Topical Application of Lidocaine and Bupivacaine to Disbudding Wounds in Dairy Calves: Safety, Toxicology and Wound Healing
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study 1—Target Animal Safety Study—Examining Safety of Tri-Solfen® Administration to Calf Disbudding Wounds at up to 5× the Recommended Dose
2.2.1. Animal Observations Including Wound Assessment
2.2.2. Blood Sampling and Analysis
2.2.3. Gross Pathology and Histopathology
2.2.4. Urinalysis
2.2.5. Statistical Analyses
2.3. Study 2—Safety and Efficacy of Tri-Solfen® Administration to Calf Disbudding Wounds under Field Conditions
2.3.1. Clinical Examination
2.3.2. Statistical Analyses
3. Results
3.1. Study 1—Target Animal Safety Study—Safety of Tri-Solfen® Administration to Calf Disbudding Wounds Including up to 5× the Recommended Dose
3.1.1. Clinical Examinations
3.1.2. Haematological and Urine Analysis
3.1.3. Gross Pathology of Animals Following Euthanasia
3.1.4. Histopathological Analysis of Tissue Samples, Including Skin
3.2. Study 2: Safety and Efficacy of Tri-Solfen Administration to Calf Disbudding Wounds under Field Conditions
3.2.1. Environmental Conditions
3.2.2. Clinical Examinations
3.2.3. Wound Healing Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gottardo, F.; Nalon, E.; Contiero, B.; Normando, S.; Dalvit, P.; Cozzi, G. The dehorning of dairy calves: Practices and opinions of 639 farmers. J. Dairy Sci. 2011, 94, 5724–5734. [Google Scholar] [CrossRef]
- Grondahl-Nielsen, C.; Simonsen, H.B.; Lund, J.D.; Hesselholt, M. Behavioural, endocrine and cardiac responses in young calves undergoing dehorning without and with use of sedation and analgesia. Vet. J. 1999, 158, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Graf, B.; Senn, M. Behavioural and physiological responses of calves to dehorning by heat cauterization with or without local anaesthesia. Appl. Anim. Behav. Sci. 1999, 62, 153–171. [Google Scholar] [CrossRef]
- Frahm, S.; Di Giminiani, P.; Stanitznig, A.; Schoiswohl, J.; Krametter-Frotscher, R.; Wittek, T.; Waiblinger, S. Nociceptive Threshold of Calves and Goat Kids Undergoing Injection of Clove Oil or Isoeugenol for Disbudding. Animals 2020, 10, 1228. [Google Scholar] [CrossRef]
- Faulkner, P.M.; Weary, D.M. Reducing pain after dehorning in dairy calves. J. Dairy Sci. 2000, 83, 2037–2041. [Google Scholar] [CrossRef]
- Stafford, K.J.; Mellor, D.J. Dehorning and disbudding distress and its alleviation in calves. Vet. J. 2005, 169, 337–349. [Google Scholar] [CrossRef]
- Cuttance, E.L.; Mason, W.A.; Yang, D.A.; Laven, R.A.; McDermott, J.; Inglis, K. Effects of a topically applied anaesthetic on the behaviour, pain sensitivity and weight gain of dairy calves following thermocautery disbudding with a local anaesthetic. N. Z. Vet. J. 2019, 67, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, C.; Lomax, S.; Windsor, P. The effect of a topical anesthetic on the sensitivity of calf dehorning wounds. J. Dairy Sci. 2013, 96, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- Lomax, S.; Windsor, P.A. Topical anesthesia mitigates the pain of castration in beef calves. J. Anim. Sci. 2013, 91, 4945–4952. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. VICH Topic GL43—Step 7—Guideline on Target Animal Safety for Veterinary Pharmaceutical Products; European Medicines Agency: London, UK, 2008. [Google Scholar]
- Mather, L.E. The acute toxicity of local anesthetics. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1313–1332. [Google Scholar] [CrossRef]
- Campbell, B.J.; Rowbotham, M.; Davies, P.S.; Jacob, P., 3rd; Benowitz, N.L. Systemic absorption of topical lidocaine in normal volunteers, patients with post-herpetic neuralgia, and patients with acute herpes zoster. J. Pharm. Sci. 2002, 91, 1343–1350. [Google Scholar] [CrossRef]
- Al-Musawi, A.; Matar, K.; Kombian, S.B.; Andersson, L. A Pharmokinetic Study of Topical Anesthetic (EMLA) in Mouse Soft Tissue Laceration. Dent. Traumatol. Off. Publ. Int. Assoc. Dent. Traumatol. 2012, 28, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Al-Musawi, A.; Matar, K.; Kombian, S.; Andersson, L. Blood concentration of prilocaine and lidocaine after the use of topical anesthesia (Oraqix((R))) in lacerated wounds. Dent. Traumatol. 2016, 32, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Sheil, M.; Chick, B.; LaLaurie, N.; Drewett, A.; Polkinghorne, A.; Gieseg, M.; Sharpe, B. Pharmacology, metabolism and tissue residues of lidocaine and bupivacaine: Literature review and tissue residue studies in dairy calves following topical application to disbudding wounds. manuscript in preparation.
- Piper, S.L.; Kramer, J.D.; Kim, H.T.; Feeley, B.T. Effects of local anesthetics on articular cartilage. Am. J. Sports Med. 2011, 39, 2245–2253. [Google Scholar] [CrossRef] [PubMed]
- Maurice, J.M.; Gan, Y.; Ma, F.X.; Chang, Y.C.; Hibner, M.; Huang, Y. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: Involvement of ERK and Akt signaling pathways. Acta Pharm. Sin. 2010, 31, 493–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cela, O.; Piccoli, C.; Scrima, R.; Quarato, G.; Marolla, A.; Cinnella, G.; Dambrosio, M.; Capitanio, N. Bupivacaine uncouples the mitochondrial oxidative phosphorylation, inhibits respiratory chain complexes I and III and enhances ROS production: Results of a study on cell cultures. Mitochondrion 2010, 10, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Einarsson, J.I.; Sun, J.; Orav, J.; Young, A.E. Local analgesia in laparoscopy: A randomized trial. Obs. Gynecol. 2004, 104, 1335–1339. [Google Scholar] [CrossRef]
- Fong, S.Y.; Pavy, T.J.; Yeo, S.T.; Paech, M.J.; Gurrin, L.C. Assessment of wound infiltration with bupivacaine in women undergoing day-case gynecological laparoscopy. Reg. Anesth. Pain Med. 2001, 26, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.M.; Rodeheaver, G.T.; Foresman, P.A.; Hankins, C.L.; Bellian, K.T.; Zimmer, C.A.; Becker, D.G.; Edlich, R.F. Damage to tissue defenses by EMLA cream. J. Emerg. Med. 1991, 9, 205–209. [Google Scholar] [CrossRef]
- Sun, R.; Hamilton, R.C.; Gimbel, H.V. Comparison of 4 topical anesthetic agents for effect and corneal toxicity in rabbits. J. Cataract. Refract. Surg. 1999, 25, 1232–1236. [Google Scholar] [CrossRef]
- Hansson, C.; Holm, J.; Lillieborg, S.; Syren, A. Repeated treatment with lidocaine/prilocaine cream (EMLA) as a topical anaesthetic for the cleansing of venous leg ulcers. A controlled study. Acta Derm. Venereol. 1993, 73, 231–233. [Google Scholar] [CrossRef]
- Madhuchandra, S.P.; Bhat, M.P.; Ramesh, K.V. Wound healing profile of topical xylocaine preparations in rodents. Indian J. Exp. Biol. 1991, 29, 877–878. [Google Scholar]
- Eroglu, E.; Eroglu, F.; Agalar, F.; Altuntas, I.; Sutcu, R.; Ozbasar, D. The effect of lidocaine/prilocaine cream on an experimental wound healing model. Eur. J. Emerg. Med. 2001, 8, 199–201. [Google Scholar] [CrossRef]
- Gnuechtel, M.M.; Schenk, L.L.; Postma, G.N. Late effects of topical anesthetics on the healing of guinea pig tympanic membranes after myringotomy. Arch. Otolaryngol. Head Neck Surg. 2000, 126, 733–735. [Google Scholar] [CrossRef] [Green Version]
- Tippett, A.W. Palliative wound treatment promotes healing in hospice. Clin. Nurs. Stud. 2015, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Lomax, S.; Sheil, M.; Windsor, P.A. Impact of topical anaesthesia on pain alleviation and wound healing in lambs after mulesing. Aust. Vet. J. 2008, 86, 159–168, quiz CE151. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.C.; Steinemann, T.L.; McDonald, M.B.; Thompson, H.W.; Beuerman, R.W. Topical bupivacaine and proparacaine: A comparison of toxicity, onset of action, and duration of action. Cornea 1993, 12, 228–232. [Google Scholar] [CrossRef]
- Johnson, S.M.; Saint John, B.E.; Dine, A.P. Local anesthetics as antimicrobial agents: A review. Surg. Infect. 2008, 9, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollmann, M.W.; Durieux, M.E. Local anesthetics and the inflammatory response: A new therapeutic indication? Anesthesiology 2000, 93, 858–875. [Google Scholar] [CrossRef]
- Cassuto, J.; Sinclair, R.; Bonderovic, M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol. Scand. 2006, 50, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Block, L.; Jorneberg, P.; Bjorklund, U.; Westerlund, A.; Biber, B.; Hansson, E. Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes. Eur. J. Neurosci. 2013, 38, 3669–3678. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, W.; Schmidt, H.; Bauer, H.; Gebhard, M.M.; Martin, E. Influence of lidocaine on endotoxin-induced leukocyte-endothelial cell adhesion and macromolecular leakage in vivo. Anesthesiology 1997, 87, 617–624. [Google Scholar] [CrossRef]
- Hahnenkamp, K.; Theilmeier, G.; Van Aken, H.K.; Hoenemann, C.W. The effects of local anesthetics on perioperative coagulation, inflammation, and microcirculation. Anesth. Analg. 2002, 94, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Adler, D.M.T.; Damborg, P.; Verwilghen, D.R. The antimicrobial activity of bupivacaine, lidocaine and mepivacaine against equine pathogens: An investigation of 40 bacterial isolates. Vet. J. 2017, 223, 27–31. [Google Scholar] [CrossRef]
- Fariss, B.L.; Foresman, P.A.; Rodeheaver, G.T.; Chang, D.E.; Smith, J.F.; Morgan, R.F.; Edlich, R.F. Anesthetic properties and toxicity of bupivacaine and lidocaine for infiltration anesthesia. J. Emerg. Med. 1987, 5, 275–282. [Google Scholar] [CrossRef]
- Lomax, S.; Dickson, H.; Sheil, M.; Windsor, P.A. Topical anaesthesia alleviates short-term pain of castration and tail docking in lambs. Aust. Vet. J. 2010, 88, 67–74. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Davis, B.L.; Brooks, T.A.; McGlone, J.J. Physiology and behavior of pigs before and after castration: Effects of two topical anesthetics. Animal 2010, 4, 2071–2079. [Google Scholar] [CrossRef] [Green Version]
- Stilwell, G.; Laven, R.A. Comparison of two topical treatments on wound healing 7 days after disbudding of calves using thermocautery. N. Z. Vet. J. 2020, 68, 304–308. [Google Scholar] [CrossRef]
- Lomax, S.; Harris, C.; Windsor, P.A.; White, P.J. Topical anaesthesia reduces sensitivity of castration wounds in neonatal piglets. PLoS ONE 2017, 12, e0187988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheil, M.L.; Chambers, M.; Sharpe, B. Topical wound anaesthesia: Efficacy to mitigate piglet castration pain. Aust. Vet. J. 2020, 98, 256–263. [Google Scholar] [CrossRef]
- OECD. OECD Series on Principles of Good Laboratory Practice (GLP) and Compliance Monitoring. Available online: http://www.oecd.org/chemicalsafety/testing/oecdseriesonprinciplesofgoodlaboratorypracticeglpandcompliancemonitoring.htm (accessed on 11 February 2021).
- US Food and Drug Administration. CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=58 (accessed on 11 February 2021).
- US Food and Drug Administration. CVM GFI #197 Documenting Electronic Data Files and Statistical Analysis Programs. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-197-documenting-electronic-data-files-and-statistical-analysis-programs (accessed on 11 February 2021).
- US Food and Drug Administration. CVM GFI #226 Target Animal Safety Data Presentation and Statistical Analysis. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-226-target-animal-safety-data-presentation-and-statistical-analysis (accessed on 11 February 2021).
- Jezek, J.; Nemec, M.; Staric, J.; Klinkon, M. Age-related changes and reference intervals of haemtological variables in dairy calves. Bull. Vet. Inst. Pulawy 2011, 55, 471–478. [Google Scholar]
- Heuwieser, W.; Biesel, M.; Gruert, E. Physiological coagulation profile of dairy cattle. Zent. Vet. A 1989, 36, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Doornenbal, H.; Tong, A.K.; Murray, N.L. Reference values of blood parameters in beef cattle of different ages and stages of lactation. Can. J. Vet. Res. 1988, 52, 99–105. [Google Scholar]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine, A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 10th ed.; Saunders Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Katsuki, H.; Tateyama, S.; Hidaka, N.; Yano, T.; Ibusuki, S.; Takasaki, M. Glucose attenuating local anesthetic-induced hemolysis. Masui 2004, 53, 994–997. [Google Scholar]
- Barash, M.; Reich, K.A.; Rademaker, D. Lidocaine-induced methemoglobinemia: A clinical reminder. J. Am. Osteopath. Assoc. 2015, 115, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.Z.; Liu, Z.Q.; Wu, D. Lidocaine: An inhibitor in the free-radical-induced hemolysis of erythrocytes. J. Biochem. Mol. Toxicol. 2009, 23, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fuzier, R.; Lapeyre-Mestre, M.; Mertes, P.M.; Nicolas, J.F.; Benoit, Y.; Didier, A.; Albert, N.; Montastruc, J.L.; French Association of Regional Pharmacovigilance Centre. Immediate- and delayed-type allergic reactions to amide local anesthetics: Clinical features and skin testing. Pharm. Drug Saf. 2009, 18, 595–601. [Google Scholar] [CrossRef]
- Carson, B.L. Local Anesthetics That Metabolize to 2,6-Xylidine or o-Toluidine: Final Review of Toxicological Literature; Integrated Laboratory Systems: Research Triangle Parkn, NC, USA, 2000. [Google Scholar]
- Wiedling, S. Contributions to the pharmacology and toxicology of xylocaine. Acta Pharm. Toxicol. 1952, 8, 117–133. [Google Scholar] [CrossRef]
- Centre for Drug Evaluation and Research. Pharmacology/Toxicology Review and Evaluation: S-Caine (Lidocaine and Tetracaine) Cream 7%/7%; Federal Drug Administration: Beltsville, MD, USA; Benguet, Philippines, 2006.
- Nordqvist, P.; Dhuner, K.G. Blood and liver function during local anaesthesia with marcaine. Acta Anaesthesiol. Scand. Suppl. 1966, 23, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Richard, B.M.; Rickert, D.E.; Newton, P.E.; Ott, L.R.; Haan, D.; Brubaker, A.N.; Cole, P.I.; Ross, P.E.; Rebelatto, M.C.; Nelson, K.G. Safety Evaluation of EXPAREL (DepoFoam Bupivacaine) Administered by Repeated Subcutaneous Injection in Rabbits and Dogs: Species Comparison. J. Drug Deliv. 2011, 2011, 467429. [Google Scholar] [CrossRef]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Demling, R.H. Nutrition, anabolism, and the wound healing process: An overview. Eplasty 2009, 9, e9. [Google Scholar]
- Van der Saag, D.; Lomax, S.; Windsor, P.A.; Taylor, C.; Thomson, P.; Hall, E.; White, P.J. Effects of topical anaesthetic and buccal meloxicam on average daily gain, behaviour and inflammation of unweaned beef calves following surgical castration. Animal 2018, 12, 2373–2381. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.Y.; Ihejirika, K.A.; Ogunkoya, A.B.; Hassan, A.Z.; Adawa, Y.; Adeyanju, J.B. Comparison of the antimicrobial efficacy of topical antiseptic creams on canine wounds (Preliminary Communications). Bulg. J. Vet. Med. 2007, 10, 273–281. [Google Scholar]
- Weinberg, L.; Peake, B.; Tan, C.; Nikfarjam, M. Pharmacokinetics and pharmacodynamics of lignocaine: A review. World J. Anesthesiol. 2015, 4, 17–29. [Google Scholar] [CrossRef]
- Williamson, D.; Ritchie, S.R.; Best, E.; Upton, A.; Leversha, A.; Smith, A.; Thomas, M.G. A bug in the ointment: Topical antimicrobial usage and resistance in New Zealand. N. Z. Med. J. 2015, 128, 103–109. [Google Scholar] [PubMed]
Group | Animals (n) | Treatment | Dose level | Dosing Regime |
---|---|---|---|---|
1 | 8 | Placebo | - | 2 mL sterile saline applied on Days 0, 1 and 2 (2 mL per day total) |
2 | 8 | Tri-Solfen® | 1× | 2 mL Tri-Solfen® applied daily on Days 0, 1 and 2 (2 mL per day total) |
3 | 8 | Tri-Solfen® | 3× | 2 mL Tri-Solfen® applied three times at 1 h intervals on Days 0, 1 and 2 (6 mL per day total) |
4 | 8 | Tri-Solfen® | 5× | 2 mL Tri-Solfen® applied five times at 1 h intervals on Days 0, 1 and 2 (10 mL per day total) |
Parameter | p-Value (Treatment) | p-Value (Time) |
---|---|---|
Bodyweight | 0.117 | <0.001 |
Rectal Temperature | 0.727 | 0.482 |
Heart Rate | 0.443 | <0.001 |
Respiration Rate | 0.601 | <0.001 |
Average Daily Gain | 0.126 | - |
Water Intake | 0.998 | <0.001 |
Feed Intake | 0.026 | <0.001 |
Red Blood Cells | 0.003 | 0.081 |
Haemoglobin | 0.004 | 0.112 |
Haematocrit | 0.003 | 0.003 |
White Blood Cells | 0.320 | 0.342 |
Mean Corpuscular Volume | 0.596 | <0.001 |
Mean Corpuscular Haemoglobin | 0.518 | 0.635 |
Mean Corpuscular Haemoglobin Concentration | 0.430 | 0.002 |
Activated Partial Thromboplastin Time | 0.056 | 0.500 |
Prothrombin Time | 0.056 | 0.166 |
Fibrinogen | 0.168 | 0.000 |
Alanine aminotransferase | 0.151 | 0.138 |
Albumin | 0.431 | 0.000 |
Alkaline phosphatase | 0.595 | <0.001 |
Aspartate aminotransferase | 0.943 | <0.001 |
Creatinine | 0.225 | <0.001 |
Log 2 Creatine Kinase | 0.829 | 0.124 |
Gamma-glutamyltransferase | 0.468 | 0.006 |
Globulin | 0.048 | 0.000 |
Lactate Dehydrogenase | 0.230 | 0.001 |
Total protein | 0.596 | 0.169 |
Urea | 0.631 | 0.247 |
Colour | 0.886 | - |
Turbidity | 1.000 | - |
Blood | 0.010 | - |
Protein | 0.832 | - |
Bilirubin | 1 | - |
Red Blood Cells | 0.895 | - |
White Blood Cells | 0.126 | - |
Unidentified Crystalline Structures | 0.886 | - |
Bilirubin Crystals | 0.886 | - |
Amorphous Urate Crystals | 0.587 | - |
Struvite Crystals | 0.893 | - |
Epithelial Cells | 0.587 | - |
Amorphous Debris | 0.073 | - |
pH | 0.060 | - |
Specific Gravity | 0.569 | - |
Finding a | Group 1 (n = 8) | Group 2 (n = 8) | Group 3 (n = 8) | Group 4 (n = 8) |
---|---|---|---|---|
Locally extensive or diffuse epidermal coagulative necrosis with haemorrhage, oedema, neutrophilic infiltrates, serum crusting, occasional mineralisation | - | - | - | - |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 |
4 | 8 | 8 | 8 | 8 |
Surface bacterial colonies, multifocal | - | - | - | - |
0 | 0 | 0 | 0 | 1 |
1 | 1 | 4 | 5 | 7 |
2 | 2 | 0 | 1 | 0 |
3 | 1 | 3 | 0 | 0 |
4 | 4 | 1 | 2 | 0 |
Dermal perivascular lymphoplasmacytic, neutrophilic and eosinophilic infiltrates, multifocal | - | - | - | - |
0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
2 | 5 | 6 | 7 | 4 |
3 | 3 | 2 | 1 | 4 |
4 | 0 | 0 | 0 | 0 |
Dermal fibrosis | - | - | - | - |
0 | 0 | 0 | 0 | 0 |
1 | 2 | 1 | 0 | 4 |
2 | 2 | 5 | 6 | 1 |
3 | 4 | 2 | 2 | 3 |
4 | 0 | 0 | 0 | 0 |
Group/Treatment | Rectal Temperature (°C) | Heart Rate (beats/min) | Respiratory Rate (breaths/min) |
---|---|---|---|
Day −2 | |||
Placebo | 38.8 ± 0.49 | 128.9 ± 19.3 | 44.0 ± 8.1 |
Tri-Solfen® | 38.7 ± 0.53 | 128.4 ± 22.7 | 47.0 ± 10.6 |
Day −1 | |||
Placebo | 38.8 ± 0.30 | 129.3 ± 20.0 | 41.5 ± 9.2 |
Tri-Solfen® | 38.7 ± 0.36 | 128.5 ± 26.2 | 40.4 ± 11.0 |
Day 1 | - | - | - |
Placebo | 39.5 ± 0.50 | 125.1 ± 14.6 | 44.5 ± 10.2 |
Tri-Solfen® | 39.1 ± 0.46 | 131.0 ± 20.7 | 43.7 ± 9.7 |
Day 7–8 | |||
Placebo | 39.9 ± 0.52 | 117.1 ± 21.3 | 51.7 ± 19.5 |
Tri-Solfen® | 39.9 ± 0.55 | 121.1 ± 27.2 | 50.7 ± 17.8 |
Day 11–12 | |||
Placebo | 39.3 ± 0.51 | 123.8 ± 20.7 | 44.2 ± 10.9 |
Tri-Solfen® | 39.1 ± 0.55 | 124.7 ± 19.4 | 43.1 ± 10.9 |
Group/Treatment | Average Daily Gain (Day −2 to Day 11–12) kg/day | Average Daily Gain (Day −2 to Day 21–22) kg/day | Average Daily Gain (Day −2 to Day 33–34) kg/day |
---|---|---|---|
Placebo | 0.65 | 0.81 | 0.83 |
Tri-Solfen® | 0.85 | 0.89 | 0.88 |
Treatment effect (Average Daily Gain) | 0.20 | 0.08 | 0.05 |
Treatment effect (%) | 31 | 10 | 6 |
Timepoint | Treatment Group | Abnormal (%) | Normal (%) |
---|---|---|---|
Days 7–8 | Placebo (n = 36) | 20 (55.6) | 16 (44.4) |
Tri-Solfen® (n = 35) | 16 (45.7) | 19 (54.3) | |
Days 11–12 | Placebo (n = 34) | 17 (50.0) | 17 (50.0) |
Tri-Solfen® (n = 35) | 7 (20.0) | 28 (80.0) | |
Days 21–22 | Placebo (n = 36) | 3 (8.3) | 33 (91.7) |
Tri-Solfen® (n = 36) | 3 (8.3) | 33 (91.7) | |
Days 33–34 | Placebo (n = 36) | 0 (0.0) | 36 (100) |
Tri-Solfen® (n = 36) | 0 (0.0) | 36 (100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheil, M.; Chambers, M.; Polkinghorne, A.; Sharpe, B. Topical Application of Lidocaine and Bupivacaine to Disbudding Wounds in Dairy Calves: Safety, Toxicology and Wound Healing. Animals 2021, 11, 869. https://doi.org/10.3390/ani11030869
Sheil M, Chambers M, Polkinghorne A, Sharpe B. Topical Application of Lidocaine and Bupivacaine to Disbudding Wounds in Dairy Calves: Safety, Toxicology and Wound Healing. Animals. 2021; 11(3):869. https://doi.org/10.3390/ani11030869
Chicago/Turabian StyleSheil, Meredith, Michael Chambers, Adam Polkinghorne, and Brendan Sharpe. 2021. "Topical Application of Lidocaine and Bupivacaine to Disbudding Wounds in Dairy Calves: Safety, Toxicology and Wound Healing" Animals 11, no. 3: 869. https://doi.org/10.3390/ani11030869
APA StyleSheil, M., Chambers, M., Polkinghorne, A., & Sharpe, B. (2021). Topical Application of Lidocaine and Bupivacaine to Disbudding Wounds in Dairy Calves: Safety, Toxicology and Wound Healing. Animals, 11(3), 869. https://doi.org/10.3390/ani11030869