Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Protein-Rich Feed Ingredients
2.1. Plant-Origin Ingredients
2.1.1. Faba Beans
2.1.2. Field Peas
2.1.3. Chickpeas
2.1.4. Copra Meal
2.1.5. Palm Kernel Meal
2.2. Animal-Origin Ingredients
2.2.1. Poultry Meal
2.2.2. Feather Meal
2.2.3. Blood Meal
2.2.4. Insect Meal
3. Energy-Abundant Feed Ingredients
3.1. Cassava Root
3.2. Bakery Meal
3.3. Triticale
3.4. Molasses
4. Fiber-Rich Feed Ingredients
4.1. Sugar Beet Pulp
4.2. Rice Bran
4.3. Oat Hulls
5. Fat-Delivering Feed Ingredients
Palm Oil
6. Conclusions, Implication, and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kiarie, E.; Nyachoti, C.M. Alternative feed ingredients in swine diets. In Proceedings of the Saskatchewan Industry Symposium, Saskatoon, SK, Canada, 17–18 November 2009. [Google Scholar]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. NONRUMINANT NUTRITION SYMPOSIUM: Controlling feed cost by including alternative ingredients into pig diets: A review. J. Anim. Sci. 2014, 92, 1293–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowski, S.; Kucner, M.; Czyżowska, A.; Berłowska, J. Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp. Renew. Energy 2016, 99, 492–500. [Google Scholar] [CrossRef]
- Classen, H. Cereal grain starch and exogenous enzymes in poultry diets. Anim. Feed. Sci. Technol. 1996, 62, 21–27. [Google Scholar] [CrossRef]
- White, G.; Smith, L.; Houdijk, J.; Homer, D.; Kyriazakis, I.; Wiseman, J. Replacement of soya bean meal with peas and faba beans in growing/finishing pig diets: Effect on performance, carcass composition and nutrient excretion. Anim. Feed. Sci. Technol. 2015, 209, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, F.; Bourdillon, A.; Rudeaux, F.; Bastianelli, D.; Peyronnet, C.; Duc, G.; Lacassagne, L. Feeding value for poultry of isogenic fababeans (Vicia faba L.) involving zero-tannin and zero-vicine genes. Sci. Tech. Avic. 2000, 32, 17–23. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crop. Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Digiacomo, K.; Leury, B.J. Review: Insect meal: A future source of protein feed for pigs? Animal 2019, 13, 3022–3030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, T.S.; Olckers, R.C.; Van der Merwe, J.P. Evaluation of faba beans (Vicia faba cv Fiord) and sweet lupins (Lupinus albus cv Kiev) as protein source for growing pigs. S. Afr. J. Anim. Sci. 1995, 25, 31–35. [Google Scholar]
- Sauvant, D.; Perez, J.M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses, Fish; Wageningen Academic Publishers: Wageningen, The Netherlands; INRA Editions: Versailles, France, 2004. [Google Scholar]
- Kopmels, F.C.; Smit, M.N.; Cho, M.; He, L.; Beltranena, E. Effect of feeding 3 zero-tannin faba bean cultivars at 3 increasing inclusion levels on growth performance, carcass traits, and yield of saleable cuts of broiler chickens. Poult. Sci. 2020, 99, 4958–4968. [Google Scholar] [CrossRef]
- Abdulla, J.M.; Rose, S.P.; Mackenzie, A.M.; Pirgozliev, V.R. Variation in the chemical composition and the nutritive quality of different field bean UK-grown cultivar samples for broiler chicks. Br. Poult. Sci. 2021, 62, 219–226. [Google Scholar] [CrossRef]
- Bampidis, V.; Christodoulou, V. Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Anim. Feed Sci. Technol. 2011, 168, 1–20. [Google Scholar] [CrossRef]
- Wang, L.; Beltranena, E.; Zijlstra, R. Nutrient digestibility of chickpea in ileal-cannulated finisher pigs and diet nutrient digestibility and growth performance in weaned pigs fed chickpea-based diets. Anim. Feed Sci. Technol. 2017, 234, 205–216. [Google Scholar] [CrossRef]
- Pourreza, J.; Samie, A.H.; Rowghani, E. Effect of supplemental enzyme on nutrient digestibility and performance of broiler chicks fed on diets containing triticale. Int. J. Poult. Sci. 2007, 6, 115–117. [Google Scholar] [CrossRef]
- Sulabo, R.C.; Ju, W.S.; Stein, H.H. Amino acid digestibility and concentration of digestible and metabolizable energy in copra meal, palm kernel expellers, and palm kernel meal fed to growing pigs. J. Anim. Sci. 2013, 91, 1391–1399. [Google Scholar] [CrossRef] [Green Version]
- Anyanwu, N.J.; Obilonu, B.C.; Odoemelam, V.U.; Etela, I.; Kalio, G.A.; Ekpe, I.I. Growth performance and haematological characteristics of broiler finisher chickens fed palm kernel cake as partial replacement for maize and Soya bean. Niger. J. Anim. Prod. 2020, 47, 111–119. [Google Scholar] [CrossRef]
- Park, C.S.; Naranjo, V.D.; Htoo, J.K.; Adeola, O. Comparative amino acid digestibility between broiler chickens and pigs fed different poultry by-products and meat and bone meal. J. Anim. Sci. 2020, 98, 1–8. [Google Scholar] [CrossRef]
- Toghyani, M.; McQuade, L.R.; Mclnerney, B.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Initial assessment of protein and amino acid digestive dynamics in protein-rich feedstuffs for broiler chickens. PLoS ONE 2020, 15, e0239156. [Google Scholar] [CrossRef]
- Aderibigbe, A.S.; Park, C.S.; Adebiyi, A.; Olukosi, O.A.; Adeola, O. Digestibility of Amino Acids in Protein-Rich Feed Ingredients Originating from Animals, Peanut Flour, and Full-Fat Soybeans Fed to Pigs. Animals 2020, 10, 2062. [Google Scholar] [CrossRef]
- Makkar, H.P.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Hwangbo, J.; Hong, E.C.; Jang, A.; Kang, H.K.; Oh, J.S.; Kim, B.W.; Park, B.S. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 2009, 30, 609–614. [Google Scholar]
- Khan, S.H. Recent advances in role of insects as alternative protein source in poultry nutrition. J. Appl. Anim. Res. 2018, 46, 1144–1157. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Espinosa, C.; Berrocoso, J.; Rojas, O.; Htoo, J.; Stein, H. Concentration of digestible and metabolizable energy in L-threonine and L-valine biomass products fed to weanling pigs. Anim. Feed Sci. Technol. 2020, 263, 114463. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, G.; Liu, L.; Wang, J.; Zhang, S. Effects of fibre-degrading enzymes in combination with different fibre sources on ileal and total tract nutrient digestibility and fermentation products in pigs. Arch. Anim. Nutr. 2020, 74, 309–324. [Google Scholar] [CrossRef]
- Berrocoso, J.; García-Ruiz, A.; Page, G.; Jaworski, N. The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days of age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.M. Rice bran: Composition and potential food uses. Food Rev. Int. 1985, 1, 465–495. [Google Scholar] [CrossRef]
- Lauridsen, C.; Christensen, T.B.; Halekoh, U.; Jensen, S.K. Alternative fat sources to animal fat for pigs. Lipid Technol. 2007, 19, 156–159. [Google Scholar] [CrossRef] [Green Version]
- Partanen, K.; Alaviuhkola, T.; Siljander-Rasi, H. Faba beans in diets for growing-finishing pigs. Agric. Food Sci. 2003, 12, 35–47. [Google Scholar] [CrossRef]
- Smith, L.A.; Houdijk, J.G.M.; Homer, D.; Kyriazakis, I. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality1. J. Anim. Sci. 2013, 91, 3733–3741. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.J.; Perez-Maldonado, R.; Mannion, P. Optimum inclusion of field peas, faba beans, chick peas and sweet lupins in poultry diets. II. Broiler experiments. Br. Poult. Sci. 1999, 40, 674–680. [Google Scholar] [CrossRef]
- Stein, H.H.; Benzoni, G.; Bohlke, R.A.; Peters, D.N. Assessment of the feeding value of South Dakota-grown field peas (Pisum sativum L.) for growing pigs. J. Anim. Sci. 2004, 82, 2568–2578. [Google Scholar] [CrossRef]
- Stein, H.H.; Everts, A.K.R.; Sweeter, K.K.; Peters, D.N.; Maddock, R.J.; Wulf, D.M.; Pedersen, C. The influence of dietary field peas (Pisum sativum L.) on pig performance, carcass quality, and the palatability of pork. J. Anim. Sci. 2006, 84, 3110–3117. [Google Scholar] [CrossRef]
- Stein, H.H.; Peters, D.N.; Kim, B.G. Effects of including raw or extruded field peas (Pisum sativum L.) in diets fed to weanling pigs. J. Sci. Food Agric. 2010, 90, 1429–1436. [Google Scholar] [CrossRef]
- Petersen, G.I.; Spencer, J.D. Evaluation of yellow field peas in growing finishing swine diets. J. Anim. Sci. 2006, 84, 93. [Google Scholar]
- Christodoulou, V.; Va, B.; Sossidou, E.; Ambrosiadis, J.; Hučko, B.; Iliadis, C.; Kodeš, A. The use of extruded chickpeas in diets for growing-finishing pigs. Czech J. Anim. Sci. 2011, 51, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, V.; Bampidis, V.A.; Hucko, B.; Iliadis, C.; Mudrik, Z. Nutritional value of chickpeas in rations of broiler chickens. Arch. Geflügelk. 2006, 70, 112–118. [Google Scholar]
- Stein, H.H.; Casas, G.A.; Abelilla, J.J.; Liu, Y.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 2015, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Sundu, B.; Kumar, A.; Dingle, J. The effect of commercial enzymes on chicks fed high copra meal and palm kernel meal diets. In Proceedings of the Seminar Nasional Pemanfaatan Sumber Daya Hayatiberkelanjutan, Palu, Indonesia, 23–25 June 2004. [Google Scholar]
- Thorne, P.J.; Wiseman, J.; Cole, D.J.A.; Machin, D.H. Use of diets containing copra meal for growing/ finishing pigs and their supplementation to improve animal performance. Trop. Agric. Trinidad 1988, 65, 197–201. [Google Scholar]
- Jaworski, N.; Shoulders, J.; González-Vega, J.; Stein, H. Effects of using copra meal, palm kernel expellers, or palm kernel meal in diets for weanling pigs. Prof. Anim. Sci. 2014, 30, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Wisman, E.L.; Holmes, C.E.; Engel, R.W. Utilization of Poultry By-Products in Poultry Rations. Poult. Sci. 1958, 37, 834–838. [Google Scholar] [CrossRef]
- Orozco-Hernandez, J.R.; Uribe, J.J.; Bravo, S.G.; Fuentes-Hernandez, V.O.; Aguilar, A.; Navarro, O.H. Effect of poultry by-product meal on pig performance. J. Anim. Sci. 2003, 83, 75. [Google Scholar]
- Van Heugten, E.; Van Kempen, T.A.T.G. Growth performance, carcass characteristics, nutrient digestibility and fecal odorous compounds in growing-finishing pigs fed diets containing hydrolyzed feather meal. J. Anim. Sci. 2002, 80, 171–178. [Google Scholar] [CrossRef]
- Pan, L.; Ma, X.; Wang, H.; Xu, X.; Zeng, Z.; Tian, Q.; Zhao, P.; Zhang, S.; Yang, Z.; Piao, X. Enzymatic feather meal as an alternative animal protein source in diets for nursery pigs. Anim. Feed Sci. Technol. 2016, 212, 112–121. [Google Scholar] [CrossRef]
- El Boushy, A.; Van Der Poel, A.; Walraven, O. Feather meal—A biological waste: Its processing and utilization as a feedstuff for poultry. Biol. Wastes 1990, 32, 39–74. [Google Scholar] [CrossRef]
- Donkoh, A.; Atuahene, C.; Anang, D.; Ofori, S. Chemical composition of solar-dried blood meal and its effect on performance of broiler chickens. Anim. Feed Sci. Technol. 1999, 81, 299–307. [Google Scholar] [CrossRef]
- DeRouchey, J.M.; Tokach, M.D.; Nelssen, J.L.; Goodband, R.D.; Dritz, S.S.; Woodworth, J.C.; James, B.W. Comparison of spray-dried blood meal and blood cells in diets for nursery pigs. J. Anim. Sci. 2002, 80, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Son, A.R.; Ji, S.Y.; Kim, B.G. Digestible and metabolizable energy concentrations in copra meal, palm kernel meal, and cassava root fed to growing pigs. J. Anim. Sci. 2012, 90, 140–142. [Google Scholar] [CrossRef]
- Kana, J.R.; Defang, F.H.; Mafouo, G.H.; Ngouana, R.; Moube, N.M.; Ninjo, J. Effect of cassava meal supplemented with a combination of palm oil and cocoa husk as alternative energy source on broiler growth. Arch. Zootech. 2012, 15, 17–25. [Google Scholar]
- Ospina, L.; Preston, T.R.; Ogle, R.B. Effect of protein supply in cassava root meal based diets on the performance of growing—Finishing pigs. Livest. Res. Rural Dev. 1995, 7, 30–39. [Google Scholar]
- Mackenzie, S.; Leinonen, I.; Ferguson, N.; Kyriazakis, I. Can the environmental impact of pig systems be reduced by utilising co-products as feed? J. Clean. Prod. 2016, 115, 172–181. [Google Scholar] [CrossRef]
- Saleh, E.A.; Watkins, S.E.; Waldroup, P.W. High-Level Usage of Dried Bakery Product in Broiler Diets. J. Appl. Poult. Res. 1996, 5, 33–38. [Google Scholar] [CrossRef]
- Sullivan, Z.M.; Honeyman, M.S.; Gibson, L.R.; Prusa, K.J. Effects of triticale-based diets on finishing pig performance and pork quality in deep-bedded hoop barns. Meat Sci. 2007, 76, 428–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, S.L.; Penz, A.M.; Kessler, A.M.; Catellan, E.V. A Nutritional Evaluation of Triticale in Broiler Diets. J. Appl. Poult. Res. 1995, 4, 352–355. [Google Scholar] [CrossRef]
- Singh, N.M.; Singh, L.A.; Kumari, L.V.; Kadirvel, G.; Patir, M. Effect of supplementation of molasses (Saccharum officinarum) on growth performance and cortisol profile of growing pig in north eastern hill ecosystem of India. J. Entomol. Zool. Stud. 2020, 8, 302–305. [Google Scholar]
- Mahmoud, M.S.B.; Abdalla, S.A.A.; Abdalla, H.O. Effect of dietary incorporation of sugar cane molasses and sexing on broiler performance and carcass characteristics. J. Vet. Med. Anim. Prod. 2018, 9, 78–92. [Google Scholar]
- Mavromichalis, I.; Hancock, J.; Hines, R.; Senne, B.; Cao, H. Lactose, sucrose, and molasses in simple and complex diets for nursery pigs. Anim. Feed Sci. Technol. 2001, 93, 127–135. [Google Scholar] [CrossRef]
- Longland, A.; Low, A. Digestion of diets containing molassed or plain sugar-beet pulp by growing pigs. Anim. Feed Sci. Technol. 1989, 23, 67–78. [Google Scholar] [CrossRef]
- González-Alvarado, J.; Jiménez-Moreno, E.; González-Sánchez, D.; Lázaro, R.; Mateos, G. Effect of inclusion of oat hulls and sugar beet pulp in the diet on productive performance and digestive traits of broilers from 1 to 42 days of age. Anim. Feed Sci. Technol. 2010, 162, 37–46. [Google Scholar] [CrossRef]
- Herfel, T.; Jacobi, S.; Lin, X.; Van Heugten, E.; Fellner, V.; Odle, J. Stabilized rice bran improves weaning pig performance via a prebiotic mechanism1. J. Anim. Sci. 2013, 91, 907–913. [Google Scholar] [CrossRef]
- Gallinger, C.I.; Suárez, D.M.; Irazusta, A. Effects of Rice Bran Inclusion on Performance and Bone Mineralization in Broiler Chicks. J. Appl. Poult. Res. 2004, 13, 183–190. [Google Scholar] [CrossRef]
- Ndou, S.P.; Kiarie, E.; Thandapilly, S.J.; Walsh, M.C.; Ames, N.; Nyachoti, C.M. Flaxseed meal and oat hulls supplementation modulates growth performance, blood lipids, intestinal fermentation, bile acids, and neutral sterols in growing pigs fed corn–soybean meal–based diets. J. Anim. Sci. 2017, 95, 3068. [Google Scholar] [CrossRef]
- Mateos, G.G.; Martín, F.; Latorre, M.A.; Vicente, B.; Lázaro, R. Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim. Sci. 2006, 82, 57–63. [Google Scholar] [CrossRef]
- Ortiz, L.; Centeno, C.; Trevino, J. Tannins in faba bean seeds: Effects on the digestion of protein and amino acids in growing chicks. Anim. Feed Sci. Technol. 1993, 41, 271–278. [Google Scholar] [CrossRef]
- Grala, W.; Jansman, A.J.M.; Van Leeuwen, P.; Huisman, J.; Van Kempen, G.J.M.; Verstegen, M.W.A. Nutritional value of faba beans (Vicia faba L.) fed to young pigs. J. Anim. Feed Sci. 1993, 2, 169–179. [Google Scholar] [CrossRef]
- Paszkiewicz, W.; Muszyński, S.; Kwiecień, M.; Zhyla, M.; Świątkiewicz, S.; Arczewska-Włosek, A.; Tomaszewska, E. Effect of Soybean Meal Substitution by Raw Chickpea Seeds on Thermal Properties and Fatty Acid Composition of Subcutaneous Fat Tissue of Broiler Chickens. Animals 2020, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Klebaniuk, R.; Kwiecień, M.; Tomczyk-Warunek, A.; Szymańczyk, S.; Kowalik, S.; Milczarek, A.; Blicharski, T.; Muszyński, S. Gut-bone axis response to dietary replacement of soybean meal with raw low-tannin faba bean seeds in broiler chickens. PLoS ONE 2018, 13, e0194969. [Google Scholar] [CrossRef] [Green Version]
- Lacassagne, L.; Francesch, M.; Carré, B.; Melcion, J. Utilization of tannin-containing and tannin-free faba beans (Vicia faba) by young chicks: Effects of pelleting feeds on energy, protein and starch digestibility. Anim. Feed Sci. Technol. 1988, 20, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Grabež, V.; Egelandsdal, B.; Kjos, N.P.; Håkenåsen, I.M.; Mydland, L.T.; Vik, J.O.; Hallenstvedt, E.; Devle, H.; Øverland, M. Replacing soybean meal with rapeseed meal and faba beans in a growing-finishing pig diet: Effect on growth performance, meat quality and metabolite changes. Meat Sci. 2020, 166, 108–134. [Google Scholar] [CrossRef]
- Vilariño, M.; Métayer, J.; Crépon, K.; Duc, G. Effects of varying vicine, convicine and tannin contents of faba bean seeds (Vicia faba L.) on nutritional values for broiler chicken. Anim. Feed Sci. Technol. 2009, 150, 114–121. [Google Scholar] [CrossRef]
- Hanczakowska, E.; Świątkiewicz, M. Legume Seeds and Rapeseed Press Cake as Replacers of Soybean Meal in Feed for Fattening Pigs. Ann. Anim. Sci. 2014, 14, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Proskina, L.; Cerina, S. Faba beans and peas in poultry feed: Economic assessment. J. Sci. Food Agric. 2017, 97, 4391–4398. [Google Scholar] [CrossRef]
- Stein, H.; de Lange, K. Alternative feed ingredients for pigs. In Proceedings of the 7th London Swine Conference, London, ON, Canada, 3–4 April 2007. [Google Scholar]
- Igbasan, F.A.; Guenter, W.; Slominski, B.A. Field peas: Chemical composition and energy and amino acid availabilities for poultry. Can. J. Anim. Sci. 1997, 77, 293–300. [Google Scholar] [CrossRef] [Green Version]
- McNeill, L.; Bernard, K.; MacLeod, M. Food intake, growth rate, food conversion and food choice in broilers fed on diets high in rapeseed meal and pea meal, with observations on sensory evaluation of the resulting poultry meat. Br. Poult. Sci. 2004, 45, 519–523. [Google Scholar] [CrossRef]
- Stein, H.H.; Bohlke, R.A. The effects of thermal treatment of field peas (Pisum sativum L.) on nutrient and energy digestibility by growing pigs. J. Anim. Sci. 2007, 85, 1424–1431. [Google Scholar] [CrossRef]
- James, K.A.C.; Butts, C.A.; Morrison, S.C.; Koolaard, J.P.; Scott, M.F.; Scott, R.E.; Griffin, W.B.; Bang, L.M. The effects of cultivar and heat treatment on protein quality and trypsin inhibitor content of New Zealand field peas. N. Z. J. Agric. Res. 2005, 48, 117–124. [Google Scholar] [CrossRef]
- Hugman, J.; Wang, L.; Beltranena, E.; Htoo, J.; Zijlstra, R. Nutrient digestibility of heat-processed field pea in weaned pigs. Anim. Feed Sci. Technol. 2021, 274, 114891. [Google Scholar] [CrossRef]
- Chrenková, M.; Formelová, Z.; Chrastinová, Ľ.; Fľak, P.; Čerešňáková, Z.; Lahučký, R.; Poláčiková, M.; Bahelka, I. Influence of diets containing raw or extruded peas instead of soybean meal on meat quality characteristics in growing-finishing pigs. Czech J. Anim. Sci. 2011, 56, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, V.; Ambrosiadis, J.; Sossidou, E.; Bampidis, V.; Arkoudilos, J.; Hucko, B.; Iliadis, C. Effect of replacing soybean meal by extruded chickpeas in the diets of growing–finishing pigs on meat quality. Meat Sci. 2006, 73, 529–535. [Google Scholar] [CrossRef]
- Redden, R.; Berger, J.D. History and origin of chickpea. In Chickpea Breeding and Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 1–13. [Google Scholar]
- Sharima-Abdullah, N.; Hassan, C.Z.; Arifin, N.; Huda-Faujan, N. Physicochemical properties and consumer preference of imitation chicken nuggets produced from chickpea flour and textured vegetable protein. Int. Food Res. J. 2018, 25, 1016–1025. [Google Scholar]
- Mustafa, A.F.; Thacker, P.A.; McKinnon, J.J.; Christensen, D.A.; Racz, V.J. Nutritional value of feed grade chickpeas for ruminants and pigs. J. Sci. Food Agric. 2000, 80, 1581–1588. [Google Scholar] [CrossRef]
- Rubio, A.L.; Pedrosa, M.M.; Pérez, A.; Cuadrado, C.; Burbano, C.; Múzquiz, M. Ileal digestibility of defatted soybean, lupin and chickpea seed meals in cannulated Iberian pigs: II. Fatty acids and carbohydrates. J. Sci. Food Agric. 2005, 85, 1322–1328. [Google Scholar] [CrossRef]
- Rubio, L.A.; Peinado, M.J. Replacement of Soybean Meal with Lupin or Chickpea Seed Meal in Diets for Fattening Iberian Pigs Promotes a Healthier Ileal Microbiota Composition. Adv. Microbiol. 2014, 4, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Algam, T.A.; Abdel Atti, K.A.; Dousa, B.M.; Elawad, S.M.; Fadel Elseed, A.M. Effect of dietary raw chick pea (Cicer arietinum L.) seeds on broiler performance and blood constituents. Int. J. Poult. Sci. 2012, 11, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Brenes, A.; Viveros, A.; Centeno, C.; Arija, I.; Marzo, F. Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens. Span. J. Agric. Res. 2008, 6, 537. [Google Scholar] [CrossRef] [Green Version]
- Sundu, B.; Kumar, A.; Dingle, J. Feeding value of copra meal for broilers. World’s Poult. Sci. J. 2009, 65, 481–492. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Pluske, J.R.; Moughan, P.J.; Thomas, D.V.; Kumar, A.; Dingle, J.G. Releasing Energy from Rice Bran, Copra Meal and Canola in Diets Using Exogenous Enzymes. In Proceedings of the 13th Annual Alltech Symposium, Nottingham, UK, 1997; Lyons, P.T., Jacques, K.A., Eds.; Nottingham University Press: Nottingham, UK, 1997; pp. 81–94. [Google Scholar]
- Haetinger, V.S.; Park, C.S.; Adeola, O. Energy values of copra meal and cornstarch for broiler chickens. Poult. Sci. 2021, 100, 858–864. [Google Scholar] [CrossRef]
- Diarra, S.; Anand, S. Impact of commercial feed dilution with copra meal or cassava leaf meal and enzyme supplementation on broiler performance. Poult. Sci. 2020, 99, 5867–5873. [Google Scholar] [CrossRef]
- Ibuki, M.; Yoshimoto, Y.; Inui, M.; Fukui, K.; Yonemoto, H.; Saneyasu, T.; Honda, K.; Kamisoyama, H. Dietary mannanase-hydrolyzed copra meal improves growth and increases muscle weights in growing broiler chickens. Anim. Sci. J. 2014, 85, 562–568. [Google Scholar] [CrossRef]
- O’Doherty, J.; McKeon, M. The use of expeller copra meal in grower and finisher pig diets. Livest. Prod. Sci. 2000, 67, 55–65. [Google Scholar] [CrossRef]
- Kim, B.G.; Lee, J.H.; Jung, H.J.; Han, Y.K.; Park, K.M.; Han, I.K. Effect of Partial Replacement of Soybean Meal with Palm Kernel Meal and Copra Meal on Growth Performance, Nutrient Digestibility and Carcass Characteristics of Finishing Pigs. Asian Australasian J. Anim. Sci. 2001, 14, 821–830. [Google Scholar] [CrossRef]
- Almaguer, B.L.; Sulabo, R.C.; Liu, Y.; Stein, H.H. Standardized total tract digestibility of phosphorus in copra meal, palm kernel expellers, palm kernel meal, and soybean meal fed to growing pigs. J. Anim. Sci. 2014, 92, 2473–2480. [Google Scholar] [CrossRef] [PubMed]
- Mael, S.H.; Diarra, S.S.; Devi, A. Maintenance of broiler performance on commercial diets diluted with copra meal and supplemented with feed enzymes. Anim. Prod. Sci. 2020, 60, 1514. [Google Scholar] [CrossRef]
- Kim, H.J.; Nam, S.O.; Jeong, J.H.; Fang, L.H.; Yoo, H.B.; Yoo, S.H.; Hong, J.S.; Son, S.W.; Ha, S.H.; Kim, Y.Y. Various levels of copra meal supplementation with β-Mannanase on growth performance, blood profile, nutrient digestibility, pork quality and economical analysis in growing-finishing pigs. J. Anim. Sci. Technol. 2017, 59, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mara, F.; Mulligan, F.; Cronin, E.; Rath, M.; Caffrey, P. The nutritive value of palm kernel meal measured in vivo and using rumen fluid and enzymatic techniques. Livest. Prod. Sci. 1999, 60, 305–316. [Google Scholar] [CrossRef]
- Mok, C.H.; Lee, J.H.; Kim, B.G. Effects of exogenous phytase and β-mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Anim. Feed. Sci. Technol. 2013, 186, 209–213. [Google Scholar] [CrossRef]
- Fernandez, F.; Hinton, M.; Van Gils, B. Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol. 2002, 31, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Sundu, B.; Kumar, A.; Dingle, J. Palm kernel meal in broiler diets: Effect on chicken performance and health. World’s Poult. Sci. J. 2006, 62, 316–325. [Google Scholar] [CrossRef]
- Diarra, S.; Sandakabatu, D.; Perera, D.; Tabuaciri, P.; Mohammed, U. Growth performance and carcass yield of broiler chickens fed commercial finisher and cassava copra meal-based diets. J. Appl. Anim. Res. 2015, 43, 352–356. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.G. Palm Kernel Meal in Animal Nutrition, 4th ed.; Longman: Harlow, UK, 1988; pp. 462–463. [Google Scholar]
- Fatufe, A.A.; Akanbi, I.O.; Saba, G.A.; Olowofeso, O.; Tewe, O.O. Growth performance and nutrient digestibility of growing pigs fed a mixture of palm kernel meal and cassava peel meal. Livestock Res. Rural Develop. 2007, 19, 180. [Google Scholar]
- Jang, J.; Kim, K.; Kim, D.; Jang, S.; Hong, J.; Heo, P.; Kim, Y. Effects of increasing levels of palm kernel meal containing β-mannanase to growing-finishing pig diets on growth performance, nutrient digestibility, and pork quality. Livest. Sci. 2020, 238, 104041. [Google Scholar] [CrossRef]
- Keegan, T.P.; DeRouchey, J.M.; Nelssen, J.L.; Tokach, M.D.; Goodband, R.D.; Dritz, S.S. The effects of poultry meal source and ash level on nursery pig performance. J. Anim. Sci. 2004, 82, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Zier, C.E.; Jones, R.D.; Azain, M.J. Use of pet food-grade poultry by-product meal as an alternate protein source in weanling pig diets. J. Anim. Sci. 2004, 82, 3049–3057. [Google Scholar] [CrossRef]
- Kerr, B.J.; Urriola, P.E.; Jha, R.; Thomson, E.J.; Curry, S.M.; Shurson, G.C. Amino acid composition and digestible amino acid content in animal protein by-product meals fed to growing pigs1. J. Anim. Sci. 2019, 97, 4540–4547. [Google Scholar] [CrossRef]
- Murray, S.M.; Patil, A.R.; Fahey, G.C.; Merchen, N.R.; Hughes, D.M. Raw and rendered animal by-products as ingredients in dog diets. J. Anim. Sci. 1997, 75, 2497–2505. [Google Scholar] [CrossRef]
- El Boushy, A.R. Poultry by-products. In Poultry Feed from Waste; Chapman and Hall: London, UK, 1994; pp. 99–163. [Google Scholar]
- Bandegan, A.; Kiarie, E.; Payne, R.L.; Crow, G.H.; Guenter, W.; Nyachoti, C.M. Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens. Poult. Sci. 2010, 89, 2626–2633. [Google Scholar] [CrossRef]
- Mahmood, T.; Mirza, M.; Nawaz, H.; Shahid, M.; Athar, M.; Hussain, M. Effect of supplementing exogenous protease in low protein poultry by-product meal based diets on growth performance and nutrient digestibility in broilers. Anim. Feed. Sci. Technol. 2017, 228, 23–31. [Google Scholar] [CrossRef]
- Rojas, O.J.; Stein, H.H. Concentration of digestible and metabolizable energy and digestibility of amino acids in chicken meal, poultry byproduct meal, hydrolyzed porcine intestines, a spent hen–soybean meal mixture, and conventional soybean meal fed to weanling pigs. J. Anim. Sci. 2013, 91, 3220–3230. [Google Scholar] [CrossRef]
- Vidyarathna, M.G.S.M.; Jayaweera, B.P.A. Effect of poultry byproduct meal based diet on performances of weaning and growing pigs. Wayamba J. Anim. Sci. 2016, 1391–1401. [Google Scholar]
- Zhang, Z.; Xu, L.; Liu, W.; Yang, Y.; Du, Z.; Zhou, Z. Effects of partially replacing dietary soybean meal or cottonseed meal with completely hydrolyzed feather meal (defatted rice bran as the carrier) on production, cytokines, adhesive gut bacteria, and disease resistance in hybrid tilapia (Oreochromis niloticus ♀ × Oreochromis aureus ♂). Fish Shellfish. Immunol. 2014, 41, 517–525. [Google Scholar] [CrossRef]
- Liu, J.; Waibel, P.; Noll, S. Nutritional Evaluation of Blood Meal and Feather Meal for Turkeys. Poult. Sci. 1989, 68, 1513–1518. [Google Scholar] [CrossRef]
- Riffel, A.; Brandelli, A. Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. J. Ind. Microbiol. Biotechnol. 2002, 29, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Onifade, A.; Al-Sane, N.; Al-Musallam, A.; Al-Zarban, S. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol. 1998, 66, 1–11. [Google Scholar] [CrossRef]
- Queiroga, A.C.; Pintado, M.E.; Malcata, F.X. Potential use of wool-associated Bacillus species for biodegradation of keratinous materials. Int. Biodeterior. Biodegrad. 2012, 70, 60–65. [Google Scholar] [CrossRef]
- Han, Y.; Parsons, C.M. Protein and Amino Acid Quality of Feather Meals. Poult. Sci. 1991, 70, 812–822. [Google Scholar] [CrossRef]
- Divakala, K.C.; Chiba, L.I.; Kamalakar, R.B.; Rodning, S.P.; Welles, E.G.; Cummins, K.A.; Swann, J.; Cespedes, F.; Payne, R.L. Amino acid supplementation of hydrolyzed feather meal diets for finisher pigs. J. Anim. Sci. 2009, 87, 1270–1281. [Google Scholar] [CrossRef] [Green Version]
- Brotzge, S.; Chiba, L.; Adhikari, C.; Stein, H.; Rodning, S.; Welles, E. Complete replacement of soybean meal in pig diets with hydrolyzed feather meal with blood by amino acid supplementation based on standardized lleal amino acid digestibility. Livest. Sci. 2014, 163, 85–93. [Google Scholar] [CrossRef]
- Nachman, K.; Raber, G.; Francesconi, K.; Navas-Acien, A.; Love, D. Arsenic species in poultry feather meal. Sci. Total. Environ. 2012, 417–418, 183–188. [Google Scholar] [CrossRef]
- M’Ncene, W.; Tuitoek, J.; Muiruri, H. Nitrogen utilization and performance of pigs given diets containing a dried or undried fermented blood/molasses mixture. Anim. Feed. Sci. Technol. 1999, 78, 239–247. [Google Scholar] [CrossRef]
- Squibb, R.H.; Braham, J.E. Blood meal as a lysine supplement to all vegetable protein rations for chicks. Poult. Sci. 1955, 34, 1050–1053. [Google Scholar] [CrossRef]
- Almquist, H.J. Proteins and Amino Acids in Animal Nutrition, 5th ed.; S.B. Penich Co.: New York, NY, USA, 1972. [Google Scholar]
- Bellaver, C. Limitações e Vantagens do Uso de Farinhas de Origem Animal Naalimentação de Suínos e de Aves. 2005. Available online: www.cnpsa.embrapa.br/sgc/sgc_publicacoes/publicacao_u5u82m5u.pdf (accessed on 1 April 2021).
- Almeida, F.; Htoo, J.; Thomson, J.; Stein, H. Comparative amino acid digestibility in US blood products fed to weanling pigs. Anim. Feed Sci. Technol. 2013, 181, 80–86. [Google Scholar] [CrossRef]
- Ekwe, O.O.; Nwali, C.C.; Nwonu, S.R.; Mgbabu, C.N.; Ude, I.U. The effect of graded levels of bovine blood meal on growth performance, haematology and cost benefit of broiler chickens. ADAN J. Agric. 2020, 1, 160–172. [Google Scholar]
- Laboissière, M.; Da Costa, M.A.; Jardim, R.D.M.; Leandro, N.S.M.; Café, M.B.; Stringhini, J.H. Feather and blood meal at different processing degrees in broiler pre-starter and starter diets. Rev. Bras. Zootec. 2020, 49, 20190036. [Google Scholar] [CrossRef]
- Churchward-Venne, A.T.; Pinckaers, P.J.M.; Van Loon, J.J.A.; Van Loon, L.J.C. Consideration of insects as a source of dietary protein for human consumption. Nutr. Rev. 2017, 75, 1035–1045. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Neumann, C.; Velten, S.; Liebert, F. N Balance Studies Emphasize the Superior Protein Quality of Pig Diets at High Inclusion Level of Algae Meal (Spirulina platensis) or Insect Meal (Hermetia illucens) when Adequate Amino Acid Supplementation Is Ensured. Animals 2018, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat Quality Derived from High Inclusion of a Micro-Alga or Insect Meal as an Alternative Protein Source in Poultry Diets: A Pilot Study. Foods 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.S.; Cho, K.H.; Hong, J.S.; Jang, H.S.; Chung, Y.H.; Kwon, G.T.; Shin, D.G.; Kim, Y.Y. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian Australas. J. Anim. Sci. 2019, 32, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Awoniyi, A.M.; Aletor, V.A.; Aina, M. Performance of broiler chickens fed on maggot meal in place of fishmeal. Int. J. Poult. Sci. 2003, 2, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Dale, N. Cassava root meal for poultry. J. Appl. Poult. Res. 1999, 8, 132–137. [Google Scholar] [CrossRef]
- Oke, O. Problems in the use of cassava as animal feed. Anim. Feed. Sci. Technol. 1978, 3, 345–380. [Google Scholar] [CrossRef]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Olugbemi, T.; Mutayoba, S.; Lekule, F. Effect of Moringa (Moringa oleifera) Inclusion in Cassava Based Diets Fed to Broiler Chickens. Int. J. Poult. Sci. 2010, 9, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Buitrago, J.A.; Ospina, B.; Gil, J.L.; Aparicio, H. Cassava Root and Leaf Meals as the Main Ingredients in Poultry Feeding: Some Experiences in Columbia. In Proceedings of the 7th Regional Cassava Workshop, Bangkok, Thailand, 28 October–1 November 2002; pp. 523–541. [Google Scholar]
- Adeyemi, O.A.; Eruvbetine, D.; Oguntona, T.; Dipeolu, M.A.; Agunbiade, J.A. Feeding broiler chicken with diets containing whole cassava root meal fermented with rumen filtrate. Arch. Zootech. 2008, 57, 247–258. [Google Scholar]
- Slominski, B.A.; Boros, D.; Campbell, L.D.; Guenter, W.; Jones, O. Wheat by-products in poultry nutrition. Part I. Chemical and nutritive composition of wheat screenings, bakery by-products and wheat mill run. Can. J. Anim. Sci. 2004, 84, 421–428. [Google Scholar] [CrossRef]
- Almeida, F.N.; Petersen, G.I.; Stein, H.H. Digestibility of amino acids in corn, corn coproducts, and bakery meal fed to growing pigs1. J. Anim. Sci. 2011, 89, 4109–4115. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Energy values of canola meal, cottonseed meal, bakery meal, and peanut flour meal for broiler chickens determined using the regression method. Poult. Sci. 2017, 96, 397–404. [Google Scholar] [CrossRef]
- Casas, G.; Almeida, J.; Stein, H. Amino acid digestibility in rice co-products fed to growing pigs. Anim. Feed. Sci. Technol. 2015, 207, 150–158. [Google Scholar] [CrossRef]
- Casas, G.A.; Jaworski, N.W.; Htoo, J.K.; Stein, H.H. Ileal digestibility of amino acids in selected feed ingredients fed to young growing pigs1. J. Anim. Sci. 2018, 96, 2361–2370. [Google Scholar] [CrossRef]
- Rojas, O.J.; Liu, Y.; Stein, H.H. Phosphorus digestibility and concentration of digestible and metabolizable energy in corn, corn coproducts, and bakery meal fed to growing pigs1. J. Anim. Sci. 2013, 91, 5326–5335. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, M.R.; Dhaka, H.R. Bakery waste is an alternative of maize to reduce the cost of pork production. Int. J. Res. Agric. For. 2020, 7, 1–9. [Google Scholar]
- Kwak, W.; Kang, J. Effect of feeding food waste-broiler litter and bakery by-product mixture to pigs. Bioresour. Technol. 2006, 97, 243–249. [Google Scholar] [CrossRef]
- Belaid, A. Nutritive and economic value of triticale as a feed grain for poultry. In CIMMYT Economics Working Paper 94-01; CIMMYT: Mexico City, Mexico, 1994. [Google Scholar]
- Forsberg, R.A. Triticale. In Proceedings of the Symposium, Fort Collins, CO, USA, 6 August 1979; The Crop Science Society America Special Publication: Madison, WI, USA, 1985. [Google Scholar]
- Bedford, M.R.; Classen, H.L. Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. J. Nutr. 1992, 122, 560–569. [Google Scholar] [CrossRef]
- Rao, D.R.; Johnson, W.M.; Sunki, G.R. Replacement of maize by triticale in broiler diets. Br. Poult. Sci. 1976, 17, 269–274. [Google Scholar] [CrossRef]
- Adeola, O.; Young, L.G.; McMillan, E.G.; Moran, E.T. Comparative Protein and Energy Value of OAC Wintri Triticale and Corn for Pigs. J. Anim. Sci. 1986, 63, 1854–1861. [Google Scholar] [CrossRef]
- Adeola, O.; Young, L.G.; McMillan, E.G.; Moran, E.T. Comparative Availability of Amino Acids in OAC Wintri Triticale and Corn for Pigs. J. Anim. Sci. 1986, 63, 1862–1869. [Google Scholar] [CrossRef] [Green Version]
- Van Barneveld, R.J.; Cooper, K.V. Nutritional quality of triticale for pigs and poultry. In Proceedings of the 5th International Triticale Symposium, Radzikow, Poland, 30 June–5 July 2002. [Google Scholar]
- Adeola, O.; Young, L.G.; McMillan, I. Oac Wintri Triticale in Diets of Growing Swine. Can. J. Anim. Sci. 1987, 67, 187–199. [Google Scholar] [CrossRef]
- Xandé, X.; Régnier, C.; Archimède, H.; Bocage, B.; Noblet, J.; Renaudeau, D. Nutritional values of sugarcane products in local Caribbean growing pigs. Animal 2010, 4, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Ly, J.; Almaguel, R.; Lezcano, P.; Delgado, E. High-test molasses or maize as energy source for growing pigs. Performance traits and rectal digestibility. Cuban J. Agric. Sci. 2014, 48, 281–285. [Google Scholar]
- Mordenti, A.L.; Giaretta, E.; Campidonico, L.; Parazza, P.; Formigoni, A. A Review Regarding the Use of Molasses in Animal Nutrition. Animals 2021, 11, 115. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, E.; Gourdine, J.-L.; Alexandre, G.; Archimède, H.; Vaarst, M. The complex nature of mixed farming systems requires multidimensional actions supported by integrative research and development efforts. Animal 2012, 6, 763–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bice, C.M. Cane molasses in poultry rations. Hawaii Agr. Exp. Sta. Bui. 1933, 67, 16. [Google Scholar]
- Xandé, X.; Archimède, H.; Gourdine, J.L.; Anais, C.; Renaudeau, D. Effects of the level of sugarcane molasses on growth and carcass performance of Caribbean growing pigs reared under a ground sugarcane stalks feeding system. Trop. Anim. Health Prod. 2009, 42, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.; Castro, M.; García, A.; Almaguel, R.; Arias, R.; Batista, R.; Grageola, F. Cane molasses and royal palm (Roystonea regia H.B.K. Cook) nuts for pigs. Relationships between digestive indices and performance traits. Rev. Comput. Prod. Porc. 2015, 22, 165–169. [Google Scholar]
- Kelly, P. Sugar beet pulp—A review. Anim. Feed Sci. Technol. 1983, 8, 1–18. [Google Scholar] [CrossRef]
- Canh, T.T.; Schrama, J.W.; Aarnink, A.J.A.; Verstegen, M.W.A.; Klooster, C.E.V.; Heetkamp, M.J.W. Effect of dietary fermentable fibre from pressed sugar-beet pulp silage on ammonia emission from slurry of growing-finishing pigs. Anim. Sci. 1998, 67, 583–590. [Google Scholar] [CrossRef]
- Scipioni, R.; Martelli, G. Consequences of the use of ensiled sugar beet-pulp in the diet of heavy pigs on performances, carcass characteristics and nitrogen balance: A review. Anim. Feed Sci. Technol. 2001, 90, 81–91. [Google Scholar] [CrossRef]
- Diao, H.; Jiao, A.; Yu, B.; He, J.; Zheng, P.; Yu, J.; Luo, Y.; Luo, J.; Mao, X.; Chen, D. Beet Pulp: An Alternative to Improve the Gut Health of Growing Pigs. Animals 2020, 10, 1860. [Google Scholar] [CrossRef]
- Gebbink, G.A.R.; Sutton, A.L.; Richert, B.T.; Patterson, J.A.; Nielsen, J.; Kelly, D.T.; Verstegen, M.W.A.; Williams, B.A.; Bosch, M.; Cobb, M.; et al. Effects of addition of fructooligosaccharide (FOS) and sugar beet pulp to weanling pig diets on performance, microflora and intestinal health. In Proceedings of the Purdue University Swine Day Conference, West Lafayette, IN, USA, 31 August 1999. [Google Scholar]
- Sklan, D.; Smirnov, A.; Plavnik, I. The effect of dietary fibre on the small intestines and apparent digestion in the turkey. Br. Poult. Sci. 2003, 44, 735–740. [Google Scholar] [CrossRef]
- Jiménez-Moreno, E.; González-Alvarado, J.; González-Serrano, A.; Lázaro, R.; Mateos, G. Effect of dietary fiber and fat on performance and digestive traits of broilers from one to twenty-one days of age. Poult. Sci. 2009, 88, 2562–2574. [Google Scholar] [CrossRef]
- Abdel-Daim, A.S.A.; Tawfeek, S.S.; El-Nahass, E.S.; Hassan, A.H.A.; Youssef, I.M.I. Effect of feeding potato peels and sugar beet pulp with or without enzyme on nutrient digestibility, intestinal morphology, and meat quality of broiler chickens. Poult. Sci. J. 2020, 8, 189–199. [Google Scholar] [CrossRef]
- Luh, B.S. Rice Utilization, Volume II; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Saunders, R.M. The properties of rice bran as a food stuff. Cereal Foods World 1990, 35, 632–635. [Google Scholar]
- Hossain, M.; Park, J.; Nyachoti, C.; Kim, I. Effects of extracted rice bran supplementation on growth performance, nutrient digestibility, diarrhea score, blood profiles, and fecal microbial shedding in comparison with apramycin (antibiotic growth promoter) in weanling pigs. Can. J. Anim. Sci. 2016, 96, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Huang, R.; Wu, C.; Cao, Y.; Du, T.; Pu, G.; Wang, H.; Zhou, W.; Li, P.; Kim, S.W. Defatted Rice Bran Supplementation in Diets of Finishing Pigs: Effects on Physiological, Intestinal Barrier, and Oxidative Stress Parameters. Animals 2020, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Farrell, D.; Martin, E.A. Strategies to improve the nutritive value of rice bran in poultry diets. I. The addition of food enzymes to target the non-starch polysaccharide fractions in diets of chickens and ducks gave no response. Br. Poult. Sci. 1998, 39, 549–554. [Google Scholar] [CrossRef]
- Hetland, H.; Svihus, B. Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. Br. Poult. Sci. 2001, 42, 354–361. [Google Scholar] [CrossRef]
- Scholey, D.; Marshall, A.; Cowan, A. Evaluation of oats with varying hull inclusion in broiler diets up to 35 days. Poult. Sci. 2020, 99, 2566–2572. [Google Scholar] [CrossRef]
- Kim, J.C.; Mullan, B.P.; Hampson, D.J.; Pluske, J.R. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. Br. J. Nutr. 2008, 99, 1217–1225. [Google Scholar] [CrossRef]
- Mateos, G.; López, E.; Latorre, M.; Vicente, B.; Lázaro, R. The effect of inclusion of oat hulls in piglet diets based on raw or cooked rice and maize. Anim. Feed Sci. Technol. 2007, 135, 100–112. [Google Scholar] [CrossRef]
- Jørgensen, H.; Zhao, X.-Q.; Eggum, B.O. The influence of dietary fibre and environmental temoperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Br. J. Nutr. 1996, 75, 365–378. [Google Scholar] [CrossRef]
- Albin, D.M.; Smiricky, M.R.; Wubben, J.E.; Gabert, V.M. The effect of dietary level of soybean oil and palm oil on apparent ileal amino acid digestibility and postprandial flow patterns of chromic oxide and amino acids in pigs. Can. J. Anim. Sci. 2001, 81, 495–503. [Google Scholar] [CrossRef]
- Lai, O.; Tan, C.; Akoh, C.C. Palm Oil: Production, Processing, Characterization, and Uses; Elsevier: Amsterdam, The Netherlands, 2015; p. 471, Chapter 16. [Google Scholar]
- Merriman, L.A.; Walk, C.L.; Parsons, C.M.; Stein, H.H. Effects of tallow, choice white grease, palm oil, corn oil, or soybean oil on apparent total tract digestibility of minerals in diets fed to growing pigs. J. Anim. Sci. 2016, 94, 4231–4238. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kil, D.Y.; Perez-Mendoza, V.G.; Song, M.; Pettigrew, J.E. Supplementation of different fat sources affects growth performance and carcass composition of finishing pigs. J. Anim. Sci. Biotechnol. 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Ogunwole, O.A.; Majekodunmi, B.C.; Faboyede, R.A.; Ogunsiji, D. Meat and Bone Characteristics of Broiler Chickens Fed Groundnut Cake-Based Diets as Affected by Graded Dietary Supplements of Crystalline L- Lysine and DL- Methionine. J. Adv. Agric. 2016, 6, 846–852. [Google Scholar] [CrossRef]
- Ogunwole, O.A.; Babatunde, O.O.; Faboyede, R.A.; Adedeji, B.S.; Jemiseye, F.O. Calcium and phosphorus retention by broiler chickens fed groundnut cake based-diet supplemented with L-lysine and DL-methionine. Anim. Prod. Res Adv. 2017, 29, 240–248. [Google Scholar]
- Skřivan, M.; Marounek, M.; Englmaierová, M.; Čermák, L.; Vlčková, J.; Skřivanová, E. Effect of dietary fat type on intestinal digestibility of fatty acids, fatty acid profiles of breast meat and abdominal fat, and mRNA expression of lipid-related genes in broiler chickens. PLoS ONE 2018, 13, e0196035. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, N.F.; Rødbotten, R.; Thomassen, M.; Haug, A. Chicken meat nutritional value when feeding red palm oil, palm oil or rendered animal fat in combinations with linseed oil, rapeseed oil and two levels of selenium. Lipids Health Dis. 2013, 12, 69–81. [Google Scholar] [CrossRef] [Green Version]
Item | Gross Energy, kcal/kg | Crude Protein, % | Ether Extract, % | Crude Fiber, % | References |
---|---|---|---|---|---|
Faba beans | 3800–4500 | 22–32 | 0.96–1.3 | 7.5–8.6 | [8,11,12,13] |
Field peas | 4035–4500 | 20–31 | 0.9–1.3 | 6.2–12.7 | [8,14] |
Chickpeas | 4200–4500 | 12–34 | 0.4–0.9 | 0.4–12.5 | [15,16] |
Copra meal | 4199 | 21–22 | 3.0 | 12.8–16.4 | [8,12,17] |
Palm-kernel meal | 4150–4350 | 14–21 | 3.8–8.5 | 17.9 | [8,18,19] |
Poultry meal | 4080 | 50–60 | 15.9 | - 1 | [8,20] |
Feather meal | 5200–5500 | 79–89 | 6.8–9.1 | 0.32 | [8,12,20] |
Blood meal | 5300–5473 | 88–92 | 0.8–1.5 | - | [8,21,22] |
Insect meal | 4800 | 40–60 | 20–40 | - | [23,24,25] |
Cassava root | 3450–3560 | 2.5–2.9 | 0.5–0.9 | 2.9–4.4 | [8,12] |
Bakery meal | 4200–4558 | 12.3–13.6 | 8.1 | - | [8,26] |
Triticale | 4316 | 13.6 | 1.8 | 2.5 | [8] |
Molasses | 4223 | 4.8 | 0.2 | - | [8] |
Sugar beet pulp | 3633–4050 | 8.1–9.8 | 0.8–1.0 | 17.3–19.9 | [8,12,27,28] |
Rice bran | 3800–4100 | 14.4–17.3 | 3.1–3.5 | 20–25 | [8,12,29] |
Oat hulls | 979 | 4.6–5.1 | 1.4 | 25.9–28.7 | [7,28] |
Palm oil | 9100–9400 | - | - | - | [8,30] |
Item | Broiler Chickens | Weanling Pigs | Grow-Finish Pigs | References |
---|---|---|---|---|
Faba beans | 20–40 | - 1 | 30–40 | [5,11,31,32,33] |
Field peas | 15–36 | 60–70 | 30 | [33,34,35,36,37] |
Chickpeas | 12–15% | 15 | 30 | [16,38,39] |
Copra meal | 25 | 15 | 50 | [40,41,42] |
Palm-kernel meal | 30–40 | 15 | 10–20 | [19,40,41,43] |
Poultry meal | 10–16 | 10 | - | [44,45] |
Feather meal | 6 | 1.5 | 5–10 | [44,46,47,48] |
Blood meal | 7.5 | 5–7.5 | - | [49,50] |
Insect meal | 10–15 | 0–6% replacement of SBM 2 | 50–100% replacement of SBM | [10,24] |
Cassava root | 10–50% replacement of corn | - | 50–100% replacement of corn | [51,52,53] |
Bakery meal | 25 | - | 10 | [54,55] |
Triticale | 40–60 | - | 20–40 | [17,56,57] |
Molasses | 24 | 100% replacement of lactose | 11 | [58,59,60] |
Sugar beet pulp | 3 | - | 30 | [61,62] |
Rice bran | 10–20 | 10 | - | [63,64] |
Oat hulls | 3 | 2 | 5–10 | [62,65,66] |
Palm oil | - | 5 | 10 | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babatunde, O.O.; Park, C.S.; Adeola, O. Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. Animals 2021, 11, 1196. https://doi.org/10.3390/ani11051196
Babatunde OO, Park CS, Adeola O. Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. Animals. 2021; 11(5):1196. https://doi.org/10.3390/ani11051196
Chicago/Turabian StyleBabatunde, Olufemi Oluwaseun, Chan Sol Park, and Olayiwola Adeola. 2021. "Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs" Animals 11, no. 5: 1196. https://doi.org/10.3390/ani11051196
APA StyleBabatunde, O. O., Park, C. S., & Adeola, O. (2021). Nutritional Potentials of Atypical Feed Ingredients for Broiler Chickens and Pigs. Animals, 11(5), 1196. https://doi.org/10.3390/ani11051196