Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Cow Albedo Calculations and Analysis
2.3. Cow Thermal Measurements and Relating Tempamb to Tempcow
2.4. Weather and Solar Radiation Data
2.5. Tempcow and ΔT Modeling
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzan, J.R.; Huber, M. Moist heat stress on a hotter Earth. Annu. Rev. Earth Planet. Sci. 2020, 48, 623–655. [Google Scholar] [CrossRef] [Green Version]
- Brown-Brandl, T.M.; Nienaber, J.A.; Eigenberg, R.A.; Mader, T.L.; Morrow, J.L.; Dailey, J.W. Comparison of heat tolerance of feedlot heifers of different breeds. Livest. Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Nienaber, J.A.; Hahn, G.L. Livestock production system management responses to thermal challenges. Int. J. Biometeorol. 2007, 52, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Young, B.A. Cold stress as it affects animal production. J. Anim. Sci. 1981, 52, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Young, B.A. Ruminant cold stress: Effect on production. J. Anim. Sci. 1983, 57, 1601–1607. [Google Scholar] [CrossRef]
- Lister, E.E.; Jordan, W.A.; Wavthy, J.M.; Comeau, J.E.; Pigden, W.J. Effects of housing and type of forage on the response of pregnant beef cows to dietary energy intake in winter. Can. J. Anim. Sci. 1972, 52, 671–679. [Google Scholar] [CrossRef]
- Robinson, J.B.; Ames, D.R.; Milliken, G.A. Heat production of cattle acclimated to cold, thermoneutrality and heat when exposed to thermoneutrality and heat stress. J. Anim. Sci. 1986, 62, 1434–1440. [Google Scholar] [CrossRef]
- Clarke, A. Principles of Thermal Ecology: Temperature, Energy, and Life; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Da Silva, R.G.; Maia, A.S.C.; de Macedo Costa, L.L. Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments. Int. J. Biometeorol. 2015, 59, 551–559. [Google Scholar] [CrossRef]
- Gates, D.M. Radiant Energy, Its Receipt and Disposal. In Agricultural Meteorology; Meteorological Monographs Book Series; American Meteorological Society: Boston, MA, USA, 1965; Volume 6. [Google Scholar] [CrossRef]
- Perkins, S. Core Concept: Albedo is a simple concept that plays complicated roles in climate and astronomy. Proc. Natl. Acad. Sci. USA 2019, 116, 25369–25371. [Google Scholar] [CrossRef] [Green Version]
- Scasta, J.D.; Lalman, D.L.; Henderson, L. Drought mitigation for grazing operations: Matching the animal to the environment. Rangelands 2016, 38, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Reiman, M. Nearly 75% of U.S. Cattle are Black-Hided; a Look behind the Numbers. 2012 Beef Magazine. Available online: https://www.beefmagazine.com/allied-industry/nearly-75-us-cattle-are-black-hided-look-behind-numbers (accessed on 21 February 2021).
- Rutherford, B. US beef herd is mostly black but changing slightly. 2014 Beef Magazine. 21 February 2021. Available online: https://www.beefmagazine.com/cattle-genetics/us-beef-herd-mostly-black-changing-slightly (accessed on 21 February 2021).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 4, 439–473. [Google Scholar] [CrossRef] [Green Version]
- Veissier, I.; Palme, R.; Moons, C.P.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A. Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef] [PubMed]
- FASS. Guide for the Care and Use of Agricultural Animals in Research and Teaching; Federation of Animal Science Societies (FASS): Champaign, IL, USA, 2010. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Grenfell, T.C.; Maykut, G.A. The optical properties of ice and snow in the Arctic Basin. J. Glaciol. 1977, 18, 445–463. [Google Scholar] [CrossRef] [Green Version]
- Hartig, S.M. Basic image analysis and manipulation in ImageJ. Curr. Protoc. Mol. Biol. 2013, 102, 14–15. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Keski-Korsu, M. How to Calculate Albedo Yourself? Arts Promotion Centre Finland, Taiteen Edistämiskeskus. Available online: http://albedodreams.info/how_to/how-to-calculate-albedo-yourself/#:~:text=The%20albedo%20is%20calculated%20as,white%20paper’s%20known%20albedo%20value (accessed on 21 February 2021).
- Lees, A.M.; Salvin, H.E.; Colditz, I.; Lee, C. The influence of temperament on body temperature response to handling in Angus cattle. Animals 2020, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 2008, 28, 2031–2064. [Google Scholar] [CrossRef]
- PRISM Climate Group. Oregon State University. Available online: http://prism.oregonstate.edu (accessed on 21 February 2021).
- NASA. Prediction of Worldwide Energy Resources. National Aeronautics and Space Administration. Available online: https://power.larc.nasa.gov/ (accessed on 21 February 2021).
- Mount, L.E. Heat transfer between animal and environment. Proc. Nutr. Soc. 1978, 37, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Mathiesen, P.; Kleissl, J. Evaluation of numerical weather prediction for intra-day solar forecasting in the United States. Sol. Energy 2011, 85, 967–977. [Google Scholar] [CrossRef] [Green Version]
- Diéguez, A.P.; Gentile, N.; von Wachenfelt, H.; Duboisb, M. Daylight utilization with light pipe in farm animal production: A simulation approach. J. Daylighting 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cossins, A. Temperature Biology of Animals; Springer: Berlin, Germany, 2012. [Google Scholar]
- Fuquay, J.W. Heat stress as it affects animal production. J. Anim. Sci. 1981, 52, 164–174. [Google Scholar] [CrossRef]
- Still, C.J.; Pau, S.; Edwards, E.J. Land surface skin temperature captures thermal environments of C3 and C4 grasses. Glob. Ecol. Biogeogr. 2014, 23, 286–296. [Google Scholar] [CrossRef]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walsberg, G.E.; Campbell, G.S.; King, J.R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. 1978, 126, 211–222. [Google Scholar] [CrossRef]
- Guthrey, F.S.; Rybak, A.R.; Fuhlendorf, S.D.; Hiller, T.L.; Smith, S.G.; Puckett, W.H., Jr.; Baker, R.A. Aspects of thermal ecology of bobwhites in north Texas. Wildl. Monogr. 2005, 159, 1–36. [Google Scholar] [CrossRef]
- Porter, W.P.; Gates, D.M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 1969, 39, 227–244. [Google Scholar] [CrossRef]
- Edwards, R.M.; Haines, H. Effects of ambient water vapor pressure and temperature on evaporative water loss in Peromyscus maniculatus and Mus musculus. J. Comp. Physiol. 1978, 128, 177–184. [Google Scholar] [CrossRef]
- Mazerolle, M.J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). Available online: https://cran.r-project.org/web/packages/AICcmodavg/index.html (accessed on 21 February 2021).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria; Available online: https://www.r-project.org/ (accessed on 21 February 2021).
- Coppedge, B.R.; Fuhlendorf, S.D.; Harrell, W.C.; Engle, D.M. Avian community response to vegetation and structural features in grasslands managed with fire and grazing. Biol. Conserv. 2008, 141, 1196–1203. [Google Scholar] [CrossRef]
- Kaszta, Ż.; Marino, J.; Wolff, E. Fine-scale spatial and seasonal rangeland use by cattle in a foot-and-mouth disease control zones. Agric. Ecosyst. Environ. 2017, 239, 161–172. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. A Practical Information-Theoretic Approach: Model Selection and Multimodel Inference; Springer: New York, NY, USA, 2002. [Google Scholar]
- Toghiani, S.; Hay, E.; Fragomeni, B.; Rekaya, R.; Roberts, A.J. Genotype by environment interaction in response to cold stress in a composite beef cattle breed. Animal 2020, 14, 1576–1587. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R. Boundary Layer Climates; Taylor & Francis Group: Abingdon, UK, 1987. [Google Scholar]
- Scasta, J.D.; Smith, T. Commingled black and white cows (Bos taurus; Angus and Charolais) in high-elevation rangeland are differentially parasitised by Haematobia irritans. Anim. Prod. Sci. 2019, 59, 1727–1738. [Google Scholar] [CrossRef]
- Boyd, B.M.; Shackelford, S.D.; Hales, K.E.; Brown-Brandl, T.M.; Bremer, M.L.; Spangler, M.L.; Wheeler, T.L.; King, D.A.; Erickson, G.E. Effects of shade and feeding zilpaterol hydrochloride to finishing steers on performance, carcass quality, heat stress, mobility, and body temperature. J. Anim. Sci. 2015, 93, 5801–5811. [Google Scholar] [CrossRef] [PubMed]
- Kononoff, P.J.; Defoor, P.J.; Engler, M.J.; Swingle, R.S.; James, S.T.; Deobald, H.M.; Deobald, J.L.; Woronuk, G.N.; Marquess, F.L.S. Performance and carcass characteristics when sorting feedlot cattle on the basis of phenotype, and leptin genotype along with differential use of β-adrenergic agonists. Can. J. Anim. Sci. 2015, 95, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Elmore, R.D.; Carroll, J.M.; Tanner, E.P.; Hovick, T.J.; Grisham, B.A.; Fuhlendorf, S.D.; Windels, S.K. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 2017, 41, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Bakken, G.S.; Angilletta, M.J., Jr. How to avoid errors when quantifying thermal environments. Funct. Ecol. 2014, 28, 96–107. [Google Scholar] [CrossRef]
Variable | Biological Rationale and Justification for Inclusion in Modeling |
---|---|
Ambient environmental temperature (Tempamb) a | Also noted as air temperature, this is important to determine an organism’s deviation from the zone of thermoneutrality and influences convection coefficients [27]. |
Clear sky insolation index (KTClear) d | Used for the weather prediction of intra-day solar forecasting [28] and for daylight utilization in farm animal production [29]. Fraction of insolation available at the top of the atmosphere and an indication of the total solar radiation incident on a horizontal earth surface. |
Cow winter albedo 1,a | Commonly used in remote sensing research, this refers to the proportion of solar radiation reflected by any surface (water, land, organismal), where darker surfaces reflect less than lighter surfaces and is important for determining energy balance [30]. Measured in winter when snow was available to relativize pixel brightness in images. |
Cow surface temperature (Tempcow) a | The surface temperature of an organism can be used to predict convective heat loss [27]. |
Dewpoint temperature (Tempdew) c | The temperature to which air must be cooled, relative to pressure and water-vapor content, in order to reach saturation and for dew or condensation to form; this influences evaporative heat loss [31]. |
Earth skin temperature (Tempearth) d | The earth’s surface temperature as opposed to the meteorological definition of surface temperature which is actually measured by suspended air thermometers above the surface of the earth; this reflects the thermal environments of physiologically diverse organisms [32]. |
Humidity b | The amount of water vapor that is in the atmosphere; humidity interacts with temperature and influences thermal stress of animals [33]. Humidity is also important given the temperature–humidity index (THI) which can have a combined interactive impact [3]. |
Long-wave radiation (infrared; RadLW) d | Downward thermal infrared long-wave radiative flux d; has an important role in predicting radiative heat gain for animals with different hide colors, particularly at the surface of the animal [34]; may govern simulated temperatures of wildlife species [35]. |
Short-wave radiation (visible; RadSW) d | dAll sky insolation incident on a horizontal surface (short-wave) d; short-wave solar radiation has been used to develop a thermal stress index for dairy cows in Brazil [9]. |
Vapor pressure deficit (VPD) c | The difference between the amount of moisture in the air and the maximum moisture the air can hold at saturation; this affects the exchange of the energy between an animal and its environment through an interaction with temperature [36,37]. |
Wind speed b | Also noted as wind flow speed, this is a basic atmospheric measurement of air moving from high to low pressure often driven by temperature flux. This variable is considered in the calculation of the convection coefficient and an influential for predicting the surface temperature of an organism [36]. |
Variable | Unit | Mean | Minimum | Maximum |
---|---|---|---|---|
Ambient environmental temperature (Tempamb) | °C | 4.4 | −32.8 | 35.6 |
Clear sky insolation index (KTClear) | unitless index; 0–1 | 0.6 | 0.3 | 0.8 |
Cow winter albedo | unitless index; 0–255 | 0.25 | 0.04 (black cows) | 0.69 (white cows) |
Cow surface temperature (Tempcow) | °C | 32.4 | −10.7 | 63.1 |
Dewpoint temperature (Tempdew) | °C | −10.0 | −27.6 | 7.1 |
Earth skin temperature (Tempearth) | °C | −0.1 | −24.6 | 23.0 |
Humidity | % | 56.7 | 9.0 | 84.0 |
Long-wave radiation (infrared; RadLW) | kW hr per m2 per day | 5.9 | 3.6 | 8.7 |
Short-wave radiation (visible; RadSW) | kW hr per m2 per day | 3.9 | 1.3 | 8.5 |
Vapor pressure deficit (VPD maximum) | hPa | 13.5 | 0.6 | 32.5 |
Wind speed | km/h | 29.0 | 11.3 | 53.1 |
Model | K | AICc | ΔAICc | ωi |
---|---|---|---|---|
Step 1—Weather Models | ||||
Ambient Temperature (Tempamb) | 3 | 4967.08 | 0.00 | 1 |
Dewpoint Temperature (Tempdew) | 3 | 4980.38 | 13.30 | 0 |
Wind Speed | 3 | 5023.33 | 56.25 | 0 |
Null | 2 | 5023.93 | 56.85 | 0 |
Step 2—Radiation Models | ||||
Clear Sky Insolation (KTClear) | 3 | 4988.16 | 0.00 | 0.97 |
Long-wave Radiation (RadLW) | 3 | 4995.78 | 7.62 | 0.02 |
Short-wave Radiation (RadSW) | 3 | 4998.08 | 9.92 | 0.01 |
Null | 2 | 5023.93 | 35.77 | 0.00 |
Step 3—Top Models + Winter Albedo | ||||
Tempamb + KTClear + Albedo | 5 | 4674.57 | 0.00 | 1 |
Tempamb + KTClear | 4 | 4959.79 | 285.22 | 0 |
Tempamb | 3 | 4967.08 | 292.51 | 0 |
KTClear | 3 | 4988.16 | 313.58 | 0 |
Null | 2 | 5023.93 | 349.35 | 0 |
Variable | Estimate | Lower | Upper |
---|---|---|---|
Ambient Temperature (Tempamb) | 0.1770 | 0.1328 | 0.2213 |
Clear Sky Insolation (KTClear) | 19.172 | 13.1404 | 25.2043 |
Albedo | −27.026 | −29.8800 | −24.1729 |
Model | K | AICc | Delta AICc | Weight |
---|---|---|---|---|
Step 1—Weather Models | ||||
Ambient Temperature (Tempamb) | 3 | 4967.08 | 0.00 | 1 |
Dewpoint Temperature (Tempdew) | 3 | 5184.00 | 216.92 | 0 |
Wind Speed | 3 | 5540.83 | 573.75 | 0 |
Null | 2 | 5684.51 | 717.43 | 0 |
Step 2—Radiation Models | ||||
Long-wave Radiation (RadLW) | 3 | 5142.32 | 0.00 | 1 |
Short-wave Radiation (RadSW) | 3 | 5258.25 | 115.93 | 0 |
Clear Sky Insolation (KTClear) | 3 | 5616.83 | 474.51 | 0 |
Null | 2 | 5684.51 | 542.19 | 0 |
Step 3—Top Models + Animal Attributes [Winter Albedo and Tempcow] | ||||
Tempamb + RadLW + Albedo + Tempcow | 6 | −38,308.95 | 0.00 | 1 |
Tempamb + RadLW + Tempcow | 5 | −38,197.42 | 111.53 | 0 |
Tempamb + RadLW + Albedo | 5 | 4674.41 | 42,983.36 | 0 |
Tempamb + RadLW | 4 | 4961.41 | 43,270.42 | 0 |
RadLW | 3 | 5142.32 | 43,451.27 | 0 |
Tempamb | 3 | 4967.08 | 43,276.03 | 0 |
Null | 2 | 5684.51 | 43,993.46 | 0 |
Variable | Estimate | Lower | Upper |
---|---|---|---|
Ambient Temperature (Tempamb) | −0.8230 | −0.8672 | −0.7787 |
Long-wave radiation (RadLW) | −8.3971 | −8.9595 | −7.8347 |
Albedo | −24.160 | −29.8022 | −18.5184 |
Cow Surface Temperature (Tempcow) | 0.5022 | 0.37772 | 0.62661 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scasta, J.D. Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment. Animals 2021, 11, 1186. https://doi.org/10.3390/ani11051186
Scasta JD. Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment. Animals. 2021; 11(5):1186. https://doi.org/10.3390/ani11051186
Chicago/Turabian StyleScasta, John Derek. 2021. "Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment" Animals 11, no. 5: 1186. https://doi.org/10.3390/ani11051186
APA StyleScasta, J. D. (2021). Albedo and Thermal Ecology of White, Red, and Black Cows (Bos taurus) in a Cold Rangeland Environment. Animals, 11(5), 1186. https://doi.org/10.3390/ani11051186