Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ehics
2.2. Essential Oils from Lippia origanoides
2.3. Animal Source and Experimental Design
2.4. Evaluation of Serum Levels of FITC-d, SOD, IFN-γ, and IgA
2.5. Necrotic Enteritis Lesion Score
2.6. Necrotic Enteritis Model: Challenge Organisms
2.7. Clostridium perfringens Proliferation Using In Vitro Digestion Assay
2.8. Data and Statistical Analysis
3. Results
3.1. Effect of LEO on Growth Performance of Chicken Challenged with NE Organisms
3.2. Antimicrobial Effect of LEO on Clostridium perfringens log10 Count Using In Vitro Digestion Assay
3.3. Protective Effect of LEO against NE Lesion in Chicken Challenged with NE Organisms
3.4. Morbidity and Mortality
3.5. Improvement of Intestinal Integrity, Antioxidant, and Anti-Inflammatory Effect of LEO in Chicken Challenged with NE Organisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Krishan, G.; Narang, A. Use of essential oils in poultry nutrition: A new approach. J. Adv. Vet. Anim. Res. 2014, 1, 156–162. [Google Scholar] [CrossRef]
- Aziz, M.; Karboune, S. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 486–511. [Google Scholar] [CrossRef] [PubMed]
- Saadat Shad, H.; Mazhari, M.; Esmaeilipour, O.; Khosravinia, H. Effects of thymol and carvacrol on productive performance, antioxidant enzyme activity and certain blood metabolites in heat stressed broilers. IJAS 2016, 6, 195–202. [Google Scholar]
- Popa, M.; Măruțescu, L.; Oprea, E.; Bleotu, C.; Kamerzan, C.; Chifiriuc, M.C.; Pircalabioru, G.G. In vitro evaluation of the antimicrobial and immunomodulatory activity of culinary herb essential oils as potential perioceutics. Antibiotics 2020, 9, 428. [Google Scholar] [CrossRef]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar] [CrossRef]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Smith, J.A.; Mathis, G.F. An optimist’s view on limiting necrotic enteritis and maintaining broiler gut health and performance in today’s marketing, food safety, and regulatory climate. Poult. Sci. 2018, 97, 1929–1933. [Google Scholar] [CrossRef]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef]
- Van der Sluis, W. Clostridial enteritis—A syndrome emerging worldwide. World Poult. Sci. J. 2000, 16, 56–57. [Google Scholar]
- Van der Sluis, W. Clostridial enteritis is an often underestimated problem. World Poult. Sci. J. 2000, 16, 42–43. [Google Scholar]
- Shahbandeh, M. Number of Chickens Worldwide from 1990 to 2018. Statista 2020. Available online: https://www.statista.com/statistics/263962/number-of-chickens-worldwide-since-1990 (accessed on 24 July 2020).
- Hofacre, C.L. Necrotic enteritis, currently a billion dollar disease: Is There Anything New on the Horizon. In Proceedings of the Alltech’s 17th Annual Symposium Science and Technology in the Feed Indurstry, Nottingham, UK, 1 January 2001; Lyons, T.P., Jacques, K.A., Eds.; Nottingham University Press: Nottingham, UK, 2001; pp. 79–86. [Google Scholar]
- Paiva, D.; McElroy, A. Necrotic enteritis: Applications for the poultry industry. J. Appl. Poult. Res. 2014, 23, 557–566. [Google Scholar] [CrossRef]
- Eid, N.; Dahshan, A.; El-Nahass, A.-S.; Shalaby, B.; Ali, A. Anticlostridial activity of the thyme and clove essential oils against experimentally induced necrotic enteritis in commercial broiler chickens. Vet. Sci. Res. Rev. 2018, 4, 25–34. [Google Scholar]
- Jerzsele, A.; Szeker, K.; Csizinszky, R.; Gere, E.; Jakab, C.; Mallo, J.J.; Galfi, P. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 2012, 91, 837–843. [Google Scholar] [CrossRef]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Hernandez-Velasco, X.; Merino-Guzman, R.; Adhikari, B.; Lopez-Arellano, R.; Kwon, Y.M.; Hargis, B.M.; Tellez-Isaias, G. Impact of a Bacillus direct-fed microbial on growth performance, intestinal barrier integrity, necrotic enteritis lesions, and ileal microbiota in broiler chickens using a laboratory challenge model. Front. Vet. Sci. 2019, 6, 108. [Google Scholar] [CrossRef]
- Engberg, R.M.; Grevsen, K.; Ivarsen, E.; Fretté, X.; Christensen, L.P.; Højberg, O.; Jense, B.B.; Canibe, N. The effect of Artemisia annua on broiler performance, on intestinal microbiota and on the course of a Clostridium perfringens infection applying a necrotic enteritis disease model. Avian Pathol. 2012, 41, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Lacey, J.A.; Stanley, D.; Keyburn, A.L.; Ford, M.; Chen, H.; Johanesen, P.; Lyras, D.; Moore, R.J. Clostridium perfringens-mediated necrotic enteritis is not influenced by the pre-existing microbiota but is promoted by large changes in the post-challenge microbiota. Vet. Microbiol. 2018, 227, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Urwat, U.; Ahmad, S.M.; Ahmad, R.; Kashoo, Z.A.; Dar, T.A.; Bhat, S.A.; Mumtaz, P.T.; Shabir, N.; Shah, R.A.; et al. Gene expression and antibody response in chicken against Salmonella Typhimurium challenge. Poult. Sci. 2019, 98, 2008–2013. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yang, Y.; Dong, Y.; Ito, K.; Zhang, B. Highly nutritious diet resists Salmonella Typhimurium infections by improving intestinal microbiota and morphology in broiler chickens. Poult. Sci. 2020, 99, 7055–7065. [Google Scholar] [CrossRef]
- Mora, Z.; Macías-Rodríguez, M.E.; Arratia-Quijada, J.; Gonzalez-Torres, Y.S.; Nuño, K.; Villarruel-López, A. Clostridium perfringens as foodborne pathogen in broiler production: Pathophysiology and potential strategies for controlling necrotic enteritis. Animals 2020, 10, 1718. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Patlan, D.; Solís-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of the dietary supplementation of a formulation containing ascorbic acid and a solid dispersion of curcumin with boric acid against Salmonella Enteritidis and necrotic enteritis in broiler chickens. Animals 2019, 9, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shivaramaiah, S.; Wolfenden, R.; Barta, J.; Morgan, M.; Wolfenden, A.; Hargis, B.; Téllez, G. The role of an early Salmonella Typhimurium infection as a predisposing factor for necrotic enteritis in a laboratory challenge model. Avian Dis. 2011, 55, 319–323. [Google Scholar] [CrossRef]
- Latorre, J.D.; Adhikari, B.; Park, S.H.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hernandez-Velasco, X.; Kwon, Y.M.; Ricke, S.C.; et al. Evaluation of the epithelial barrier function and ileal microbiome in an established necrotic enteritis challenge model in broiler chickens. Front. Vet. Sci. 2018, 5, 199. [Google Scholar] [CrossRef]
- Fernandes, L.P.; Candido, R.C.; Oliveira, W.P. Spray drying microencapsulation of Lippia sidoides extracts in carbohydrate blends. Food Bioprod. Process. 2012, 90, 425–432. [Google Scholar] [CrossRef]
- Fernandes, L.; Oliveira, W.; Sztatisz, J.; Novák, C. Thermal properties and release of Lippia sidoides essential oil from gum arabic/maltodextrin microparticles. J. Therm. Anal. Calorim. 2008, 94, 461–467. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994; p. 176. [Google Scholar]
- Cobb-Vantress Inc. Cobb 500 Broiler Performance and Nutrition Supplement. 2018. Available online: https://www.cobb-vantress.com/assets/Cobb-Files/product-guides/bdc20a5443/70dec630-0abf-11e9-9c88-c51e407c53ab.pdf (accessed on 5 September 2020).
- Baxter, M.F.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, Y.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Merino-Guzmán, R.; Latorre, J.D.; Delgado, R.; Hernandez-Velasco, X.; Wolfenden, A.D.; Teague, K.D.; Graham, L.E.; Mahaffey, B.D.; Baxter, M.F.A.; Hargis, B.M.; et al. Comparison of total immunoglobulin A levels in different samples in Leghorn and broiler chickens. Asian Pac. J. Trop. Biomed. 2017, 7, 116–120. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Froyman, R.; George, B.; Goodwin, M.A.; Brown, J. Use of aviguard, virginiamycin, or bacitracin MD against Clostridium perfringens-associated necrotizing enteritis. J. Appl. Poult. Res. 1998, 7, 412–418. [Google Scholar] [CrossRef]
- Latorre, J.D.; Hernandez-Velasco, X.; Kuttappan, V.A.; Wolfenden, R.E.; Vicente, J.L.; Wolfenden, A.D.; Bielke, L.R.; Prado-Rebolledo, O.F.; Emorales, E.; Hargis, B.M.; et al. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front. Vet. Sci. 2015, 2, 25. [Google Scholar] [CrossRef]
- Annett, C.; Viste, J.; Chirino-Trejo, M.; Classen, H.; Middleton, D.; Simko, E. Necrotic enteritis: Effect of barley, wheat and corn diets on proliferation of Clostridium perfringens type A. Avian Pathol. 2002, 31, 598–601. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS/STAT User’s Guide; SAS Publishing: Cary, NC, USA, 2002; p. 112. [Google Scholar]
- Villagrán-de la Mora, Z.; Vázquez-Paulino, O.; Avalos, H.; Ascencio, F.; Nuño, K.; Villarruel-López, A. Effect of a synbiotic mix on lymphoid organs of broilers infected with Salmonella Typhimurium and Clostridium perfringens. Animals 2020, 5, 886. [Google Scholar] [CrossRef] [PubMed]
- Villagrán-de la Mora, Z.; Nuño, K.; Vázquez-Paulino, O.; Avalos, H.; Castro-Rosas, J.; Gómez-Aldapa, C.; Angulo, C.; Ascencio, F.; Villarruel-López, A. Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals 2019, 9, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassolé, I.H.N.; Juliani, H.R. Essential oils in combination and their antimicrobial properties. Molecules 2012, 17, 3989–4006. [Google Scholar] [CrossRef] [Green Version]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setzer, M.; Sharifi-Rad, J.; Setzer, W.N. The search for herbal antibiotics: An in-silico investigation of antibacterial phytochemicals. Antibiotics 2016, 5, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifan, A.; Luca, S.V.; Greige-Gerges, H.; Miron, A.; Gille, E.; Aprotosoaie, A.C. Recent advances in tackling microbial multi-drug resistance with essential oils: Combinatorial and nano-based strategies. Crit. Rev. Microbiol. 2020, 46, 338–357. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Du, E.; Yuan, J.; Gao, J.; Wang, Y.; Aggrey, S.E.; Guo, Y. Supplemental thymol and carvacrol increases ileum Lactobacillus population and reduces effect of necrotic enteritis caused by Clostridium perfringes in chickens. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Patra, A.K. Interactions of plant bioactives with nutrient transport system in gut of livestock. Indian J. Anim. Health 2018, 57, 125–136. [Google Scholar] [CrossRef]
- Pham, V.H.; Kan, L.; Huang, J.; Geng, Y.; Zhen, W.; Guo, Y.; Abbas, W.; Wamg, Z. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J. Anim. Sci. Biotechnol. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remmal, A.; Mzabi, A.; Tanghort, M.; Chefchaou, H.; Moussa, H.; Chami, F.; Remmal, A. A comparative study of the anticlostridial activity of selected essential oils, their major components, and a natural product with antibiotics. Int. J. Poult. Sci. 2019, 18, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Frag. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Bedini, S.; Cosci, F.; Tani, C.; Pierattini, E.C.; Venturi, F.; Lucchi, A.; Loriatti, C.; Ascrizzi, R.; Flamini, G.; Ferroni, G.; et al. Essential oils as post-harvest crop protectants against the fruit fly Drosophila suzukii: Bioactivity and organoleptic profile. Insects 2020, 11, 508. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.A.; Vicuña, E.A.; Latorre, J.D.; Wolfenden, A.D.; Téllez, G.; Hargis, B.M.; Bielke, L.R. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front. Vet. Sci. 2015, 2, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicuña, E.; Kuttappan, V.; Tellez, G.; Hernandez-Velasco, X.; Seeber-Galarza, R.; Latorre, J.D.; Faulkner, O.B.; Wolfenden, A.D.; Hargis, B.M.; Bielke, L.R. Dose titration of FITC-D for optimal measurement of enteric inflammation in broiler chicks. Poult. Sci. 2015, 94, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xiang, Q.; Wang, J.; Peng, J.; Wei, H. Oregano essential oil improves intestinal morphology and expression of tight junction proteins associated with modulation of selected intestinal bacteria and immune status in a pig model. BioMed Res. Int. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.K.; Chen, G.; Wang, R.-J.; Peng, J. Oregano essential oil decreased susceptibility to oxidative stress-induced dysfunction of intestinal epithelial barrier in rats. J. Funct. Foods 2015, 18, 1191–1199. [Google Scholar] [CrossRef]
- Patra, A.K. Influence of plant bioactive compounds on intestinal epithelial barrier in poultry. Mini Rev. Med. Chem. 2020, 20, 566–577. [Google Scholar] [CrossRef] [PubMed]
- DiRaimondo, T.R.; Klöck, C.; Khosla, C. Interferon-γ activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: Implications for celiac sprue therapy. J. Pharmacol. Exp. Ther. 2012, 341, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Al-Sadi, R.; Boivin, M.; Ma, T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front. Biosci. 2009, 14, 2765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Patlan, D.; Solis-Cruz, B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.; Hernandez-Velasco, X.; Merino-Guzman, R.; Méndez-Albores, A.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against Salmonella Enteritidis infection and intestinal permeability in broiler chickens: A pilot study. Front. Microbiol. 2018, 9, 1289. [Google Scholar] [CrossRef]
- Adhikari, B.; Hernandez-Patlan, D.; Solis-Cruz, B.; Kwon, Y.M.; Arreguin, M.; Latorre, J.D.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (NorumTM) in broiler chickens infected with Salmonella Enteritidis. Front. Vet. Sci. 2019, 6, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staley, M.; Conners, M.G.; Hall, K.; Miller, L.J. Linking stress and immunity: Immunoglobulin A as a non-invasive physiological biomarker in animal welfare studies. Horm. Behav. 2018, 102, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.F.; Latorre, J.D.; Dridi, S.; Merino-Guzman, R.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez, G. Identification of serum biomarkers for intestinal integrity in a broiler chicken malabsorption model. Front. Vet. Sci. 2019, 6, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, F.; Aurangzeb, M.; Manzoor, F.; Fazal, S. A Comparative study of in vitro total antioxidant capacity, in vivo antidiabetic and antimicrobial activity of essential oils from leaves and seeds of Zanthoxylum armatum DC. Asian J. Chem. 2013, 25, 10221. [Google Scholar] [CrossRef]
- Mueller, K.; Blum, N.M.; Kluge, H.; Mueller, A.S. Influence of broccoli extract and various essential oils on performance and expression of xenobiotic-and antioxidant enzymes in broiler chickens. Br. J. Nutr. 2012, 108, 588–602. [Google Scholar] [CrossRef] [Green Version]
- Alavi, L.; Barzegar, M.; Jabbari, A.; Naghdi, B.N. The effect of heat treatment on chemical composition and antioxidant property of Lippia citriodora essential oil. J. Med. Plants 2011, 10, 65–75. [Google Scholar]
- Proestos, C.; Lytoudi, K.; Mavromelanidou, O.K.; Zoumpoulakis, P.; Sinanoglou, V.J. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants 2013, 2, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.P.; Silva, N.F.; Andrade, E.H.A.; Gratieri, T.; Setzer, W.N.; Maia, J.G.S.; da Silva, J.K.R. Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS ONE 2017, 12, e0175598. [Google Scholar] [CrossRef] [PubMed]
- Stashenko, E.; Ruiz, C.; Muñoz, A.; Castañeda, M.; Martínez, J. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat. Prod. Commun. 2008, 3, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Raman, V.; Aryal, U.K.; Hedrick, V.; Ferreira, R.M.; Lorenzo, J.L.; Stashenko, E.E.; Levy, M.; Camarillo, I.G. Proteomic analysis reveals that an extract of the plant Lippia origanoides suppresses mitochondrial metabolism in triple-negative breast cancer cells. J. Proteome. Res. 2018, 17, 3370–3383. [Google Scholar] [CrossRef] [PubMed]
Compounds | Retention Time | Lippia origanoides Essential Oils (%) |
---|---|---|
α-Pinene | 17.65 | <0.1 |
β-Pinene | 19.66 | 0.7 |
β-Myrcene | 20.02 | 0.1 |
α-Phellandrene | 21.95 | 0.1 |
ɣ-3-Carene | 20.98 | <0.1 |
α-Terpinene | 21.31 | 0.2 |
p-Cymene | 21.66 | 10.3 |
Limonene | 21.85 | 0.2 |
β-Ocimene | 22.46 | <0.1 |
ɣ-Terpinene | 23.08 | 10.5 |
β-Phellandrene | 21.95 | 0.1 |
Terpinolene | 24.20 | <0.1 |
p-Cymenene | 24.38 | 0.1 |
Diethylphenol | 31.53 | 0.1 |
Thymol | 31.70 | 47.5 |
Carvacrol | 32.36 | 29.9 |
Feed Ingredients | Stater Phase (d 1 to 7) | Grower Phase (d 8 to 14) | Finisher Phase (d 15 to 25) |
---|---|---|---|
Ingredients (%) | |||
Corn | 51.80 | 57.81 | 59.64 |
Soybean meal (46.5% CP) | 37.66 | 31.62 | 27.23 |
DDGS 8.1% EE | 4.00 | 4.00 | 6.00 |
Poultry fat | 3.24 | 3.44 | 4.38 |
Limestone | 1.01 | 1.06 | 1.03 |
Dicalcium phosphate | 1.00 | 0.88 | 0.64 |
Salt | 0.35 | 0.35 | 0.31 |
DL-methionine | 0.29 | 0.31 | 0.28 |
L-lysine HCl | 0.12 | 0.13 | 0.12 |
Mineral premix a | 0.10 | 0.10 | 0.10 |
Vitamin premix b | 0.10 | 0.10 | 0.10 |
L-threonine | 0.08 | 0.09 | 0.09 |
Choline chloride | 0.06 | 0.06 | 0.05 |
Sodium bicarbonate | 0.04 | 0.05 | 0.03 |
Antioxidant c | 0.15 | 0.15 | 0.15 |
Total | 100 | 100 | 100 |
Calculated analysis | |||
ME (kcal/ kg) | 3015.00 | 3090.00 | 3175.00 |
Ether extract (%) | 5.88 | 6.20 | 7.28 |
Crude protein (%) | 22.30 | 20.00 | 18.70 |
Lysine (%) | 1.18 | 1.05 | 0.95 |
Methionine (%) | 0.59 | 0.53 | 0.48 |
Threonine (%) | 0.77 | 0.69 | 0.65 |
Tryptophan (%) | 0.25 | 0.22 | 0.20 |
Total calcium (%) | 0.90 | 0.84 | 0.76 |
Total phosphorus (%) | 0.63 | 0.58 | 0.53 |
Available phosphorus (%) | 0.45 | 0.42 | 0.38 |
Sodium (%) | 0.20 | 0.20 | 0.18 |
Potassium (%) | 1.06 | 0.94 | 0.87 |
Chloride (%) | 0.27 | 0.28 | 0.25 |
Magnesium (%) | 0.19 | 0.18 | 0.17 |
Copper (%) | 19.20 | 18.46 | 18.85 |
Selenium (%) | 0.28 | 0.27 | 0.26 |
Linoleic acid (%) | 1.01 | 1.13 | 1.16 |
Item | Negative Control | Positive Control * | Lippia origanoides * | Pooled SEM | p-Value |
---|---|---|---|---|---|
BW, g/broiler | |||||
d 0 | 42.44 | 41.55 | 42.12 | 6.10 | 0.1341 |
d 7 | 160.12 a | 137.44 b | 146.80 ab | 26.45 | 0.0002 |
d 14 | 455.10 a | 416.89 b | 440.03 ab | 50.33 | 0.0001 |
d 18 | 696.89 ab | 660.48 b | 687.12 ab | 31.81 | 0.0622 |
d 25 | 1181.16 a | 818.23 c | 851.03 b | 75.10 | 0.0001 |
BWG, g/broiler | |||||
d 0–7 | 118.93 a | 97.46 b | 105.77 ab | 41.36 | 0.0002 |
d 8–25 | 1050.12 a | 653.45 b | 639.07 b | 99.24 | 0.0001 |
d 0–25 | 1143.09 a | 756.62 c | 810.44 b | 89.76 | 0.0002 |
FI, g/broiler | |||||
d 0–7 | 142.91 | 132.93 | 131.41 | 12.65 | 0.1256 |
d 8–25 | 1180.75 a | 983.39 b | 901.94 c | 59.48 | 0.0001 |
d 0–25 | 1537.38 a | 1295.70 c | 1373.92 b | 116.45 | 0.0002 |
FCR | |||||
d 0–7 | 0.91 | 0.94 | 0.89 | 0.88 | 0.1756 |
d 8–25 | 1.14 c | 1.36 b | 1.26 ab | 0.79 | 0.0002 |
d 0–25 | 1.36 c | 1.67 b | 1.75 ab | 0.81 | 0.0001 |
Item | Negative Control | Positive Control * | Lippia origanoides * | Pooled SEM | p-Value |
---|---|---|---|---|---|
In vitro proliferation of C. perfringens (log10 cfu/mL) | 0.00 c | 6.95 a | 5.01 b | 0.14 | 0.0001 |
NE Lesion score | 0.00 c | 2.63 a | 1.76 b | 0.58 | 0.0001 |
Morbidity day 18 | 0/86 (0%) | 0/80 (0%) | 0/81 (0%) | ||
Morbidity day 24 | 0/86 (0%) b | 78/78 (100%) | 81/81 (100%) | ||
Mortality due to NE | 0/86 (0%) b | 6/78 (8.33%) b | 1/81 (1.25%) a | ||
Total mortality | 14/100 (14%) b | 28/100 (28%) a | 20/100 (20%) b |
Item | Negative Control | Positive Control * | Lippia origanoides * | Pooled SEM | p-Value |
---|---|---|---|---|---|
FITC-D (ng/mL) | 80.00 c | 540.00 a | 407.02 b | 49.32 | 0.0001 |
SOD (U/mL) | 8.85 c | 10.28 b | 14.73 a | 8.56 | 0.0002 |
IFN-γ (pg/mL) | 78.10 c | 281.4 a | 161.55 b | 24.23 | 0.0002 |
IgA (ng/mL) | 11.95 b | 17.45 a | 10.45 c | 45.10 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coles, M.E.; Forga, A.J.; Señas-Cuesta, R.; Graham, B.D.; Selby, C.M.; Uribe, Á.J.; Martínez, B.C.; Angel-Isaza, J.A.; Vuong, C.N.; Hernandez-Velasco, X.; et al. Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens. Animals 2021, 11, 1111. https://doi.org/10.3390/ani11041111
Coles ME, Forga AJ, Señas-Cuesta R, Graham BD, Selby CM, Uribe ÁJ, Martínez BC, Angel-Isaza JA, Vuong CN, Hernandez-Velasco X, et al. Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens. Animals. 2021; 11(4):1111. https://doi.org/10.3390/ani11041111
Chicago/Turabian StyleColes, Makenly E., Aaron J. Forga, Roberto Señas-Cuesta, Brittany D. Graham, Callie M. Selby, Álvaro J. Uribe, Blanca C. Martínez, Jaime A. Angel-Isaza, Christine N. Vuong, Xochitl Hernandez-Velasco, and et al. 2021. "Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens" Animals 11, no. 4: 1111. https://doi.org/10.3390/ani11041111
APA StyleColes, M. E., Forga, A. J., Señas-Cuesta, R., Graham, B. D., Selby, C. M., Uribe, Á. J., Martínez, B. C., Angel-Isaza, J. A., Vuong, C. N., Hernandez-Velasco, X., Hargis, B. M., & Tellez-Isaias, G. (2021). Assessment of Lippia origanoides Essential Oils in a Salmonella typhimurium, Eimeria maxima, and Clostridium perfringens Challenge Model to Induce Necrotic Enteritis in Broiler Chickens. Animals, 11(4), 1111. https://doi.org/10.3390/ani11041111