Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Growth Performance
2.4. Carcass Characteristics and Meat Quality
2.5. Blood Profiles
2.6. Antioxidant Capacity
2.7. BDE-209 Content in Breast Muscle
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Traits and Meat Quality
3.3. Blood Parameters
3.4. Plasma Biochemical Indicators
3.5. Antioxidant Capacity
3.6. Accumulation of BDE-209 in Breast Muscle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vonderheide, A.P.; Mueller, K.E.; Meija, J.; Welsh, G.L. Polybrominated diphenyl ethers: Causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Sci. Total Environ. 2008, 400, 425–436. [Google Scholar] [CrossRef]
- Wang, J.-X.; Bao, L.-J.; Shi, L.; Liu, L.-Y.; Zeng, E.Y. Characterizing PBDEs in fish, poultry, and pig feeds manufactured in China. Environ. Sci. Pollut. Res. 2019, 26, 6014–6022. [Google Scholar] [CrossRef]
- Hites, R.A.; Foran, J.A.; Schwager, S.J.; Knuth, B.A.; Hamilton, M.C.; Carpenter, D.O. Global assessment of polybromin-ated diphenyl ethers in farmed and wild salmon. Environ. Sci. Technol. 2004, 38, 4945–4949. [Google Scholar] [CrossRef]
- Zheng, X.B.; Luo, X.J.; Zheng, J.; Zeng, Y.H.; Mai, B.X. Contaminant sources, gastrointestinal absorption, and tissue dis-tribution of organohalogenated pollutants in chicken from an e-waste site. Sci. Total Environ. 2015, 505, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Sahu, S.K.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G. Polybrominated diphenyl ethers (PBDEs) in core sedi-ments from creek ecosystem: Occurrence, geochronology, and source contribution. Environ. Geochem. Health 2018, 40, 2587–2601. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.T.; Li, L.J.; Zheng, Y.X.; Shen, X.Y.; Wang, D.R. Polybrominated diphenyl ethers (PBDEs) in dust in typical indoor public places in Hangzhou: Levels and an assessment of human exposure. Ecotoxicol. Environ. Saf. 2019, 169, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-W.; Qiu, H.-L.; Zhang, G.; Li, J. Bioaccumulation and cycling of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in three natural mangrove ecosystems of South China. Sci. Total Environ. 2019, 651, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Labunska, I.; Harrad, S.; Wang, M.; Santillo, D.; Johnston, P. Human dietary exposure to PBDEs around E-waste recy-cling sites in Eastern China. Environ. Sci. Technol. 2014, 48, 5555–5564. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Qin, Z.; Li, Y.; Zhao, Y.; Xia, X.; Yan, S.; Tian, M.; Zhao, X.; Xu, X.; Yang, Y. Polybrominated diphenyl ethers in chicken tissues and eggs from an electronic waste recycling area in southeast China. J. Environ. Sci. 2011, 23, 133–138. [Google Scholar] [CrossRef]
- Fernandes, A.; Mortimer, D.; Rose, M.; Smith, F.; Panton, S.; Lopez, M.A.G. Bromine content and brominated flame retardants in food and animal feed from the UK. Chemosphere 2016, 150, 472–478. [Google Scholar] [CrossRef]
- Wang, J.-X.; Bao, L.-J.; Luo, P.; Shi, L.; Wong, C.S.; Zeng, E.Y. Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure. Environ. Pollut. 2017, 231, 795–801. [Google Scholar] [CrossRef]
- Kalantzi, O.I.; Geens, T.; Covaci, A.; Siskos, P.A. Distribution of polybrominated diphenyl ethers (PBDEs) and other per-sistent organic pollutants in human serum from Greece. Environ. Int. 2011, 37, 349–353. [Google Scholar] [CrossRef]
- Sjödin, A.; Jones, R.S.; Caudill, S.P.; Wong, L.-Y.; Turner, W.E.; Calafat, A.M. Polybrominated Diphenyl Ethers and Other Persistent Organic Pollutants in Serum Pools from the National Health and Nutrition Examination Survey: 2001. Environ. Sci. Technol. Lett. 2014, 1, 92–96. [Google Scholar] [CrossRef]
- Chen, T.; Niu, P.; Kong, F.; Wang, Y.; Bai, Y.; Yu, D.; Jia, J.; Yang, L.; Fu, Z.; Li, R.; et al. Disruption of thyroid hormone levels by decabrominated diphenyl ethers (BDE-209) in occupational workers from a deca-BDE manufacturing plant. Environ. Int. 2018, 120, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Joshi, D.; Singh, S.K. Maternal BDE-209 exposure during lactation causes testicular and epididymal toxicity through increased oxidative stress in peripubertal mice offspring. Toxicol. Lett. 2019, 311, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.C.; Souza, A.O.; Tasso, M.J.; Oliveira, A.M.C.; Duarte, F.V.; Palmeira, C.M.; Dorta, D.J. Exposure to decabro-modiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death. J. Toxicol. Environ. Health A 2017, 80, 1129–1144. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Li, X.; Chen, D. The environmental pollutant BDE-209 regulates NO/cGMP signaling through activation of NMDA receptors in neurons. Environ. Sci. Pollut. Res. Int. 2018, 25, 3397–3407. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Singh, S.K. Inhibition of testicular steroidogenesis and impaired differentiation of Sertoli cells in peripubertal mice offspring following maternal exposure to BDE-209 during lactation suppress germ cell proliferation. Toxicol. Lett. 2018, 290, 83–96. [Google Scholar] [CrossRef]
- Soulen, B.K.; Venables, B.J.; Johnston, D.W.; Roberts, A.P. Accumulation of PBDEs in stranded harp (Pagophilus groen-landicus) and hooded seals (Cystophora cristata) from the Northeastern United States. Mar. Environ. Res. 2018, 138, 96–101. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Fernie, K.J.; Shutt, J.L.; Ritchie, I.J.; Letcher, R.J.; Drouillard, K.; Bird, D.M. Changes in the Growth, but Not the Survival, of American Kestrels (Falco sparverius) Exposed to Environmentally Relevant Polybrominated Diphenyl Ethers. J. Toxicol. Environ. Health Part A 2006, 69, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Ta, T.A.; Koenig, C.M.; Golub, M.S.; Pessah, I.N.; Qi, L.; Aronov, P.A.; Berman, R.F. Bioaccumulation and behavioral ef-fects of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) in perinatally exposed mice. Neurotoxicol. Teratol. 2011, 33, 393–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsson, G.; Kulkarni, P.; Larsson, P.; Norrgren, L. Distribution of BDE-99 and effects on metamorphosis of BDE-99 and -47 after oral exposure in Xenopus tropicalis. Aquat. Toxicol. 2007, 84, 71–79. [Google Scholar] [CrossRef]
- Abrha, A.; Suvorov, A. Transcriptomic Analysis of Gonadal Adipose Tissue in Male Mice Exposed Perinatally to 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47). Toxics 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Li, P.; Liu, L.; Yang, K.; Xiao, B.; Zhou, G.; Tian, Z.; Luo, C.; Xia, T.; Dong, L.; et al. Perigestational low-dose BDE-47 exposure alters maternal serum metabolome and results in sex-specific weight gain in adult offspring. Chemosphere 2019, 233, 174–182. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, M.; Wang, S.; Zhang, H.; Du, Z.; Li, Y.; Cao, Z.; Luan, P.; Leng, L.; Li, H. Genetic selection on abdominal fat content alters the reproductive performance of broilers. Animal 2018, 12, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Xu, Z.Q.; Yang, L.L.; Wang, Y.X.; Li, Y.M.; Dong, J.Q.; Zhang, X.Y.; Jiang, X.Y.; Jiang, X.F.; Li, H.; et al. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers. Br. Poult. Sci. 2018, 59, 28–33. [Google Scholar] [CrossRef]
- Dong, J.Q.; Zhang, X.Y.; Wang, S.Z.; Jiang, X.F.; Zhang, K.; Ma, G.W.; Wu, M.Q.; Li, H.; Zhang, H. Construction of mul-tiple linear regression models using blood biomarkers for selecting against abdominal fat traits in broilers. Poult. Sci. 2018, 97, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Schindhelm, R.K.; Diamant, M.; Dekker, J.M.; Tushuizen, M.E.; Teerlink, T.; Heine, R.J. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes/Metab. Res. Rev. 2006, 22, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Muratori, T.; Klersy, C.; Albertini, R.; Caramagna, C.; Brizzi, V.; Larizza, D. Early-onset metabolic syn-drome in prepubertal obese children and the possible role of alanine aminotransferase as marker of metabolic syndrome. Ann. Nutr. Metab. 2011, 58, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, T.H.; Choi, J.S.; Nabanata, P.; Kim, N.Y.; Ahn, M.Y.; Jung, K.K.; Kang, I.H.; Kwack, S.J.; Park, K.L.; et al. Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE. J. Toxicol. Sci. 2010, 35, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milovanovic, V.; Buha, A.; Matović, V.; Curcic, M.; Vucinic, S.; Nakano, T.; Antonijevic, B. Oxidative stress and renal toxicity after subacute exposure to decabrominated diphenyl ether in Wistar rats. Environ. Sci. Pollut. Res. 2015, 25, 7223–7230. [Google Scholar] [CrossRef] [PubMed]
- He, P.; He, W.; Wang, A.; Xia, T.; Xu, B.; Zhang, M.; Chen, X. PBDE-47-induced oxidative stress, DNA damage and apoptosis in primary cultured rat hippocampal neurons. NeuroToxicology 2008, 29, 124–129. [Google Scholar] [CrossRef] [PubMed]
Composition of Diets | Weeks 1–3 | Weeks 4–6 |
---|---|---|
ME (calculated metabolizable energy, MJ/kg) | 12.74 | 12.98 |
Crude protein (%) | 21.36 | 19.6 |
Calcium (%) | 1.02 | 0.89 |
Total phosphorus (%) | 0.68 | 0.62 |
Lysine (%) | 1.33 | 1.07 |
Items | Treatments of Dietary BDE-209 (mg/kg) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.02 | 0.4 | 4 | SEM | ANOVA | Linear | Quadratic | |
Dressing percentage | 90.38 | 91.06 | 90.46 | 90.13 | 0.72 | 0.43 | 0.14 | 0.98 |
Eviscerating percentage | 88.07 | 88.27 | 88.87 | 88.31 | 1.78 | 0.81 | 0.55 | 0.22 |
Breast muscle percentage | 14.96 | 14.01 | 14.60 | 14.04 | 0.52 | 0.21 | 0.25 | 0.33 |
Thigh muscle percentage | 8.02 | 7.83 | 7.47 | 7.57 | 0.53 | 0.28 | 0.79 | 0.09 |
Abdominal fat percentage | 0.37 A | 0.96 B | 1.02 B | 0.61 C | 0.25 | 0.00 | 0.25 | 0.28 |
Items | Treatments of Dietary BDE-209 (mg/kg) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.02 | 0.4 | 4 | SEM | ANOVA | Linear | Quadratic | |
Breast pH value | 6.17 Aa | 6.13 Aa | 6.06 ABb | 5.95 B | 0.02 | 0.00 | 0.05 | 0.00 |
Lightness (L*) | 48.76 a | 48.28 ab | 47.65 b | 48.61 ab | 0.20 | 0.19 | 0.10 | 0.12 |
Redness (a*) | 1.80 A | 2.43 ABa | 2.52 Bab | 2.07 Bb | 0.08 | 0.00 | 0.24 | 0.05 |
Yellowness (b*) | 15.09 AB | 15.87 A | 14.43 B | 14.26 B | 0.17 | 0.00 | 0.11 | 0.00 |
Breast shear force (N) | 12.82 | 12.17 | 13.91 | 12.94 | 1.43 | 0.43 | 0.65 | 0.91 |
Drip loss | 1.07 ab | 1.17 ab | 1.19 a | 0.97 b | 0.21 | 0.21 | 0.41 | 0.38 |
Items | Treatments of Dietary BDE-209 (mg/kg) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.02 | 0.4 | 4 | SEM | ANOVA | Linear | Quadratic | |
WBCs (109/L) | 9.88 Aa | 7.75 B | 6.46 C | 8.95 Ab | 0.23 | 0.00 | 0.29 | 0.00 |
LYMs (109/L) | 0.98 A | 0.82 B | 0.62 C | 1.04 A | 0.03 | 0.00 | 0.43 | 0.00 |
MIDs (109/L) | 0.31 A | 0.23 B | 0.20 C | 0.29 A | 0.01 | 0.00 | 0.81 | 0.00 |
NEUs (109/L) | 8.67 A | 6.76 B | 5.63 C | 6.71 B | 0.19 | 0.00 | 0.29 | 0.00 |
RBCs (1012/L) | 2.41 C | 2.95 B | 3.27 A | 2.37 C | 0.06 | 0.00 | 0.93 | 0.00 |
HGB (g/L) | 148.59 C | 170.18 B | 206.27 A | 131.42 D | 3.97 | 0.00 | 0.14 | 0.00 |
HCT (%) | 27.58 C | 32.14 B | 37.98 A | 24.67 D | 0.73 | 0.00 | 0.43 | 0.00 |
PLTs (109/L) | 222.31 A | 183.18 Ba | 180.53 Bab | 167.06 Bb | 3.67 | 0.00 | 0.78 | 0.12 |
PDW (fL) | 13.89 Bb | 18.83A ABa | 19.87 Aa | 18.56 ABa | 0.33 | 0.00 | 0.85 | 0.23 |
PCT (%) | 0.23 A | 0.19 B | 0.20 B | 0.16 C | 0.00 | 0.00 | 0.53 | 0.03 |
Items | Treatments of Dietary BDE-209 (mg/kg) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
0 | 0.02 | 0.4 | 4 | SEM | ANOVA | Linear | Quadratic | |
AST (U/L) | 275.83 a | 378.65 ab | 367.01 ab | 381.01 b | 17.65 | 0.12 | 0.13 | 0.20 |
ALT (U/L) | 1.73 Bb | 2.18 ABb | 2.52 Aa | 2.80 Aa | 0.11 | 0.00 | 0.05 | 0.03 |
GGT (U/L) | 25.99 ABb | 23.56 Bb | 31.29 Aa | 27.86 ABab | 1.02 | 0.05 | 0.31 | 0.71 |
ALP (U/L) | 6861.08 A | 4281.09 B | 4680.49 B | 4692.63 B | 308.83 | 0.00 | 0.45 | 0.73 |
ALB (g/L) | 11.12 ABb | 9.80 Bb | 13.12 Aa | 11.76 ABab | 0.38 | 0.01 | 0.30 | 0.24 |
GLU (mM) | 14.7 ABb | 12.12 C | 14.34 Bb | 16.33 Aa | 0.33 | 0.00 | 0.11 | 0.36 |
UREA (mM) | 0.82 A | 0.84 A | 0.86 A | 0.99 B | 0.02 | 0.00 | 0.21 | 0.11 |
TBIL (μM) | 1.86 Bb | 2.14 Bb | 2.61 Aa | 2.47 ABa | 0.07 | 0.00 | 0.20 | 0.55 |
CRE (μM) | 4.09 A | 2.33 B | 2.35 B | 4.77 A | 0.27 | 0.00 | 0.21 | 0.85 |
UA (μM) | 205.08 Bb | 216.9 ABb | 278.23 Aa | 274.19 Aa | 10.15 | 0.01 | 0.32 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Lei, H.; Tang, R.; Yang, J.; Guo, X.; Huang, R.; Rao, Q.; Cheng, L.; Zhao, Z. Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers. Animals 2021, 11, 565. https://doi.org/10.3390/ani11020565
Liu Z, Lei H, Tang R, Yang J, Guo X, Huang R, Rao Q, Cheng L, Zhao Z. Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers. Animals. 2021; 11(2):565. https://doi.org/10.3390/ani11020565
Chicago/Turabian StyleLiu, Zehui, Hulong Lei, Renyong Tang, Junhua Yang, Xiulan Guo, Renmao Huang, Qinxiong Rao, Lin Cheng, and Zhihui Zhao. 2021. "Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers" Animals 11, no. 2: 565. https://doi.org/10.3390/ani11020565
APA StyleLiu, Z., Lei, H., Tang, R., Yang, J., Guo, X., Huang, R., Rao, Q., Cheng, L., & Zhao, Z. (2021). Effects of Decabrominated Diphenyl Ether Exposure on Growth, Meat Characteristics and Blood Profiles in Broilers. Animals, 11(2), 565. https://doi.org/10.3390/ani11020565