrossRef]
- Drigo, I.; Mazzolini, E.; Bacchin, C.; Tonon, E.; Puiatti, C.; Bano, L.; Spigaglia, P.; Barbanti, F.; Agnoletti, F. Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production. Vet. Microbiol. 2015, 181, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Agnoletti, F.; Arcangeli, G.; Barbanti, F.; Barco, L.; Brunetta, R.; Cocchi, M.; Conedera, G.; D’Este, L.; Drigo, I.; Spigaglia, P.; et al. Survey, characterization and antimicrobial susceptibility of Clostridium difficile from marine bivalve shellfish of North Adriatic Sea. Int. J. Food Microbiol. 2019, 298, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.P.; Notermans, D.W.; Van Benthem, B.H.; Brazier, J.S.; Wilcox, M.H.; Rupnik, M.; Monnet, D.L.; Van Dissel, J.T.; Kuijper, E.J. Clostridium difficile infection in Europe: A hospital-based survey. Lancet 2011, 377, 63–73. [Google Scholar] [CrossRef]
- Álvarez-Pérez, S.; Blanco, J.L.; Harmanus, C.; Kuijper, E.; García, M.E. Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet. Microbiol. 2017, 199, 15–22. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Bolea, R.; Mainar-Jaime, R.C.; Kuijper, E.; Sevilla, E.; Martín-Burriel, I.; Chirino-Trejo, M. Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J. Appl. Microbiol. 2017, 122, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Primavilla, S.; Farneti, S.; Petruzzelli, A.; Drigo, I.; Scuota, S. Contamination of hospital food with Clostridium difficile in Central Italy. Anaerobe 2019, 55, 8–10. [Google Scholar] [CrossRef]
- Keessen, E.C.; Harmanus, C.; Dohmen, W.; Kuijper, E.J.; Lipman, L.J.A. Clostridium difficile infection associated with pig farms. Emerg. Infect. Dis. 2013, 19, 1032–1034. [Google Scholar] [CrossRef]
- Rodriguez-Palacios, A.; Koohmaraie, M.; Lejeune, J.T. Prevalence, enumeration, and antimicrobial agent resistance of Clostridium difficile in cattle at harvest in the United States. J. Food Prot. 2011, 74, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Muratoglu, K.; Akkaya, E.; Hampikyan, H.; Bingol, E.B.; Cetin, O.; Colak, H. Detection, characterization and antibiotic susceptibility of clostridioides (Clostridium) difficile in meat products. Food Sci. Anim. Resour. 2020, 40, 578–587. [Google Scholar] [CrossRef]
- Bauer, M.P.; Kuijper, E.J. Potential Sources of Clostridium difficile in Human Infection. Infect. Dis. Clin. N. Am. 2015, 29, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Candel-Pérez, C.; Ros-Berruezo, G.; Martínez-Graciá, C. A review of Clostridioides [Clostridium] difficile occurrence through the food chain. Food Microbiol. 2019, 77, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Spigaglia, P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther. Adv. Infect. Dis. 2016, 3, 23–42. [Google Scholar]
- Freeman, J.; Vernon, J.; Morris, K.; Nicholson, S.; Todhunter, S.; Longshaw, C.; Wilcox, M.H.; Pfeiffer, S.; Delmee, M.; Muytjens, L.; et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin. Microbiol. Infect. 2015, 21, 248.e9–248.e16. [Google Scholar] [CrossRef] [Green Version]
- Hampikyan, H.; Bingol, E.B.; Muratoglu, K.; Akkaya, E.; Cetin, O.; Colak, H. The prevalence of Clostridium difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Sci. 2018, 139, 120–124. [Google Scholar] [CrossRef]
- Spigaglia, P.; Mastrantonio, P.; Barbanti, F. Antibiotic resistances of Clostridium difficile. Adv. Exp. Med. Biol. 2018, 1050, 137–159. [Google Scholar] [PubMed]
Type of Sample | N° of Samples Tested | C. difficile Positive Samples (%) | CI95% |
---|---|---|---|
Faecal sample | 303 | 17 (5.6%) | 3–8.2% |
Boot swab | 101 | 10 (9.9%) | 4.1–15.7% |
Total | 404 | 27 (6.7%) | 4.2–9.1% |
Farm Variables | N° of Farms Tested | Positive Farms (%) | CI95% | OR | OR: CI95% | p-Value |
---|---|---|---|---|---|---|
Breeding system | ||||||
Beef farm | 54 | 10 (18.5%) | 8.2–28.9% | - | - | - |
Dairy farm | 47 | 10 (21.3%) | 9.6–33% | 1.19 | 0.45–3.17 | 0.729 |
Herd size | ||||||
50–99 | 48 | 9 (18.8%) | 7.3–30.2% | - | - | - |
100–199 | 28 | 7 (25%) | 7.9–42.1% | 1.44 | 0.7–4.43 | 0.520 |
≥200 | 25 | 4 (16%) | 1–31.4% | 0.83 | 0.23–3 | 0.771 |
Ribotype | N° of Positive Farms (%) | Toxinotype | tcdA | tcdB | Genes Encoding Binary Toxin CDT | tcdC Gene Deletions 1 | |
---|---|---|---|---|---|---|---|
cdtA | cdtB | ||||||
RT-126 | 3 (17.6%) | V/V like | − | + | + | + | −39 |
RT-078 | 2 (11.8) | V/V like | − | + | + | + | −39 |
RT-033 | 2 (11.8%) | XIa | − | − | + | + | −39 |
RT-033 | 1 (5.9%) | XIb | − | − | + | + | −39 |
RT-010 | 2 (11.8%) | − | − | − | − | − | N/A |
RT-003 | 1 (5.9%) | 0 | + | + | − | − | WT |
RT-014/020 | 1 (5.9%) | 0 | + | + | − | − | WT |
RT-449 | 1 (5.9%) | 0 | + | + | − | − | WT |
TV86 2 | 2 (11.8%) | 0 | + | + | − | − | WT |
TV87 2 | 1 (5.9%) | 0 | + | + | − | − | WT |
TV92 2 | 1 (5.9%) | 0 | + | + | − | − | WT |
ID Isolate | Ribotype | Toxinotype | Antimicrobials 1 | Antimicrobial Resistance Genes 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | AMC | CD | E | MOX | LNZ | MTZ | RD | VA | ||||
A487 | RT-078 | V/V like | NT | NT | 16 * | 1 | 0.75 | 1.5 | 0.75 | NT | 3 * | tetM |
A489 | RT-033 | XIa | 1 | 0.25 | 6 | 0.5 | 0.5 | 1.5 | 0.25 | 0.002 | 1.5 | |
A490 | RT-078 | V/V like | 0.75 | 0.25 | 3 | 1 | 32 * | 1.5 | 0.38 | 0.002 | 1.5 | |
A492 | RT-033 | XIa | NT | NT | 12 * | 0.5 | 0.75 | 1 | 1 | NT | 1.5 | |
A499 | RT-010 | − | 0.75 | 0.38 | 256 * | 256 | 1 | 1.5 | 0.75 | 0.002 | 1.5 | |
A501 | RT-126 | V/V like | 0.75 | 0.38 | 256 * | 256 | 32 * | 16 * | 0.38 | 0.002 | 3 * | tetM, cfr |
A505 | RT-010 | − | 0.75 | 0.38 | 256 * | 256 | 1 | 48 * | 0.25 | 0.002 | 1.5 | |
A507 | RT-449 | 0 | 1 | 0.5 | 4 | 2 | 0.75 | 2 | 0.75 | 0.002 | 1 | |
A510 | TV872 | 0 | NT | NT | 6 | 3 | 0.75 | 3 * | 1 | NT | 0.25 | tetO |
A511 | RT-003 | 0 | 0.75 | 0.38 | 3 | 1 | 1.5 | 1.5 | 0.38 | 0.002 | 1.5 | ermB |
A512 | TV86 2 | 0 | 0.75 | 0.38 | 2 | 1.5 | 1.5 | 1.5 | 0.75 | 0.002 | 1.5 | |
A513 | TV86 2 | 0 | 0.75 | 0.38 | 2 | 1.5 | 1 | 1.5 | 0.5 | 0.002 | 1.5 | |
A514 | RT-126 | V/V like | 0.75 | 0.5 | 256 * | 256 | 1 | 1 | 0.5 | 0.002 | 1.5 | tetO, ermB |
A515 | RT-014/020 | 0 | 0.75 | 0.5 | 1.5 | 1.5 | 1 | 1.5 | 0.75 | 0.002 | 1.5 | |
A516 | RT-126 | V/V like | 1 | 0.38 | 256 * | 256 | 32 * | 12 * | 0.5 | 0.002 | 1 | tetM, cfr |
A518 | RT-033 | XIb | 0.5 | 0.25 | 2 | 0.38 | 0.75 | 1.5 | 0.5 | 0.002 | 1.5 | |
A519 | TV922 | − | 1 | 0.5 | 4 | 1.5 | 0.5 | 1.5 | 0.5 | 0.002 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasi, F.; Lovito, C.; Albini, E.; Bano, L.; Dalmonte, G.; Drigo, I.; Maresca, C.; Massacci, F.R.; Orsini, S.; Primavilla, S.; et al. Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals 2021, 11, 515. https://doi.org/10.3390/ani11020515
Blasi F, Lovito C, Albini E, Bano L, Dalmonte G, Drigo I, Maresca C, Massacci FR, Orsini S, Primavilla S, et al. Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals. 2021; 11(2):515. https://doi.org/10.3390/ani11020515
Chicago/Turabian StyleBlasi, Francesca, Carmela Lovito, Elisa Albini, Luca Bano, Gastone Dalmonte, Ilenia Drigo, Carmen Maresca, Francesca Romana Massacci, Serenella Orsini, Sara Primavilla, and et al. 2021. "Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration" Animals 11, no. 2: 515. https://doi.org/10.3390/ani11020515
APA StyleBlasi, F., Lovito, C., Albini, E., Bano, L., Dalmonte, G., Drigo, I., Maresca, C., Massacci, F. R., Orsini, S., Primavilla, S., Scoccia, E., Tofani, S., Forte, C., & Magistrali, C. F. (2021). Clostridioides difficile in Calves in Central Italy: Prevalence, Molecular Typing, Antimicrobial Susceptibility and Association with Antibiotic Administration. Animals, 11(2), 515. https://doi.org/10.3390/ani11020515