Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sorghum Harvest and Fermentation Procedure
2.2. Animals and Diets
2.3. Sampling
2.4. Analytical Methods
2.5. Apparent Total Tract Digestibility
2.6. Statistical Analyses
3. Results
3.1. Chemical Composition of Sorghum and Experimental Diets
3.2. Apparent Total Tract Digestibility of Pigs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selle, P.H.; Cadogan, D.J.; Li, X.; Bryden, W.L. Review: Implications of sorghum in broiler chicken nutrition. Anim. Feed Sci. Technol. 2010, 156, 57–74. [Google Scholar] [CrossRef]
- Nyannor, E.K.D.; Adedokun, S.A.; Hamaker, B.R.; Ejeta, G.; Adeola, O. Nutritional evaluation of high-digestible sorghum for pigs and broiler chicks1. J. Anim. Sci. 2007, 85, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puntigam, R.; Brugger, D.; Slama, J.; Inhuber, V.; Boden, B.; Krammer, V.; Schedle, K.; Wetscherek-Seipelt, G.; Wetscherek, W. The effects of a partial or total replacement of ground corn with ground and whole-grain low-tannin sorghum (Sorghum bicolor (L.) Moench) on zootechnical performance, carcass traits and apparent ileal amino acid digestibility of broiler chickens. Livest. Sci. 2020, 241, 104187. [Google Scholar] [CrossRef]
- Abdo, M.; Mengistu, U.; Kefyalew, G. Effects of replacing maize with sorghum on growth and feed efficiency of commercial broiler chicken. J. Vet. Sci. Technol. 2015, 6, 224. [Google Scholar]
- Berenji, J.; Dahlberg, J. Perspectives of Sorghum in Europe. J. Agron. Crop. Sci. 2004, 190, 332–338. [Google Scholar] [CrossRef]
- Selle, P.H.; Moss, A.F.; Truong, H.H.; Khoddami, A.; Cadogan, D.J.; Godwin, I.D.; Liu, S.Y. Outlook: Sorghum as a feed grain for Australian chicken-meat production. Anim. Nutr. 2018, 4, 17–30. [Google Scholar] [CrossRef]
- Windpassinger, S.M. Breeding Strategies for the Adaptation of Sorghum (Sorghum bicolor L. Moench) as a Novel Crop for Temperate Europe. Ph.D. Thesis, Justus-Liebig University Giessen, Giessen, Germany, 2016. [Google Scholar]
- Owsley, W.F.; Knabe, D.A.; Tanksley, T.D., Jr. Effect of sorghum particle size on digestibility of nutrients at the terminal ileum and over the total digestive tract of growing-finishing pigs. J. Anim. Sci. 1981, 52, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Selle, P.H.; Cowieson, A.J. Strategies to enhance the performance of pigs and poultry on sorghum-based diets. Anim. Feed. Sci. Technol. 2013, 181, 1–14. [Google Scholar] [CrossRef]
- Afify, A.E.-M.M.R.; El-Beltagi, H.S.; El-Salam, S.M.A.; Omran, A.A. Bioavailability of Iron, Zinc, Phytate and Phytase Activity during Soaking and Germination of White Sorghum Varieties. PLoS ONE 2011, 6, e25512. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.B.R.D.C.; Tse, M.L.P.; Da Silva, A.M.R.; Neto, M.A.D.T.; Pereira, C.S.; Saleh, M.A.D.; Berto, D.A. High-moisture sorghum grain silage with low- and high-tannin contents for weanling piglets. Ciência Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Humer, E.; Wetscherek, W.; Schwarz, C.; Schedle, K. Effect of maize conservation technique and phytase supplementation on total tract apparent digestibility of phosphorus, calcium, ash, dry matter, organic matter and crude protein in growing pigs. Anim. Feed. Sci. Technol. 2013, 185, 70–77. [Google Scholar] [CrossRef]
- Humer, E.; Wetscherek, W.; Schwarz, C.; Schedle, K. Effects of maize conservation techniques on the apparent total tract nutrient and mineral digestibility and microbial metabolites in the faeces of growing pigs. Anim. Feed. Sci. Technol. 2014, 197, 176–184. [Google Scholar] [CrossRef]
- Bunte, S. Die Fermentation von Flüssigfutter als Fütterungskonzept im Schweinebestand—Potentiale, aber auch Risiken aus Sicht der Tierernährung und Tiermedizin. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2018. [Google Scholar]
- Zaworska, A.; Kasprowicz-Potocka, M.; Jozefiak, D. Fermentation as a Method of Reducing Anitnutritional Compounds in Rapeseed Feed. In Proceedings of the Scientific Session of Group of Animal Nutrition KNZiA PAN Kraków XLVII, Krakow, Poland, 27–29 June 2018; p. 47. [Google Scholar]
- Odjo, D.P.S.; Malumba Kamba, P.; Beckers, Y.; Béra, F. Impact of drying and heat treatment on the feeding value of corn. A review. Biotechnol. Agron. Société Environ. 2015, 19, 301–312. [Google Scholar]
- Reid, L.; Sinha, R. Maize maturity and the development of gibberella ear rot symptoms and deoxynivalenol after inoculation. Eur. J. Plant. Pathol. 1998, 104, 147–154. [Google Scholar] [CrossRef]
- Lauren, D.R.; Smith, W.A.; Di Menna, M.E. Influence of harvest date and hybrid on the mycotoxin content of maize (Zea mays) grain grown in New Zealand. N. Z. J. Crop. Hortic. Sci. 2007, 35, 331–340. [Google Scholar] [CrossRef]
- Canibe, N.; Højberg, O.; Badsberg, J.H.; Jensen, B.B. Effect of feeding fermented liquid feed and fermented grain on gastrointestinal ecology and growth performance in piglets. J. Anim. Sci. 2007, 85, 2959–2971. [Google Scholar] [CrossRef] [Green Version]
- Canibe, N.; Jensen, B.B. Fermented liquid feed—Microbial and nutritional aspects and impact on enteric diseases in pigs. Anim. Feed. Sci. Technol. 2012, 173, 17–40. [Google Scholar] [CrossRef]
- Pieper, R.; Hackl, W.; Korn, U.; Zeyner, A.; Souffrant, W.; Pieper, B. Effect of ensiling triticale, barley and wheat grains at different moisture content and addition of Lactobacillus plantarum (DSMZ 8866 and 8862) on fermentation characteristics and nutrient digestibility in pigs. Anim. Feed. Sci. Technol. 2011, 164, 96–105. [Google Scholar] [CrossRef]
- Carlson, D.; Poulsen, H.D. Phytate degradation in soaked and fermented liquid feed—effect of diet, time of soaking, heat treatment, phytase activity, pH and temperature. Anim. Feed. Sci. Technol. 2003, 103, 141–154. [Google Scholar] [CrossRef]
- GfE. Recommendations for the Supply of Energy and Nutrients to Pigs; DLG-Verlag: Frankfurt, Germany, 2008; Volume 10. [Google Scholar]
- GfE. Die Bestimmung des verdaulichen Phosphors beim Schwein. In Mitteilung des Ausschusses für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie, Proceedings of the Society of Nutrition Physiology; Kirchgessner, M., Ed.; Weihenstephan, TU-Munich: Freising, Germany, 1994; pp. 113–119. [Google Scholar]
- Verband deutscher landwirtschaftlicher Untersuchungs- und Forschungsanstalten. Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch), Vol. III. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 2012. [Google Scholar]
- Zhao, G.; Nyman, M.; Jönsson, J. Åke Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed. Chromatogr. 2005, 20, 674–682. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Marques, B.; Rosa, G.; Hauschild, L.; Carvalho, A.; Lovatto, P. Substituição de milho por sorgo baixo tanino em dietas para suínos: Digestibilidade e metabolismo. Arq. Bras. Med. Veterinária Zootec. 2007, 59, 767–772. [Google Scholar] [CrossRef]
- Amouzou, K.A.; Lamers, J.P.; Naab, J.B.; Borgemeister, C.; Vlek, P.L.; Becker, M. Climate change impact on water- and nitrogen-use efficiencies and yields of maize and sorghum in the northern Benin dry savanna, West Africa. Field Crop. Res. 2019, 235, 104–117. [Google Scholar] [CrossRef]
- Olstorpe, M.; Passoth, V. Pichia anomala in grain biopreservation. Antonie Van Leeuwenhoek 2010, 99, 57–62. [Google Scholar] [CrossRef]
- Welin, J.B.; Lyberg, K.; Passoth, V.; Olstorpe, M. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium. Front. Plant. Sci. 2015, 6, 270. [Google Scholar] [CrossRef] [Green Version]
- Schedle, K. Sustainable pig and poultry nutrition by improvement of nutrient utilisation—A review. Die Bodenkultur: J. Land Manag. Food Environ. 2016, 71, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Resch, R.; Zentner, E.; Wetscherek, W. Impact of Storage Conditions on Gas.-Composition and Fermentation-Losses of Cornsilage (GKS). Project. Nr. 2395 (DaFNE100885) HBLFA Raumberg-Gumpenstein, A-8952 Irdning-Donnersbachtal; Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft: Vienna, Austria, 2014; pp. 1–34.
- Crenshaw, J.D.; Peo, E.R.; Lewis, A.J.; Moser, B.D.; Crenshaw, T.D. The Nutritional Value of High Moisture and Reconstituted Sorghum Grain for Swine3. J. Anim. Sci. 1984, 58, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Myer, R.O.; Gorbet, D.W.; Combs, G.E. Nutritive Value of High- and Low-Tannin Grain Sorghums Harvested and Stored in the High-Moisture State for Growing-Finishing Swine. J. Anim. Sci. 1986, 62, 1290–1297. [Google Scholar] [CrossRef]
- Jørgensen, H.; Sholly, D.; Pedersen, A.Ø.; Canibe, N.; Knudsen, K.E.B. Fermentation of cereals—Influence on digestibility of nutrients in growing pigs. Livest. Sci. 2010, 134, 56–58. [Google Scholar] [CrossRef]
- Cho, J.; Zhang, Z.; Kim, I. Effects of fermented grains as raw cereal substitutes on growth performance, nutrient digestibility, blood profiles, and fecal noxious gas emission in growing pigs. Livest. Sci. 2013, 154, 131–136. [Google Scholar] [CrossRef]
- Blaabjerg, K.; Carlson, D.; Hansen-Møller, J.; Tauson, A.-H.; Poulsen, H. In vitro degradation of phytate and lower inositol phosphates in soaked diets and feedstuffs. Livest. Sci. 2007, 109, 240–243. [Google Scholar] [CrossRef]
- Niven, S.; Zhu, C.; Columbus, D.; Pluske, J.; De Lange, C. Impact of controlled fermentation and steeping of high moisture corn on its nutritional value for pigs. Livest. Sci. 2007, 109, 166–169. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V.; Caldwell, A.; Bryden, W.L. Phytate and phytase: Consequences for protein utilization. Nutr. Res. Rev. 2000, 13, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Kraler, M.; Schedle, K.; Domig, K.; Heine, D.; Michlmayr, H.; Kneifel, W. Effects of fermented and extruded wheat bran on total tract apparent digestibility of nutrients, minerals and energy in growing pigs. Anim. Feed. Sci. Technol. 2014, 197, 121–129. [Google Scholar] [CrossRef]
- Lyberg, K.; Lundh, T.; Pedersen, C.; Lindberg, J.E. Influence of soaking, fermentation and phytase supplementation on nutrient digestibility in pigs offered a grower diet based on wheat and barley. J. Anim. Sci. 2006, 82, 853–858. [Google Scholar] [CrossRef]
- Lopez, H.W.; Ouvry, A.; Bervas, E.; Guy, C.; Messager, A.; Demigne, C.; Remesy, C. Strains of Lactic Acid Bacteria Isolated from Sour Doughs Degrade Phytic Acid and Improve Calcium and Magnesium Solubility from Whole Wheat Flour. J. Agric. Food Chem. 2000, 48, 2281–2285. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Gallo, G.; Corbo, M.R.; McSweeney, P.L.H.; Faccia, M.; Giovine, M.; Gobbetti, M. Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB 1. Int. J. Food Microbiol. 2010, 87, 259–270. [Google Scholar] [CrossRef]
- Brinch-Pedersen, H.; Madsen, C.K.; Holme, I.B.; Dionisio, G. Increased understanding of the cereal phytase complement for better mineral bio-availability and resource management. J. Cereal Sci. 2014, 59, 373–381. [Google Scholar] [CrossRef]
Ingredient | Amount, g kg−1 |
---|---|
Sorghum | 950.5 |
Limestone | 15.5 |
Salt | 2.5 |
L-Lysine-HCl | 12.0 |
DL-Methionine | 3.5 |
L-Threonine | 4.7 |
L-Valine | 2.0 |
L-Isoleucine | 2.4 |
L-Tryptophan | 1.4 |
Choline chloride | 0.5 |
Vitamin and trace mineral premix 1 | 5.0 |
Chemical composition | g kg−1 DM |
Dry matter | 897 |
Crude protein | 113 |
Ether extract | 33 |
Ash | 15 |
Crude fiber | 25 |
SID Lysine | 11.3 |
SID Methionine and Cysteine | 6.2 |
SID Threonine | 7.5 |
SID Tryptophan | 2.2 |
SID Valine | 5.3 |
SID Isoleucine | 5.0 |
SID Leucine | 9.5 |
SID Histidine | 1.7 |
Calcium | 6.5 |
Total Phosphorus | 2.6 |
Natrium | 1.1 |
Experimental Group | |||
---|---|---|---|
S1 | S2 | S3 | |
Nutrients | |||
Dry matter (g kg−1) | 701.2 | 738.4 | 809.5 |
Organic matter (g kg−1 DM) | 979.8 | 980.2 | 979.9 |
Crude protein (g kg−1 DM) | 95.4 | 93.1 | 98.6 |
Ether extracth (g kg−1 DM) | 35.8 | 36.2 | 34.7 |
Crude fiber (g kg−1 DM) | 27.5 | 28.6 | 24.9 |
Ash (g kg−1 DM) | 20.2 | 19.8 | 20.1 |
Starch (g kg−1 DM) | 751.4 | 760.9 | 763.0 |
Sugar (g kg−1 DM) | 13.8 | 14.5 | 4.9 |
Gross energy (MJ kg−1 DM) | 18.5 | 18.8 | 18.9 |
Phosphor (g kg−1 DM) | 4.4 | 4.3 | 4.5 |
Calcium (g kg−1 DM) | 1.5 | 1.6 | 1.5 |
Fermentation characteristics | |||
Acetic acid (g kg−1 DM) | 3.3 | 4.1 | 1.6 |
Butyric acid (g kg−1 DM) | 0.6 | 0.3 | 0.1 |
Lactic acid (g kg−1 DM) | 4.4 | 1.4 | 3.0 |
NH3 (g kg−1 N) | 38.1 | 25.7 | 18.4 |
Item | Experimental Group | SEM | p-Value | ||
---|---|---|---|---|---|
S1 | S2 | S3 | Treat | ||
GE, % | 90.29 a | 89.49 ab | 88.87 b | 0.24 | 0.049 |
DM, % | 91.44 a | 90.81 ab | 89.73 b | 0.26 | 0.021 |
OM, % | 92.91 a | 92.31 ab | 91.72 b | 0.18 | 0.020 |
CP, % | 79.97 | 76.85 | 77.53 | 1.11 | 0.443 |
EEh, % | 49.19 | 46.06 | 47.32 | 1.09 | 0.490 |
CF, % | 76.33 | 75.93 | 73.82 | 1.09 | 0.460 |
NfE, % | 97.26 a | 96.73 ab | 96.31 b | 0.12 | <0.001 |
Starch, % | 99.69 a | 99.62 a | 99.48 b | 0.02 | <0.001 |
Ash, % | 23.36 a | 16.70 ab | 7.91 b | 2.42 | 0.035 |
Ca, % | 68.84 | 70.08 | 64.70 | 1.23 | 0.127 |
P, % | 62.90 a | 55.93 b | 48.00 b | 1.56 | <0.001 |
Item | Experimental Group | SEM | p-Value | ||
---|---|---|---|---|---|
S1 | S2 | S3 | Treat | ||
DE (MJ kg−1 DM) | 16.6 | 16.8 | 16.8 | 0.04 | 0.098 |
ME (MJ kg−1 DM) | 16.2 | 16.1 | 16.1 | 0.04 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puntigam, R.; Slama, J.; Brugger, D.; Leitner, K.; Schedle, K.; Wetscherek-Seipelt, G.; Wetscherek, W. Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs. Animals 2021, 11, 1199. https://doi.org/10.3390/ani11051199
Puntigam R, Slama J, Brugger D, Leitner K, Schedle K, Wetscherek-Seipelt G, Wetscherek W. Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs. Animals. 2021; 11(5):1199. https://doi.org/10.3390/ani11051199
Chicago/Turabian StylePuntigam, Reinhard, Julia Slama, Daniel Brugger, Karin Leitner, Karl Schedle, Gabriela Wetscherek-Seipelt, and Wolfgang Wetscherek. 2021. "Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs" Animals 11, no. 5: 1199. https://doi.org/10.3390/ani11051199
APA StylePuntigam, R., Slama, J., Brugger, D., Leitner, K., Schedle, K., Wetscherek-Seipelt, G., & Wetscherek, W. (2021). Fermentation of Whole Grain Sorghum (Sorghum bicolor (L.) Moench) with Different Dry Matter Concentrations: Effect on the Apparent Total Tract Digestibility of Energy, Crude Nutrients and Minerals in Growing Pigs. Animals, 11(5), 1199. https://doi.org/10.3390/ani11051199