Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Product Description
2.3. Animals
2.4. Diets
2.5. Experimental Design
2.6. Semen Collection and Evaluation
2.7. Blood Collection and Biochemical and Haematological Parameters
2.8. Statistical Analyses
2.8.1. Survival, Body Weight and Feed Intake
2.8.2. Seminal Parameters
2.8.3. Hematological and Biochemical Traits
3. Results
3.1. Survival, Body Weight and Feed Intake
3.2. Sperm Quality
3.3. Hematological and Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarowska, J.; Choroszy-Król, I.; Regulska-Ilow, B.; Frej-Mądrzak, M.; Jama-Kmiecik, A. The therapeutic effect of probiotic bacteria on gastrointestinal diseases (Review). Adv. Clin. Exp. Med. 2013, 22, 759–766. [Google Scholar] [PubMed]
- Bron, P.A.; Tomita, S.; Mercenier, A.; Kleerebezem, M. Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma. Curr. Opin. Microbiol. 2013, 16, 262–269. [Google Scholar] [CrossRef]
- Nader-Macías, M.E.F.; Otero, M.C.; Espeche, M.C.; Maldonado, N.C. Advances in the design of probiotic products for the prevention of major diseases in dairy cattle. J. Ind. Microbiol. Biotechnol. 2008, 35, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, A.J.; Colpoys, J.D. Effects of dietary probiotics on beef cattle performance and stress. J. Vet. Behav. 2018, 27, 8–14. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim. Nutr. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Xie, Q.M.; Ji, J.; Yang, W.H.; Wu, Y.B.; Li, C.; Ma, J.Y.; Bi, Y.Z. Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poult. Sci. J. 2012, 91, 2755–2760. [Google Scholar] [CrossRef]
- Bhatt, R.S.; Agrawal, A.R.; Sahoo, A. Effect of probiotic supplementation on growth performance, nutrient utilization and carcass characteristics of growing Chinchilla rabbits. J. Appl. Anim. Res. 2017, 45, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernádez-Mendoza, A. Postbiotics: An evolving term within the functional foods field. Trends Food. Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Teame, T.; Wang, A.; Xie, M.; Zhang, Z.; Yang, Y.; Ding, Q.; Gao, C.; Olsen, R.E.; Ran, C.; Zhou, Z. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A Review. Front. Nutr. 2020, 7, 570344. [Google Scholar] [CrossRef]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saettone, V.; Biasato, I.; Radice, E.; Schiavone, A.; Bergero, D.; Meineri, G. State-of-the-art of the nutritional alternatives to the use of antibiotics in humans and monogastric animals. Animals 2020, 10, 2199. [Google Scholar] [CrossRef]
- García, M.L.; Argente, M.J. The genetic improvement in meat rabbits. In Lagomorpha Characteristics; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef]
- Catellini, C.; Dal Bosco, A.; Arias-Álvarez, M.; Lorenzo, P.L.; Cardinali, R.; Garcia Rebollar, P. The main factors affecting the reproductive performance of rabbit does: A review. Anim. Reprod. Sci. 2010, 122, 174–182. [Google Scholar] [CrossRef] [PubMed]
- García-Tomás, M.; Sánchez, J.P.; Rafel, O.; Ramón, J.; Piles, M. Variability, repeatability and phenotypic relationships of several characteristics of production and semen quality in rabbit. Anim. Reprod. Sci. 2006, 93, 88–100. [Google Scholar] [CrossRef]
- Cabello-Olmo, M.; Oneca, M.; Torre, P.; Sainz, N.; Moreno-Aliaga, M.J.; Guruceaga, E.; Díaz, J.V.; Encio, I.J.; Barajas, M.; Araña, M. A fermented food product containing lactic acid bacteria protects ZDF rats from the development of type 2 diabetes. Nutrients 2019, 11, 2530. [Google Scholar] [CrossRef] [Green Version]
- Argente, M.J.; García, M.L.; Zbyˇnovká, K.; Petruška, P.; Capcarová, M.; Blasco, A. Correlated response to selection for litter size environmental variability in rabbit’s resilience. Animal 2019, 13, 2348–2355. [Google Scholar] [CrossRef]
- Beloumi, D.; Blasco, A.; Muelas, R.; Santacreu, M.A.; García, M.L.; Argente, M.J. Inflammatory correlated response in two lines of rabbit selected divergently for litter size environmental variability. Animal 2020, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Rovai, M.; Guifarro, L.; Anderson, J.; Salama, A.A.K. Effects of long-term postbiotic supplementation on dairy heifer calves: Performance and metabolic indicators. Abstracts of the 2019 American Dairy Science Association. Annual Meeting 23–26 June 2019 Cincinnati, Ohio. J. Dairy Sci. 2019, 102 (Suppl. 1), 218–219. [Google Scholar]
- Rovai, M.; Guifarro, L.; Salama, A.A.K. Effects of long-term postbiotic supplementation on dairy heifer calves: Health status and wound healing after dehorning. Abstracts of the 2019 American Dairy Science Association. Annual Meeting 23–26 June 2019 Cincinnati, Ohio. J. Dairy Sci. 2019, 102 (Suppl. 1), 221. [Google Scholar]
- Attia, Y.A.; Ibrahim, K. Semen quality, testosterone, seminal plasma biochemical and antioxidant profiles of rabbit bucks fed diets supplemented with different concentrations of soybean lecithin. Animal 2012, 6, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Helal, F.I.S.; El- Badawi, A.Y.; Abou-Ward, G.A.; El-Naggar, S.; Hassan, A.A.; Basyoney, M.M.; Morad, A.A.A. Semen quality parameters of adult male NZW rabbits fed diets added with two different types of probiotics. Egypt. J. Nutr. Feed. 2018, 21, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Massányi, M.; Kohút, L.; Argente, M.J.; Halo, M.; Kováčik, A.; Kováčiková, E.; Ondruška, L.; Formicki, G.; Massányi, P. The effect of different sample collection methods on rabbit blood parameters. Saudi J. Biol. Sci. 2020, 27, 3157–3160. [Google Scholar] [CrossRef]
- Leineweber, C.; Müller, E.; Marschang, R.E. Blood reference intervals for rabbits (Oryctolagus cuniculus) from routine diagnostic samples. Best immung von Blutreferenzwerten für Kaninchen (Oryctolagus cuniculus) aus Routine diagnostic proben. Tierarztl Prax Ausg K Kleintiere Heimtiere 2018, 46, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Washington, I.M.; Van Hoosier, G. Clinical Biochemistry and Hematology. In The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Suckow, M.A., Stevens, K.A., Wilson, R.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 57–116. [Google Scholar]
- Dontas, I.A.; Marinou, K.A.; Iliopoulos, D.; Tsantila, N.; Agrogiannis, G.; Papalois, A.; Karatzas, T. Changes of blood biochemistry in the rabbit animal model in atherosclerosis research; a time or stress-effect. Lipids Health Dis. 2011, 10, 139. Available online: http://www.lipidworld.com/content/10/1/139 (accessed on 15 March 2021). [CrossRef] [PubMed] [Green Version]
- Kim, W.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum activity of alanine amino transferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Fraser, C.M. Merck Veterinary Manual, 6th ed.; Ocean: Barcelona, Spain, 2007; p. 1314. [Google Scholar]
- Shah, A.A.; Liu, Z.; Chen, Q.; Juanzi, W.; Sultana, N.; Zhong, X. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. J. Anim. Physiol. Anim. Nutr. 2019, 104, 767–775. [Google Scholar] [CrossRef]
- Yousef, M.I.; Abdallah, G.A.; Kamel, K.I. Effect of ascorbic acid and Vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim. Reprod. Sci. 2003, 76, 99–111. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Kapila, R.; Gandhi, K.K.; Anand, S.R. Acrosome damage and enzyme leakage of goat spermatozoa during dilution, cooling and freezing. Andrologia 1993, 26, 21–26. [Google Scholar] [CrossRef]
- Jenkins, J.R. Rabbit diagnostic testing. J. Exot. Pet. Med. 2008, 17, 4–15. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Prasanth, M.I.; Chaiyasut, C. A Mini Review on Antidiabetic Properties of 833 Fermented. Nutrients 2018, 10, 1973. [Google Scholar] [CrossRef] [Green Version]
- Ebringer, L.; Ferenčík, M.; Krajčovič, J. Beneficial Health Effects of Milk and Fermented Dairy. Folia Microbiol. 2008, 53, 378–394. [Google Scholar] [CrossRef]
- Andonova, M. Role of innate defense mechanisms in acute phase response against Gram—Negative agents. Bulg. J. Vet. Med. 2002, 5, 77–92. [Google Scholar]
- Abdel-Azeem, A.S.; Abdel-Azim, A.M.; Darwish, A.A.; Omar, E.M. Hematological and biochemical observations in four pure breeds of rabbits and their crosses under Egyptian environmental conditions. World Rabbit Sci. 2010, 18, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.W.; Kang, S.S.; Woo, S.J.; Park, O.J.; Ahn, K.B.; Song, K.D.; Lee, H.J.; Yun, C.H.; Han, S.H. Lipoteichoic acid of probiotic Lactobacillus plantarum attenuates Poly I:C-induced IL-8 production in porcine intestinal epithelial cells. Front. Microbiol. 2017, 8, 1827. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Dong, G.; Liao, M.; Tao, L.; LV, J. The effects of low levels of aflatoxin B1 on health, growth performance and reproductivity in male rabbits. World Rabbit Sci. 2018, 26, 123–133. [Google Scholar] [CrossRef]
- Xu, C.; Yu, C.; Xu, L.; Miao, M.; Li, Y. High serum uric acid increases the risk for nonalcoholic fatty liver disease: A prospective observational study. PLoS ONE 2010, 5, 11578. [Google Scholar] [CrossRef] [PubMed]
- Vizzari, F.; Massány, M.; Knížatová, N.; Corino, C.; Rossi, R.; Ondrŭska, L.; Tirpák, F.; Halo, M.; Massány, P. Effects of dietary plant polyphenols and seaweed extract mixture on male-rabbit semen: Quality traits and antioxidant markers. Saudi J. Biol. Sci. 2021, 28, 1017–1025. [Google Scholar] [CrossRef]
- Shah, A.A.; Yuan, X.; Khan, R.U.; Shao, T. Effect of lactic acid bacteria-treated King grass silage on the performance traits and serum metabolites in New Zealand white rabbits (Oryctlagus cuniculus). J. Anim. Physiol. Anim. Nutr. 2018, 102, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Jabs, C.M.; Ferrell, W.J.; Robb, H.J. Plasma Changes in Endotoxin and Anaphylactic Shock (ATP, ADP and Creatine Phosphorus). Ann. Clin. Lab. Sci. 1979, 9, 121–132. [Google Scholar]
D | E | DD-E | HPD95% | P | |
---|---|---|---|---|---|
Body weight (g) | 3514 | 3443 | 71 | −66, 202 | 0.85 |
Feed intake (g/day) | 125.2 | 118.6 | 6.6 | 2.0, 10.7 | 1.00 |
Feed intake (g/day) * | 125.3 | 118.3 | 7.0 | 2.7, 11.4 | 1.00 |
D | E | DD-E | HPD95% | P | |
---|---|---|---|---|---|
Volume (mL) | 1.09 | 1.13 | 0.04 | −0.27, 0.18 | 0.64 |
Motility | 3.72 | 3.75 | −0.03 | −0.07, 0.62 | 0.53 |
Production (106 spz) | 266.2 | 269.1 | −3.3 | −75,7, 63.1 | 0.54 |
Abnormal spz (%) | |||||
Total (%) | 30 | 22 | 8 | −2, 18 | 0.93 |
Head (%) | 4 | 4 | 0 | −3, 2 | 0.64 |
Tail (%) | 24 | 16 | 8 | −5, 18 | 0.90 |
Middle piece (%) | 2 | 2 | 0 | −1, 1 | 0.62 |
Cytoplasmic droplet (%) | 12 | 10 | 2 | −5, 8 | 0.69 |
Acrosome integrity (%) | 96 | 97 | −1 | −3, 1 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Cano, J.V.; Argente, M.-J.; García, M.-L. Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits. Animals 2021, 11, 1007. https://doi.org/10.3390/ani11041007
Díaz Cano JV, Argente M-J, García M-L. Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits. Animals. 2021; 11(4):1007. https://doi.org/10.3390/ani11041007
Chicago/Turabian StyleDíaz Cano, Jesús V., María-José Argente, and María-Luz García. 2021. "Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits" Animals 11, no. 4: 1007. https://doi.org/10.3390/ani11041007
APA StyleDíaz Cano, J. V., Argente, M. -J., & García, M. -L. (2021). Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits. Animals, 11(4), 1007. https://doi.org/10.3390/ani11041007