Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Feeding and Animals
2.2. Determination of Feed Intake and Fecal Excretion
2.3. Chemical Analysis of Samples
2.4. Data Calculation and Statistical Analyses
3. Results
3.1. Feed Intake and Digestibility
3.2. Feces Quality and Quantity
3.3. Microbial Composition of Feces
3.4. Influence of Feed Intake and Diet Quality on Fecal Composition
4. Discussion
4.1. Effects of Feed Intake and Diet Digestibility on Fecal Chemical Composition
4.2. Effects of Diet Quality and Feed Intake on Fecal Microbial Composition
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Al-Asfoor, H.; Schiborra, A.; Sundrum, A.; Schlecht, E. Particulate rate of passage and faeces quality of water buffalo fed diets varying in concentrations of nitrogen and structural and non-structural carbohydrates. Anim. Nutr. Feed Technol. 2013, 13, 165–180. [Google Scholar]
- Jost, D.I.; Joergensen, R.G.; Sundrum, A. Effect of cattle faeces with different microbial biomass content on soil properties, gaseous emissions and plant growth. Biol. Fertil. Soils 2013, 49, 61–70. [Google Scholar] [CrossRef]
- Leng, R.A. Factors Affecting the Utilization of ‘Poor-Quality’ Forages by Ruminants Particularly Under Tropical Conditions. Nutr. Res. Rev. 1990, 3, 277–303. [Google Scholar] [CrossRef]
- Bayala, J.; Ky-Dembele, C.; Kalinganire, A.; Olivier, A.; Nantoumé, H. A Review of Pasture and Fodder Production and Productivity for Small Ruminants in the Sahel; ICRAF: Nairobi, Kenya, 2014. [Google Scholar]
- Koralagama, K.; Mould, F.; Fernandez-Rivera, S.; Hanson, J. The effect of supplementing maize stover with cowpea (Vigna unguiculata) haulms on the intake and growth performance of Ethiopian sheep. Animal 2008, 2, 954–961. [Google Scholar] [CrossRef] [Green Version]
- Abdou, N.; Nsahlai, I.; Chimonyo, M. Effects of groundnut haulms supplementation on millet stover intake, digestibility and growth performance of lambs. Anim. Feed. Sci. Technol. 2011, 169, 176–184. [Google Scholar] [CrossRef]
- Doreau, M.; Michalet-Doreau, B.; Grimaud, P.; Atti, N.; Nozière, P. Consequences of underfeeding on digestion and absorption in sheep. Small Rumin. Res. 2003, 49, 289–301. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Faulconnier, Y.; Bonnet, M.; Rouel, J.; Bocquier, F. Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proc. Nutr. Soc. 2000, 59, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, R.P.; Carey, H.V. Intestinal Transport During Fasting and Malnutrition. Annu. Rev. Nutr. 2000, 20, 195–219. [Google Scholar] [CrossRef]
- Grimaud, P.; Doreau, M. Effect of extended underfeeding on digestion and nitrogen balance in nonlactating cows. J. Anim. Sci. 1995, 73, 211–219. [Google Scholar] [CrossRef]
- Atti, N.; Kayouli, C.; Mahouachi, M.; Guesmi, A.; Doreau, M. Effect of a drastic and extended underfeeding on digestion in Barbary ewe. Anim. Feed. Sci. Technol. 2002, 100, 1–14. [Google Scholar] [CrossRef]
- Van Vliet, P.C.J.; Reijs, J.W.; Bloem, J.; Dijkstra, J.; De Goede, R.G.M. Effects of Cow Diet on the Microbial Community and Organic Matter and Nitrogen Content of Feces. J. Dairy Sci. 2007, 90, 5146–5158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, D.I.; Aschemann, M.; Lebzien, P.; Joergensen, R.G.; Sundrum, A. Microbial biomass in faeces of dairy cows affected by a nitrogen deficient diet. Arch. Anim. Nutr. 2013, 67, 104–118. [Google Scholar] [CrossRef]
- Jost, D.I.; Indorf, C.; Joergensen, R.G.; Sundrum, A. Determination of microbial biomass and fungal and bacterial distribution in cattle faeces. Soil Biol. Biochem. 2011, 43, 1237–1244. [Google Scholar] [CrossRef]
- Al-Kindi, A.; Schlecht, E.; Schiborra, A.; Joergensen, R.G. Effects of quebracho tannin extract (Schinopsis balansae) and activated charcoal on feed intake and digestibility by goats and their faecal microbial biomass. Biol. Agric. Hortic. 2015, 32, 1–11. [Google Scholar] [CrossRef]
- Meyer, S.; Thiel, V.; Joergensen, R.G.; Sundrum, A. Relationships between feeding and microbial faeces indices in dairy cows at different milk yield levels. PLoS ONE 2019, 14, e0221266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapierre, H.; Lobley, G. Nitrogen Recycling in the Ruminant: A Review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- Rufino, M.C.; Rowe, E.C.; Delve, R.J.; Giller, K.E. Nitrogen cycling efficiencies through resource-poor African crop–livestock systems. Agric. Ecosyst. Environ. 2006, 112, 261–282. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirement of Beef Cattle; National Research Council, National Academy Press: Washington DC, USA, 1989. [Google Scholar]
- Ali, A.I.M.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animal 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Lukuyu, B.; Gachuiri, C.K.; Agili, S.; Leon-Velarde, C.; Kirui, J. Making High Quality Sweetpotato Silage: An Improved Tube Silage Making Method; International Potato Center: Nairobi, Kenya, 2012; Available online: https://cgspace.cgiar.org/handle/10568/89025 (accessed on 10 April 2018).
- Makkar, H.P.S. Feed supplementation block technology—Past, present and future. In Urea-Molasses Multinutrient Blocks: Simple and Effective Feed Supplement Technology for Ruminant Agriculture; Makkar, H.P.S., Sánchez, M., Speedy, A.W., Eds.; Food and Agriculture Organization: Rome, Italy, 2007; pp. 1–12. [Google Scholar]
- Ali, A.I.; Wassie, S.E.; Korir, D.; Goopy, J.P.; Merbold, L.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Digesta passage and nutrient digestibility in Boran steers at low feed intake levels. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1325–1337. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 5th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1990. [Google Scholar]
- VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten). Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Band III; Die Chemische Untersuchung von Futtermitteln: Darmstadt, Germany, 2012. [Google Scholar]
- Indorf, C.; Dyckmans, J.; Khan, K.S.; Joergensen, R.G. Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biol. Fertil. Soils 2011, 47, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Engelking, B.; Flessa, H.; Joergensen, R.G. Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil. Soil Biol. Biochem. 2007, 39, 2111–2118. [Google Scholar] [CrossRef]
- Joergensen, R.G. Amino sugars as specific indices for fungal and bacterial residues in soil. Biol. Fertil. Soils 2018, 54, 559–568. [Google Scholar] [CrossRef]
- Appuhn, A.; Joergensen, R.G. Microbial colonisation of roots as a function of plant species. Soil Biol. Biochem. 2006, 38, 1040–1051. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Wassie, S.E.; Ali, A.I.M.; Korir, D.; Butterbach-Bahl, K.; Goopy, J.; Merbold, L.; Schlecht, E.; Dickhoefer, U. Effects of feed intake level on efficiency of microbial protein synthesis and nitrogen balance in Boran steers consuming tropical poor-quality forage. Arch. Anim. Nutr. 2019, 73, 140–157. [Google Scholar] [CrossRef] [PubMed]
- Delve, R. Implications of livestock feeding management on soil fertility in the smallholder farming systems of sub-Saharan Africa. Agric. Ecosyst. Environ. 2001, 84, 227–243. [Google Scholar] [CrossRef]
- Sørensen, P.; Weisbjerg, M.R.; Lund, P. Dietary effects on the composition and plant utilization of nitrogen in dairy cattle manure. J. Agric. Sci. 2003, 141, 79–91. [Google Scholar] [CrossRef]
- Kyvsgaard, P.; Sørensen, P.; Møller, E.; Magid, J. Nitrogen mineralization from sheep faeces can be predicted from the apparent digestibility of the feed. Nutr. Cycl. Agroecosystems 2000, 57, 207–214. [Google Scholar] [CrossRef]
- Zhu, Y.; Merbold, L.; Pelster, D.; Diaz-Pines, E.; Wanyama, G.N.; Butterbach-Bahl, K. Effect of Dung Quantity and Quality on Greenhouse Gas Fluxes from Tropical Pastures in Kenya. Glob. Biogeochem. Cycles 2018, 32, 1589–1604. [Google Scholar] [CrossRef]
- Maynaud, G.; Druilhe, C.; Daumoin, M.; Jimenez, J.; Patureau, D.; Torrijos, M.; Pourcher, A.-M.; Wéry, N. Characterisation of the biodegradability of post-treated digestates via the chemical accessibility and complexity of organic matter. Bioresour. Technol. 2017, 231, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.F.; Cadenhead, A. Effect of the amount and composition of the diet on galactosamine flow from the small intestine. Proc. Int. Symp. Dig. Physiol. Pigs 1991, 54, 330–333. [Google Scholar]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.A.; Webb, M.; Ghimire, S.; Blair, A.; Olson, K.; Fenske, G.J.; Fonder, A.T.; Christopher-Hennings, J.; Brake, D.; Scaria, J. Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial | Feedstuff | DM | CP | NDF | ADF | ME |
---|---|---|---|---|---|---|
(g kg−1 FM) | (g kg−1 DM) | (MJ kg−1 DM) | ||||
Experiment 1 | Rhodes grass hay | 916 | 33 | 769 | 494 | 6.3 |
Cotton seed meal | 924 | 297 | 508 | 362 | 8.3 | |
Molasses | 699 | 26 | ND | ND | 10.8 | |
Experiment 2 | Roughage mix 1 | 778 | 71 | 735 | 470 | ND |
Sweet potato vine silage | 196 | 140 | 537 | 393 | ND | |
Urea-molasses block | 899 | 374 | 27 | 17 | ND |
Variable | Diet | Period | SEM | Probability Level | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MER100 | MER80 | MER60 | MER40 | 1 | 2 | 3 | 4 | D | P | D × P | ||
Feed intake (g kg−0.75 LW d−1) | ||||||||||||
OM | 74.4 a | 58.6 b | 51.8 c | 36.9 d | 60.4 a | 53.4 bc | 51.3 c | 56.6 b | 2.09 | <0.01 | <0.01 | <0.01 |
CP | 5.5 a | 2.2 b | 1.9 c | 1.3 d | 2.7 b | 2.9 a | 2.4 c | 2.9 a | 0.24 | <0.01 | <0.01 | <0.05 |
NDF | 56.0 a | 49.2 b | 43.5 c | 31.0 d | 48.4 a | 43.9 bc | 41.6 c | 45.8 ab | 1.45 | <0.01 | <0.01 | <0.01 |
ADF | 36.1 a | 31.5 b | 27.9 c | 19.9 d | 31.3 a | 27.7 ab | 27.4 b | 29.1 ab | 0.93 | <0.01 | <0.01 | <0.01 |
Diet digestibility (g kg−1 DM) | ||||||||||||
OM | 591 | 601 | 590 | 574 | 607 a | 571 b | 577 b | 601 a | 4.6 | NS | <0.01 | NS |
CP | 492 a | 203 b | 133 bc | 103 c | 192 b | 319 a | 206 b | 215 b | 26.3 | <0.01 | <0.01 | NS |
NDF | 562 b | 608 a | 597 a | 581 ab | 605 a | 576 a | 570 b | 597 a | 5.3 | <0.01 | <0.05 | NS |
ADF | 512 c | 568 a | 549 ab | 527 bc | 559 a | 514 b | 532 ab | 551 a | 5.8 | <0.01 | <0.01 | NS |
Fecal composition (g kg−1 DM) | ||||||||||||
OM | 862 a | 845 b | 852 a | 851 a | 846 b | 859 a | 857 a | 848 b | 1.5 | <0.01 | <0.01 | NS |
N | 12.8 a | 10.3 b | 10.4 b | 10.2 b | 11.0 ab | 10.5 b | 10.1 b | 12.0 a | 0.22 | <0.01 | <0.01 | NS |
NDF | 695 | 696 | 703 | 702 | 684 c | 703 ab | 712 a | 698 b | 2.1 | NS | <0.01 | NS |
ADF | 500 ab | 492 b | 505 a | 510 a | 494 b | 508 a | 511 a | 494 b | 2.1 | <0.01 | <0.01 | <0.05 |
Fecal microbial properties (mg g−1 DM) | ||||||||||||
Muramic acid | 0.62 | 0.62 | 0.67 | 0.65 | 0.54 a | 0.55 a | 0.74 b | 0.74 b | 0.013 | NS | <0.01 | <0.05 |
Galactosamine | 1.8 b | 3.0 a | 2.3 b | 2.2 b | 2.0 ab | 2.2 ab | 1.8 b | 2.3 a | 0.05 | <0.01 | <0.01 | <0.01 |
Glucosamine | 2.6 b | 2.7 b | 3.0 a | 2.8 ab | 2.7 b | 3.0 a | 2.4 c | 3.0 a | 0.05 | <0.01 | <0.01 | <0.01 |
Fungal C | 12.1 b | 13.1 b | 15.1 a | 13.4 b | 14.2 a | 13.9 a | 11.6 b | 14.0 a | 0.27 | <0.01 | <0.01 | <0.01 |
Bacterial C | 28.1 | 27.8 | 30.4 | 29.2 | 24.3 b | 33.1 a | 24.8 b | 33.3 a | 0.60 | NS | <0.01 | <0.05 |
Microbial C | 40.2 b | 40.9 b | 45.4 a | 42.7 ab | 38.5 b | 47.0 a | 36.4 b | 47.3 a | 0.73 | <0.01 | <0.001 | <0.01 |
Fungal C/bacterial C | 0.45 b | 0.52 a | 0.52 a | 0.47 ab | 0.61 a | 0.43 b | 0.49 b | 0.43 b | 0.012 | <0.05 | <0.001 | <0.05 |
Variable | Diet | Period | SEM | Probability Level | |||||
---|---|---|---|---|---|---|---|---|---|
R | R + SPVS | R + UMB | 1 | 2 | D | P | D × P | ||
Feed intake (g kg−0.75 LW d−1) | |||||||||
OM | 63.1 | 67.5 | 59.0 | 56.8 | 69.6 | 2.79 | NS | NS | NS |
CP | 5.6 | 6.7 | 5.5 | 5.4 | 6.5 | 0.31 | NS | NS | NS |
NDF | 50.4 | 52.6 | 47.7 | 44.5 | 55.9 | 2.22 | NS | NS | NS |
ADF | 32.3 | 33.9 | 30.2 | 29.4 | 35.0 | 1.30 | NS | NS | NS |
Diet digestibility (g kg−1 DM) | |||||||||
OM | 509 | 539 | 512 | 515 | 525 | 7.8 | NS | NS | <0.05 |
CP | 337 | 385 | 325 | 356 | 342 | 16.7 | NS | NS | NS |
NDF | 496 | 530 | 506 | 496 | 525 | 8.3 | NS | NS | NS |
ADF | 428 | 458 | 429 | 427 | 449 | 6.8 | NS | NS | NS |
Fecal chemical composition (g kg−1 DM) | |||||||||
OM | 832 ab | 836 a | 829 b | 819 b | 846 a | 4.2 | <0.05 | <0.01 | NS |
N | 16.0 | 17.8 | 17.1 | 16.5 | 17.4 | 0.53 | NS | NS | NS |
NDF | 679 | 662 | 679 | 667 | 680 | 3.9 | NS | NS | NS |
ADF | 496 | 495 | 497 | 500 | 493 | 2.6 | NS | NS | NS |
Fecal microbial composition (mg g−1 DM) | |||||||||
Muramic acid | 0.42 b | 0.53 a | 0.52 a | 0.47 | 0.51 | 0.024 | <0.01 | NS | NS |
Galactosamine | 1.3 b | 1.5 a | 1.6 a | 1.3 b | 1.6 a | 0.06 | <0.01 | <0.05 | <0.05 |
Glucosamine | 2.5 a | 2.9 a | 2.9 a | 2.6 b | 3.0 a | 0.10 | <0.01 | <0.05 | NS |
Fungal C | 15.3 | 16.2 | 16.8 | 14.6 b | 17.6 a | 0.58 | NS | <0.05 | <0.01 |
Bacterial C | 18.7 b | 23.9 a | 23.3 a | 21.0 | 23.0 | 1.07 | <0.01 | NS | NS |
Microbial C | 34.0 b | 40.1 a | 40.1 a | 35.6 | 40.6 | 1.47 | <0.01 | NS | NS |
Fungal C/bacterial C | 0.85 a | 0.69 c | 0.76 b | 0.74 | 0.80 | 0.031 | <0.01 | NS | <0.01 |
Diet | OM | N | NDF | ADF |
---|---|---|---|---|
(g 100 kg−1 LW d−1) | ||||
Exp. 1 | ||||
MER100 | 796 a | 12 a | 642 a | 462 a |
MER80 | 608 b | 7 b | 501 b | 353 b |
MER60 | 559 b | 7 b | 461 b | 331 b |
MER40 | 420 c | 5 c | 346 c | 252 c |
SEM | 21.6 | 0.4 | 17.2 | 12.2 |
Probability level | <0.001 | <0.001 | <0.001 | <0.001 |
Exp. 2 | ||||
R | 884 | 17 | 721 | 527 |
R + SPVS | 880 | 18 | 697 | 519 |
R + UMB | 830 | 17 | 679 | 497 |
SEM | 34.1 | 0.7 | 26.8 | 17.7 |
Probability level | NS | NS | NS | NS |
Variable | N | NDF | ADF |
---|---|---|---|
Fecal Chemical Composition (g kg−1 DM) | |||
Feed intake (g kg−0.75 LW) | |||
CP | 0.79 *** | −0.49 *** | −0.26 * |
NDF | 0.42 *** | −0.29 * | −0.44 *** |
ADF | 0.41 ** | −0.30 * | −0.42 *** |
Diet digestibility (g kg−1 DM) | |||
CP | 0.37 ** | −0.26 * | NS |
NDF | −0.52 *** | NS | NS |
ADF | −0.59 *** | NS | NS |
Variable | Galactosamine | Fungal C | Bacterial C | Fungal C/ |
---|---|---|---|---|
(mg g−1 DM) | Bacterial C | |||
Feed intake (g kg−0.75 LW) | ||||
CP | −0.48 *** | NS | −0.26 * | 0.34 ** |
NDF | NS | NS | NS | NS |
ADF | −0.29 * | NS | NS | NS |
Diet digestibility (g kg−1 DM) | ||||
CP | −0.32 * | NS | NS | NS |
NDF | 0.46 *** | NS | 0.27 * | −0.31 * |
ADF | 0.43 *** | NS | NS | −0.35 ** |
Fecal composition (g kg−1 DM) | ||||
N | −0.45 *** | 0.31* | −0.32 * | 0.52 *** |
NDF | 0.41 ** | NS | 0.43 *** | −0.56 *** |
ADF | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.I.M.; Wassie, S.E.; Joergensen, R.G.; Korir, D.; Goopy, J.P.; Butterbach-Bahl, K.; Merbold, L.; Dickhoefer, U.; Schlecht, E. Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals 2021, 11, 564. https://doi.org/10.3390/ani11020564
Ali AIM, Wassie SE, Joergensen RG, Korir D, Goopy JP, Butterbach-Bahl K, Merbold L, Dickhoefer U, Schlecht E. Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals. 2021; 11(2):564. https://doi.org/10.3390/ani11020564
Chicago/Turabian StyleAli, Asep I. M., Shimels E. Wassie, Rainer Georg Joergensen, Daniel Korir, John P. Goopy, Klaus Butterbach-Bahl, Lutz Merbold, Uta Dickhoefer, and Eva Schlecht. 2021. "Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems" Animals 11, no. 2: 564. https://doi.org/10.3390/ani11020564
APA StyleAli, A. I. M., Wassie, S. E., Joergensen, R. G., Korir, D., Goopy, J. P., Butterbach-Bahl, K., Merbold, L., Dickhoefer, U., & Schlecht, E. (2021). Feed Quality and Feeding Level Effects on Faecal Composition in East African Cattle Farming Systems. Animals, 11(2), 564. https://doi.org/10.3390/ani11020564