SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling and Data Collection
2.2. Expression and Purification of RBD of Spike
2.3. Detection of SARS-CoV-2 Antibodies by In-House ELISA
3. Results
3.1. Characterization of the Animals under Study
3.2. Serological Prevalence of SARS-CoV-2 Infection in Client-Owned-Ferrets
3.3. Health Condition in SARS-CoV-2 Seropositive Animals and Follow Up
3.4. Health Condition in Animals with Diagnosis of FRECV and FRSCV
3.5. SARS-CoV-2 in Ferrets with Exposure to Confirmed COVID-19 Infected Humans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perera, K.D.; Galasiti Kankanamalage, A.C.; Rathnayake, A.D.; Honeyfield, A.; Groutas, W.; Chang, K.O.; Kim, Y. Protease inhibitors broadly effective against feline, ferret and mink coronaviruses. Antivir. Res. 2018, 160, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, J.; Muraoka, Y.; Wise, A.G.; Kiupel, M.; Maes, R.K.; Torisu, S. Two Cases of Systemic Coronavirus-Associated Disease Resembling Feline Infectious Peritonitis in Domestic Ferrets in Japan. J. Exot. Pet Med. 2014, 23, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Stout, A.E.; André, N.M.; Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Vet. Microbiol. 2020, 247, 108777. [Google Scholar] [CrossRef]
- Cox, R.M.; Wolf, J.D.; Plemper, R.K. Therapeutically administered rbonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat. Microbiol. 2021, 6, 11–18. [Google Scholar] [CrossRef]
- Hossain, M.G.; Javed, A.; Akter, S.; Saha, S. SARS-CoV-2 host diversity: An update of natural infections and experimental evidence. J. Microbiol. Immunol. Infect. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.; et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe 2020, 27, 704–709.e2. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richard, M.; Kok, A.; de Meulder, D.; Bestebroer, T.M.; Lamers, M.M.; Okba, N.; Fentener van Vlissingen, M.; Rockx, B.; Haagmans, B.L.; Koopmans, M.; et al. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat. Commun. 2020, 11, 3496. [Google Scholar] [CrossRef] [PubMed]
- Schlottau, K.; Rissmann, M.; Graaf, A.; Schön, J.; Sehl, J.; Wylezich, C.; Höper, D.; Mettenleiter, T.C.; Balkema-Buschmann, A.; Harder, T.; et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: An experimental transmission study. Lancet Microbe 2020, 1, e218–e225. [Google Scholar] [CrossRef]
- Abdel-Moneim, A.S.; Abdelwhab, E.M. Evidence for SARS-CoV-2 Infection of Animal Hosts. Pathogens 2020, 9, 529. [Google Scholar] [CrossRef]
- Sarkar, J.; Guha, R. Infectivity, virulence, pathogenicity, host-pathogen interactions of SARS and SARS-CoV-2 in experimental animals: A systematic review. Vet. Res. Commun. 2020, 44, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, R.J.; Vreman, S.; Hakze-van der Honing, R.W.; Zwart, R.; de Rond, J.; Weesendorp, E.; Smit, L.; Koopmans, M.; Bouwstra, R.; Stegeman, A.; et al. Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink (Neovison vison). Vet. Pathol. 2020, 57, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Oreshkova, N.; Molenaar, R.J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-van der Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.S.; et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 2020, 25, 2001005. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.K.; de Oliveira-Filho, E.F.; Rasche, A.; Greenwood, A.D.; Osterrieder, K.; Drexler, J.F. Potential zoonotic sources of SARS-CoV-2 infections. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- Conceicao, A.; Thakur, N.; Human, S.; Kelly, J.T.; Logan, L.; Bialy, D.; Bhat, S.; Stevenson-Leggett, P.; Zagrajek, A.K.; Hollinghurst, P.; et al. The SARS-CoV-2 Spike protein has a broad tropism for mammalian ACE2 proteins. PLoS Biol. 2020, 18, e3001016. [Google Scholar] [CrossRef]
- Premkumar, L.; Segovia-Chumbez, B.; Jadi, R.; Martinez, D.R.; Raut, R.; Markmann, A.; Cornaby, C.; Bartelt, L.; Weiss, S.; Park, Y.; et al. The RBD of the Spike Protein of SARS-Group Coronaviruses is a highly specific target of SARS-CoV-2 antibodies but not other pathogenic human and animal coronavirus antibodies. medRxiv 2020. [Google Scholar] [CrossRef]
- Chia, W.N.; Tan, C.W.; Foo, R.; Kang, A.; Peng, Y.; Sivalingam, V.; Tiu, C.; Ong, X.M.; Zhu, F.; Young, B.E.; et al. Serological differentiation between COVID-19 and SARS infections. Emerg. Microbes Infect. 2020, 9, 1497–1505. [Google Scholar] [CrossRef]
- Klumpp-Thomas, C.; Kalish, H.; Drew, M.; Hunsberger, S.; Snead, K.; Fay, M.P.; Mehalko, J.; Shunmugavel, A.; Wall, V.; Frank, P.; et al. Standardization of enzyme-linked immunosorbent assays for serosurveys of the SARS-CoV-2 pandemic using clinical and at-home blood sampling. medRxiv 2020. [Google Scholar] [CrossRef]
- McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 2020, 11, e02220-20. [Google Scholar] [CrossRef]
- Fritz, M.; Rosolen, B.; Krafft, E.; Becquart, P.; Elguero, E.; Vratskikh, O.; Denolly, S.; Boson, B.; Vanhomwegen, J.; Gouilh, M.A.; et al. High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 2021, 11, 100192. [Google Scholar] [CrossRef]
- Guan, W.J.; Liang, W.H.; Zhao, Y.; Liang, H.R.; Chen, Z.S.; Li, Y.M.; Liu, X.Q.; Chen, R.C.; Tang, C.L.; Wang, T.; et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020, 55, 2000547. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.V.; Brash, M.L.; Smith, D.A. Ferrets In Pathology in Small Mammal Pets, 1st ed.; Turner, P.V., Brash, M.L., Smith, D.A., Eds.; Willey Blackwell: Hoboken, NJ, USA, 2018; pp. 89–146. [Google Scholar]
- Patterson, E.I.; Elia, G.; Grassi, A.; Giordano, A.; Desario, C.; Medardo, M.; Smith, S.L.; Anderson, E.R.; Prince, T.; Patterson, G.T.; et al. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat. Commun. 2020, 11, 6231. [Google Scholar] [CrossRef] [PubMed]
- Isho, B.; Abe, K.T.; Zuo, M.; Jamal, A.J.; Rathod, B.; Wang, J.H.; Li, Z.; Chao, G.; Rojas, O.L.; Bang, Y.M.; et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci. Immunol. 2020, 5, eabe5511. [Google Scholar]
- Iyer, A.S.; Jones, F.K.; Nodoushani, A.; Kelly, M.; Becker, M.; Slater, D.; Mills, R.; Teng, E.; Kamruzzaman, M.; Garcia-Beltran, W.F.; et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci. Immunol. 2020, 5, eabe0367. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson, A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarsson, R.F.; et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Eng. J. Med. 2020, 383, 1724–1734. [Google Scholar] [CrossRef]
- Wajnberg, A.; Amanat, F.; Firpo, A.; Altman, D.R.; Bailey, M.J.; Mansour, M.; McMahon, M.; Meade, P.; Mendu, D.R.; Muellers, K.; et al. Robust neutralizing antibodies to SARS-CoV-2 infection persist for months. Science 2020, 370, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A.; Ferbas, K.G.; Tobin, N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; Li, Q.; Deng, H.J.; Yuan, J.; Hu, J.L.; Xu, W.; Zhang, Y.; Lv, F.J.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Reid, T.J. Animals and SARS-CoV-2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- Gryseels, S.; De Bruyn, L.; Gyseling, R.; Calvignac, S.; Spencer, S.; Leendertz, F.H.; Leir, H.; Risk, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
Ferret Number | Dates | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Age (y) | Health Condition | January | February | March | April | May | June | July | August | September | October | November | |
F 1 | ♀ | 8 | ED | 0.059 | 0.057 | na | na | na | na | na | na | na | na | na |
F 2 | ♀ | 2 | UD | 0.050 | na | 0.057 | na | na | na | na | na | na | na | na |
F 3 | ♂ | 7 | CRD/CD | 0.066 | na | na | 0.046 | na | na | na | na | na | na | 0.049 |
F 4 | ♂ | 5 | UD | 0.064 | na | na | na | na | na | na | na | 0.078 | na | na |
F 5 | ♂ | 5 | CRD | 0.063 | na | 0.091 | na | na | na | na | na | na | 0.069 | na |
F 6 | ♂ | 5 | N | 0.061 | na | na | 0.085 | na | na | na | na | na | na | na |
F 7 (FRECV1) | GD | na | 0.076 | 0.049 | na | na | na | na | 0.083 | na | na | na | ||
F 8 | ♀ | 4 | Leish | na | 0.088 | 0.104 | 0.074 | na | na | na | na | na | na | na |
F 9 (FRSCV2) | ♀ | 1 | FRSCV | 0.068 | 0.069 | na | na | na | na | na | na | na | na | na |
F 10 | ♂ | 5 | ED | na | 0.098 | na | na | na | 0.130 | 0.100 | 0.121 | na | na | na |
F 11 | ♂ | 5 | S | na | 0.075 | na | na | na | 0.069 | 0.081 | na | na | na | na |
F 12 | ♀ | 5 | HD | na | na | 0,064 | na | na | 0.118 | na | na | na | na | na |
F 13 | ♀ | 5 | UD | na | na | 0.107 | na | na | na | 0.097 | na | na | na | na |
F 14 | ♂ | 3 | GD | na | na | na * | 0.091 * | na | na | na | 0.078 * | na | na | na |
F 15 | ♀ | 6 | Leish | na | na | 0.076 | 0.123 | 0.107 | na | na | na | na | na | na |
F 16 | ♂ | 1 | NAD | na | na | 0.059 | na | na | 0.109 | na | na | na | na | na |
F 17 | ♂ | 1 | NAD | na | na | 0.071 | na | 0.069 | na | na | na | na | na | na |
F 18 | ♂ | 3 | N | na | na | na | 0.079 | na | 0.285 | na | na | na | 0.285 | na |
F 19 | ♂ | 4 | CRD | na | na | na * | 0.068 * | na | na | 0.069 †* | 0.085 * | 0.048 * | na | na |
F 20 | ♀ | 4 | HD | na | na | na | 0.041 | na | na | na | na | na | 0.049 | na |
F 21 | ♂ | <1 | NAD | na | na | na | na | na | na | na | na | na | 0.071 | 0.071 |
F 22 | ♂ | 4 | NAD | na | na | na * | 0.102 * | 0.092 * | na | na | na | na | na | na |
F 23 | ♀ | 8 | UD | na | na | na | 0.082 | 0.097 | na | na | na | na | na | na |
F 24 | ♀ | 3 | GD/N | na | 0.056 | 0.066 | 0.068 | 0.110 | na | na | na | na | na | 0.042 * |
F 25 | ♂ | 4 | S | na | na | na | na | 0.076 | 0.101 | na | na | na | na | na |
F 26 | ♀ | 3 | NAD | na | na | na | na | 0.073 | 0.153 | na | na | na | na | na |
F 27 | ♀ | 4 | Leish | na | na | na | 0.048 | na | 0.092 | 0.069 | 0.066 | 0.066 | 0.042 | na |
F 28 | ♂ | 6 | ED | na | na | na | na | na | 0.064 | na | 0.066 | na | na | na |
F 29 | ♂ | 4 | GD | na | na | na | na | na | 0.068 | 0.074 | na | na | na | na |
F 30 | ♀ | 3 | GD | na | na | na | na | na | 0.058 | na | 0.067 | na | na | na |
F 31 | ♂ | 5 | S | na | na | 0.071 | na | na | 0.300 | na | na | na | 0.059 | na |
F 32 | ♀ | 5 | ED | na | na | na | na | na | 0.087 | na | 0.081 | na | na | 0.112 |
F 33 (FRSCV1) | ♀ | 1 | SC | na | na | na | na | na | 0.054 | na | na | na | 0.085 | 0.046 |
F 34 | ♂ | 4 | GD | na | na | na | na | na | 0.058 | na | 0.067 | na | na | na |
F 35 | ♂ | 6 | CD | na | na | na | na | na | 0.073 | na | na | na | na | 0.055 |
F 36 | ♀ | 5 | NAD | na | na | na | na | na | 0.085 | 0.074 | na | na | na | na |
F 37 | ♀ | 1 | NAD | na | na | na | na | na | 0.068 | 0.061 | na | na | na | na |
F 38 | ♀ | 4 | N | na | na | na | na | na | na | 0.071 | 0.075 | na | na | na |
F 39 | ♂ | 4 | HD | na | na | na | na | na | na | 0.112 | 0.082 | 0.115 | na | 0.091 |
F 40 | ♂ | 2 | UD | na | na | na | na | na | na | 0.070 | 0.075 | na | na | na |
F 41 | ♀ | 8 | ED | na | na | na | na | na | na | 0.063 | 0.070 | na | na | na |
F 42 | ♂ | 4 | S | na | na | na | na | na | na | 0.068 | na | na | 0.066 | na |
F 43 | ♀ | 3 | NAD | na | na | na | na | na | na | na | na | na | 0.057 | 0.057 |
F 44 | ♂ | 5 | NAD | na | na | 0.092 | na | na | na | na | na | na | na | 0.072 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giner, J.; Villanueva-Saz, S.; Tobajas, A.P.; Pérez, M.D.; González, A.; Verde, M.; Yzuel, A.; García-García, A.; Taleb, V.; Lira-Navarrete, E.; et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals 2021, 11, 667. https://doi.org/10.3390/ani11030667
Giner J, Villanueva-Saz S, Tobajas AP, Pérez MD, González A, Verde M, Yzuel A, García-García A, Taleb V, Lira-Navarrete E, et al. SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals. 2021; 11(3):667. https://doi.org/10.3390/ani11030667
Chicago/Turabian StyleGiner, Jacobo, Sergio Villanueva-Saz, Ana Pilar Tobajas, María Dolores Pérez, Ana González, Maite Verde, Andrés Yzuel, Ana García-García, Víctor Taleb, Erandi Lira-Navarrete, and et al. 2021. "SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo)" Animals 11, no. 3: 667. https://doi.org/10.3390/ani11030667
APA StyleGiner, J., Villanueva-Saz, S., Tobajas, A. P., Pérez, M. D., González, A., Verde, M., Yzuel, A., García-García, A., Taleb, V., Lira-Navarrete, E., Hurtado-Guerrero, R., Pardo, J., Santiago, L., Paño, J. R., Ruíz, H., Lacasta, D., & Fernández, A. (2021). SARS-CoV-2 Seroprevalence in Household Domestic Ferrets (Mustela putorius furo). Animals, 11(3), 667. https://doi.org/10.3390/ani11030667