The Addition of Nature Identical Flavorings Accelerated the Virucidal Effect of Pure Benzoic Acid against African Swine Fever Viral Contamination of Complete Feed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. General
2.2. Cytotoxicity Assays
2.3. Assay in Phosphate-Buffered Saline
2.4. Assay in Feed Matrix
2.5. Hemadsorption and Real-Time PCR Analysis
2.6. Statistical Anaysis
3. Results
3.1. Cytotoxcicity Assays
3.2. Assay in Phosphate-Buffered Saline
3.3. Assay in Feed Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- World Organisation for Animal Health. Available online: https://rr-asia.oie.int/en/projects/asf/situational-updates-of-asf/ (accessed on 21 February 2021).
- Vergne, T.; Guinat, C.; Petkova, P.; Gogin, A.; Kolbasov, D.; Blome, S.; Molia, S.; Ferreira, J.P.; Wieland, B.; Nathues, H.; et al. Attitudes and Beliefs of Pig Farmers and Wild Boar Hunters towards Reporting of African Swine Fever in Bulgaria, Germany and the Western Part of the Russian Federation. Transbound. Emerg. Dis. 2014, 63, 194. [Google Scholar] [CrossRef] [Green Version]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur-Panasiuk, N.; Żmudzki, J.; Woźniakowski, G. African swine fever virus–persistence in different environmental conditions and the possibility of its indirect transmission. J. Vet. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinat, C.; Gogin, A.; Blome, S.; Keil, G.; Pollin, R.; Pfeiffer, D.U.; Dixon, L. Transmission routes of African swine fever virus to domestic pigs: Current knowledge and future research directions. Vet. Rec. 2016, 178, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Greig, A. Pathogenesis of African swine fever in pigs naturally exposed to the disease. J. Comp. Pathol. 1972, 82, 73–79. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Penrith, M.L.; Thomson, G.R.; Bastos, A.D.S.; Phiri, O.C.; Lubisi, B.A.; Du Plessis, E.C.; Macome, F.; Pinto, F.; Botha, B.; Es-terhuysen, J. An investigation into natural resistance to African swine fever in domestic pigs from an endemic area in southern Africa. Rev. Sci. Technol. 2004, 23, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, D.; Wang, J.; Zhang, Y.; Wang, M.; Gao, Y.; Li, F.; Wang, J.; Bu, Z.; Rao, Z.; et al. Architecture of African swine fever virus and implications for viral assembly. Science 2019, 366, 640–644. [Google Scholar] [CrossRef]
- Sun, E.; Zhang, Z.; Wang, Z.; He, X.; Zhang, X.; Wang, L.; Wang, W.; Huang, L.; Xi, F.; Huangfu, H.; et al. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Sci. China Life Sci. 2021, 1–14. [Google Scholar] [CrossRef]
- Zani, L.; Masiulis, M.; Bušauskas, P.; Dietze, K.; Pridotkas, G.; Globig, A.; Blome, S.; Mettenleiter, T.; Depner, K.; Karvelienė, B. African swine fever virus survival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020, 67, 2086–2092. [Google Scholar] [CrossRef]
- Jones, C.K.; Woodworth, J.; Dritz, S.S.; Paulk, C.B. Reviewing the risk of feed as a vehicle for swine pathogen transmission. Vet. Med. Sci. 2019, 6, 527–534. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health. Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/african-swine-fever/ (accessed on 20 February 2021).
- Wen, X.; He, X.; Zhang, X.; Zhang, X.; Liu, L.; Guan, Y.; Zhang, Y.; Bu, Z. Genome sequences derived from pig and dried blood pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg. Microbes Infect. 2019, 8, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.A.; Bauermann, F.V.; Niederwerder, M.C.; Singrey, A.; Clement, T.; de Lima, M.; Long, C.; Patterson, G.; Sheahan, M.A.; Stoian, A.M.M.; et al. Survival of viral pathogens in animal feed ingredients under trans-boundary shipping models. PLoS ONE 2018, 13, e0194509. [Google Scholar]
- Dee, S.A.; Bauermann, F.V.; Niederwerder, M.C.; Singrey, A.; Clement, T.; de Lima, M.; Long, C.; Patterson, G.; Sheahan, M.A.; Stoian, A.M.M.; et al. Correction: Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE 2019, 13, e0208130. [Google Scholar] [CrossRef] [PubMed]
- Stoian, A.M.; Zimmerman, J.; Ji, J.; Hefley, T.J.; Dee, S.; Diel, D.G.; Rowland, R.R.; Niederwerder, M.C. Half-Life of African Swine Fever Virus in Shipped Feed. Emerg. Infect. Dis. 2019, 25, 2261–2263. [Google Scholar] [CrossRef] [PubMed]
- Niederwerder, M.C.; Stoian, A.M.; Rowland, R.R.; Dritz, S.S.; Petrovan, V.; Constance, L.A.; Gebhardt, J.T.; Olcha, M.; Jones, C.K.; Woodworth, J.C.; et al. Infectious Dose of African Swine Fever Virus When Consumed Naturally in Liquid or Feed. Emerg. Infect. Dis. 2019, 25, 891–897. [Google Scholar] [CrossRef]
- Gebhardt, J.T.; Woodworth, J.C.; Jones, C.K.; Tokach, M.D.; Gauger, P.C.; Main, R.G.; Zhang, J.; Chen, Q.; DeRouchey, J.M.; Goodband, R.D.; et al. Determining the impact of commercial feed additives as potential porcine epidemic diarrhea virus mitigation strategies as determined by polymerase chain reaction analysis and bioassay1. Transl. Anim. Sci. 2018, 3, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.A.; Niederwerder, M.C.; Edler, R.; Hanson, D.; Singrey, A.; Cochrane, R.; Spronk, G.; Nelson, E. An evaluation of additives for mitigating the risk of virus-contaminated feed using an ice-block challenge model. Transbound. Emerg. Dis. 2020, 00, 1–13. [Google Scholar] [CrossRef]
- Zhai, H.; Luo, Y.; Ren, W.; Schyns, G.; Guggenbuhl, P. The effects of benzoic acid and essential oils on growth performance, nutrient digestibility, and colonic microbiota in nursery pigs. Anim. Feed. Sci. Technol. 2020, 262, 114426. [Google Scholar] [CrossRef]
- Carrascosa, A.L.; Bustos, M.J.; de Leon, P. Methods for growing and titrating African swine fever virus: Field and la-boratory samples. Curr. Protoc. Cell Biol. 2011, 53, 1–25. [Google Scholar] [CrossRef] [PubMed]
- FEEDAP. Safety and efficacy of benzoic acid as a technological feed additive for weaned piglets and pigs for fattening. EFSA J. 2019, 17, e05527. [Google Scholar]
- Zhai, H.; Ren, W.; Wang, S.; Wu, J.; Guggenbuhl, P.; Kluenter, A.-M. Growth performance of nursery and grower-finisher pigs fed diets supplemented with benzoic acid. Anim. Nutr. 2017, 3, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Guggenbuhl, P.; Séon, A.; Quintana, A.P.; Nunes, C.S. Effects of dietary supplementation with benzoic acid (VevoVitall®) on the zootechnical performance, the gastrointestinal microflora and the ileal digestibility of the young pig. Livest. Sci. 2007, 108, 218–221. [Google Scholar] [CrossRef]
- Torrallardona, D.; Badiola, I.; Broz, J. Effects of benzoic acid on performance and ecology of gastrointestinal microbiota in weanling piglets. Livest. Sci. 2007, 108, 210–213. [Google Scholar] [CrossRef]
- Halas, D.; Hansen, C.F.; Hampson, D.J.; Mullan, B.P.; Kim, J.C.; Wilson, R.H.; Pluske, J.R. Dietary supplementation with benzoic acid improves apparent ileal digestibility of total nitrogen and increases villus height and caecal microbial diversity in weaner pigs. Anim. Feed Sci. Technol. 2010, 160, 137–147. [Google Scholar] [CrossRef]
- Diao, H.; Zheng, P.; Yu, B.; He, J.; Mao, X.B.; Yu, J.; Chen, D.W. Effects of dietary supplementation with benzoic acid on in-testinal morphological structure and microflora in weaned piglets. Livest. Sci. 2014, 167, 249–256. [Google Scholar] [CrossRef]
- Diao, H.; Gao, Z.; Yu, B.; Zheng, P.; He, J.; Yu, J.; Huang, Z.; Chen, D.; Mao, X. Effects of benzoic acid (VevoVitall®) on the performance and jejunal digestive physiology in young pigs. J. Anim. Sci. Biotechnol. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Liu, H.; Wang, S.; Wu, J.; Kluenter, A.-M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.M.; Neto, T.O.D.A.L.; Garbossa, C.A.P.; Martins, C.C.D.S.; Garcez, D.; Alves, L.K.S.; De Abreu, M.L.T.; Ferreira, R.A.; Cantarelli, V.D.S. Benzoic Acid Combined with Essential Oils Can Be an Alternative to the Use of Antibiotic Growth Promoters for Piglets Challenged with E. coli F4. Animals 2020, 10, 1978. [Google Scholar] [CrossRef]
- Dee, S.; Clement, T.; Schelkopf, A.; Nerem, J.; Knudsen, D.; Christopher-Hennings, J.; Nelson, E. An evaluation of contami-nated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naive pigs following consumption via natural feeding behavior: Proof of concept. BMC Vet. Res. 2014, 10, 176. [Google Scholar]
- Gordon, R.K.; Kotowski, I.K.; Coulson, K.F.; Link, D.; MacKenzie, A.; Bowling-Heyward, J. The Role of Non-animal Origin Feed Ingredients in Transmission of Viral Pathogens of Swine: A Review of Scientific Literature. Front. Vet. Sci. 2019, 6, 273. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Biondi, P.; Uberti, F.; Ponti, W.; Balsari, A.; Cantoni, C. Virucidal activity of organic acids. Food Chem. 1979, 4, 251–258. [Google Scholar] [CrossRef]
- Ma, L.; Yao, L. Antiviral Effects of Plant-Derived Essential Oils and Their Components: An Updated Review. Molecules 2020, 25, 2627. [Google Scholar] [CrossRef] [PubMed]
Type | Organic Acid | Nature Identical Flavorings |
---|---|---|
Compounds | Pure benzoic acid | Thymol, eugenol, piperine, curcumin |
Dilution | Feed | |
Pure Benzoic Acid | Pure Benzoic Acid and Nature Identical Flavorings | |
No dilution | 68.8 | 45 |
10-fold dilution | 85 | 88.5 |
100-fold dilution | 100 | 100 |
1000-fold dilution | 100 | 100 |
Dilution | PBS Solution | |
Pure Benzoic Acid | Pure Benzoic Acid and Nature Identical Flavorings | |
No dilution | 90 | 95 |
10-fold dilution | 99 | 99 |
100-fold dilution | 100 | 100 |
1000-fold dilution | 100 | 100 |
Treatment | Hemadsorption 1 | |||
1 dpi | 3 dpi | 6 dpi | 9 dpi | |
Negative control | − − − − | − − − − | − − − − | − − − − |
Positive control | + + + + | + + + + | + + + + | + + + + |
Pure benzoic acid | + + − − | + − − − | + + − − | − − − − |
Pure benzoic acid and nature identical flavorings | + + + + | + + − − | + + − − | − − − − |
Treatment | PCR Results 2 | |||
1 dpi | 3 dpi | 6 dpi | 9 dpi | |
Negative control | 0 | 0 | 0 | 0 |
Positive control | 28.4 f | 28.0 fg | 28.1 fg | 27.1 g |
Pure benzoic acid | 33.5 e | 35.7 d | 37.6 c | 38.8 b |
Pure benzoic acid and nature identical flavorings | 33.0 e | 32.7 e | 39.4 ab | 40.5a |
Treatment | Hemadsorption 1 | |||
1 dpi | 3 dpi | 6 dpi | 9 dpi | |
Negative control | − − − − | − − − − | − − − − | − − − − |
Positive control | + + + + | + + + + | + + + + | + + + + |
Pure benzoic acid | + + + + | + + + - | − − − − | − − − − |
Pure benzoic acid and nature identical flavorings | − − − − | − − − − | − − − − | − − − − |
Treatment | PCR results 2 | |||
1 dpi | 3 dpi | 6 dpi | 9 dpi | |
Negative control | 0 | 0 | 0 | 0 |
Positive control | 30.4 e | 34.3 d | 34.9 d | 34.5 d |
Pure benzoic acid | 35.6 cd | 34.8 d | 39.4 ab | 40.5 a |
Pure benzoic acid and nature identical flavorings | 35.2 cd | 38.2 b | 37.3 bc | 40.6 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, H.; Ji, C.; Walsh, M.C.; Bergstrom, J.; Potot, S.; Wang, H. The Addition of Nature Identical Flavorings Accelerated the Virucidal Effect of Pure Benzoic Acid against African Swine Fever Viral Contamination of Complete Feed. Animals 2021, 11, 1124. https://doi.org/10.3390/ani11041124
Zhai H, Ji C, Walsh MC, Bergstrom J, Potot S, Wang H. The Addition of Nature Identical Flavorings Accelerated the Virucidal Effect of Pure Benzoic Acid against African Swine Fever Viral Contamination of Complete Feed. Animals. 2021; 11(4):1124. https://doi.org/10.3390/ani11041124
Chicago/Turabian StyleZhai, Hengxiao, Chihai Ji, Maria Carol Walsh, Jon Bergstrom, Sebastien Potot, and Heng Wang. 2021. "The Addition of Nature Identical Flavorings Accelerated the Virucidal Effect of Pure Benzoic Acid against African Swine Fever Viral Contamination of Complete Feed" Animals 11, no. 4: 1124. https://doi.org/10.3390/ani11041124
APA StyleZhai, H., Ji, C., Walsh, M. C., Bergstrom, J., Potot, S., & Wang, H. (2021). The Addition of Nature Identical Flavorings Accelerated the Virucidal Effect of Pure Benzoic Acid against African Swine Fever Viral Contamination of Complete Feed. Animals, 11(4), 1124. https://doi.org/10.3390/ani11041124