Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Classical Cytogenetics
3. Chromosome Rearrangements in the Domestic Pig
4. Clinical Cytogenetics
5. Reciprocal Translocations
6. Robertsonian Translocations and Tandem Fusions
7. Paracentric and Pericentric Inversions
8. Chromosomal Aneuploidy
9. Mosaicism
10. Fragile Sites
11. Molecular Cytogenetics
12. Implementation in Clinical Cytogenetics
13. Cytogenomics
14. Implementation of Cytogenomics in Clinical Cytogenetics
15. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Raudsepp, T.; Chowdhary, B.P. Cytogenetics and chromosome maps. In the Genetics of the Pig, 2nd ed.; CABI: Wallingford, UK, 2011; pp. 134–178. [Google Scholar]
- Gustavsson, I. Chromosomes of the pig. In Advances in Veterinary Science and Comparative Medicine; Academic Press: Cambridge, MA, USA, 1990; Volume 34, pp. 73–107. [Google Scholar]
- Grahofer, A.; Letko, A.; Häfliger, I.M.; Jagannathan, V.; Ducos, A.; Richard, O.; Peter, V.; Nathues, H.; Drögemüller, C. Chromosomal imbalance in pigs showing a syndromic form of cleft palate. BMC Genom. 2019, 20, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quach, A.T.; Revay, T.; Villagomez, D.A.F.; Macedo, M.P.; Sullivan, A.; Maignel, L.; Wyss, S.; Sullivan, B.; King, W.A. Prevalence and consequences of chromosomal abnormalities in Canadian commercial swine herds. Genet. Sel. Evol. 2016, 48, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Rejduch, B. Molecular Cytogenetics in the Diagnostics of Balanced Chromosome Mutations in the Pig (Sus scrofa)—A Review. Ann. Anim. Sci. 2016, 16, 679–699. [Google Scholar] [CrossRef] [Green Version]
- King, W.A.; Gustavsson, I.; Popescu, C.P.; Linares, T. Gametic products transmitted by rcp (13q−; 14q+) translocation heterozygous pigs, and resulting embryonic loss. Hereditas 1981, 95, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Pinton, A.; Ducos, A.; Berland, H.; Seguela, A.; Brun-Baronnat, C.; Darré, A.; Darré, R.; Schmitz, A.; Yerle, M. Chromosomal Abnormalities in Hypoprolific Boars. Hereditas 2004, 132, 55–62. [Google Scholar] [CrossRef]
- Ducos, A.; Berland, H.-M.; Bonnet, N.; Calgaro, A.; Billoux, S.; Mary, N.; Garnier-Bonnet, A.; Darré, R.; Pinton, A. Chromosomal control of pig populations in France: 2002–2006 survey. Genet. Sel. Evol. 2007, 39, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, W.A.; Donaldson, B.; Rezaei, S.; Schmidt, C.; Revay, T.; Villagomez, D.A.; Kuschke, K. Chromosomal abnormalities in swine and their impact on production and profitability. In Comprehensive Biotechnology, 3rd ed.; Moo-Young, M., Ed.; Pergamon Press: Oxford, UK, 2019; pp. 508–518. [Google Scholar]
- Ducos, A.; Berland, H.M.; Pinton, A.; Guillemot, E.; Seguela, A.; Blanc, M.F.; Darre, A.; Darre, R. Nine new cases of reciprocal translocation in the domestic pig (Sus scrofa domestica L.). J. Hered. 1998, 89, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Ducos, A.; Revay, T.; Kovacs, A.; Hidas, A.; Pinton, A.; Bonnet-Garnier, A.; Molteni, L.; Slota, E.; Switonski, M.; Arruga, M.V.; et al. Cytogenetic screening of livestock populations in Europe: An overview. Cytogenet. Genome Res. 2008, 120, 26–41. [Google Scholar] [CrossRef]
- Bryden, W. The chromosomes of the pig. Cytologia 1993, 5, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Krallinger, H.F. Cytologische Studien an Einigen Haussäugetieren [Cytological Studies on Some Domestic Animals]; Springer: Berlin/Heidelberg, Germany, 1931. [Google Scholar]
- McConnell, J.; Fechheimer, N.S.; Gilmore, L.O. Somatic Chromosomes of the Domestic Pig. J. Anim. Sci. 1963, 22, 374–379. [Google Scholar] [CrossRef]
- Lejeune, J. Etude des Chromosomes Somatiques de Neuf Enfants Mongoliens [Study of the Somatic Chromosomes of Nine Mongoloid Children]. CR Acad. Sci. 1959, 248, 1721–1722. [Google Scholar]
- Patau, K.; Smith, D.; Therman, E.; Inhorn, S.; Wagner, H. Multiple congenital anomaly caused by an extra autosome. Lancet 1960, 275, 790–793. [Google Scholar] [CrossRef]
- Edwards, J.; Harnden, D.; Cameron, A.; Crosse, V.; Wolf, O. A new trisomic syndrome. Lancet 1960, 275, 787–790. [Google Scholar] [CrossRef]
- McIlree, M.; Price, W.; Brown, W.; Tulloch, W.; Newsam, J.; MacLean, N. sChromosome studies on testicular cells from 50 subfertile men. Lancet 1966, 288, 69–71. [Google Scholar] [CrossRef]
- Philip, J.; Skakkebæk, N.E.; Hammen, R.; Johnsen, S.G.; Rebbe, H. Cytogenetic investigations in male infertility. Acta Obstet. Gynecol. Scand. 1970, 49, 235–239. [Google Scholar] [CrossRef]
- Chandley, A.C.; Edmond, P.; Christie, S.; Gowans, L.; Fletcher, J.; Frackiewicz, A.; Newton, M. Cytogenetics and infertility in man. I. Karyotype and seminal analysis: Results of a five-year survey of men attending a subfertility clinic. Ann. Hum. Genet. 1975, 39, 231–254. [Google Scholar] [CrossRef]
- Moorhead, P.S.; Nowell, P.C.; Mellman, W.J.; Battips, D.T.; Hungerford, D.A. Chromosome preparations of leukocytes cultured from human peripheral blood. Exp. Cell Res. 1960, 20, 613–616. [Google Scholar] [CrossRef]
- Arakaki, D.; Sparkes, R. Microtechnique for Culturing Leukocytes from Whole Blood. Cytogenet. Genome Res. 1963, 2, 57–60. [Google Scholar] [CrossRef]
- Caspersson, T.; Zech, L.; Johansson, C.; Modest, E.J. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 1970, 30, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Seabright, M. A rapid banding technique for human chromosomes. Lancet 1971, 298, 971–972. [Google Scholar] [CrossRef]
- Dutrillaux, B.; Lejeune, J. Sur une Nouvelle Technique D’analyse du Caryotype Humain [On a New Technique for Analyzing the Human Karyotype]. CR Acad. Sci. 1971, 272, 2638–2640. [Google Scholar]
- Dutrillaux, B. Coloration des Chromosomes Humains par L’acridine Orange Après Traitement par le 5 Bromodéoxyuridine [Staining of Human Chromosomes with Acridine Orange after Treatment with 5 Bromodeoxyuridine]. CR Acad. Sci. 1973, 276, 3179–3181. [Google Scholar]
- Wang, H.C.; Fedoroff, S. Banding in Human Chromosomes treated with Trypsin. Nat. New Biol. 1972, 235, 52–54. [Google Scholar] [CrossRef]
- Bickmore, A.W. Karyotype analysis and chromosome banding. eLS 2001. [Google Scholar] [CrossRef]
- Hageltorn, M.; Gustavsson, I. Giemsa staining patterns for identification of the pig mitotic chromosomes. Hereditas 2009, 75, 144–146. [Google Scholar] [CrossRef]
- Gustavsson, I. Banding techniques in chromosome analysis of domestic animals. Adv. Vet. Sci. Comp. Med. 1980, 24, 245–289. [Google Scholar] [PubMed]
- Sumner, A. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972, 75, 304–306. [Google Scholar] [CrossRef]
- Bloom, S.E.; Goodpasture, C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. Qual. Life Res. 1976, 34, 199–206. [Google Scholar] [CrossRef]
- Dutrillaux, B. Nouveau Système de Marquage Chromosomique: Les Bandes T [New Chromosome Labeling System: T Bands]. Chromosoma 1973, 41, 395–402. [Google Scholar] [CrossRef]
- Gustavsson, I. Standard karyotype of the domestic pig: Committee for the Standardized Karyotype of the Domestic Pig. Hereditas 1988, 109, 151–157. [Google Scholar] [CrossRef]
- Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Human interphase chromosomes: A review of available molecular cytogenetic technologies. Mol. Cytogenet. 2010, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berardino, D.D.; Lannuzzi, L.; Lioi, M. The high-resolution RBA-banding pattern of bovine chromosomes. Cytogenet. Genome Res. 1985, 39, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Rønne, M. Chromosome preparation and high resolution banding. In Vivo 1990, 4, 337–365. [Google Scholar] [PubMed]
- Yerle, M.; Galman, O.; Echard, G. The high-resolution GTG-banding pattern of pig chromosomes. Cytogenet. Genome Res. 1991, 56, 45–47. [Google Scholar] [CrossRef]
- Gustavsson, I.; Hageltorn, M.; Johansson, C.; Zech, L. Identification of the pig chromosomes by the quinacrine mustard fluorescence technique. Exp. Cell Res. 1972, 70, 471–474. [Google Scholar] [CrossRef]
- Lin, C.C.; Biederman, B.M.; Jamro, H.K.; Hawthorne, A.B.; Church, R.B. Porcine (Sus scrofa domestica) chromosome identification and suggested nomenclature. Can. J. Genet. Cytol. 1980, 22, 103–116. [Google Scholar] [CrossRef]
- Rønne, M.; Stefanova, V.; Di Berardino, D.; Poulsen, B.S. The R-banded karyotype of the domestic pig (Sus scrofa dornestica L.). Hereditas 2008, 106, 219–231. [Google Scholar] [CrossRef]
- Ford, C.E.; Pollock, D.L.; Gustavsson, I. Proceedings of the First International Conference for the Standardisation of Banded Karyotypes of Domestic Animals University of Reading Reading, England, 2–6 August 1976. Hereditas 1980, 92, 145–162. [Google Scholar] [CrossRef]
- Donaldson, B.; Villagomez, D.A.; Revay, T.; Rezaei, S.; King, W.A. Non-Random distribution of reciprocal translocation breakpoints in the pig genome. Genes 2019, 10, 769. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Sánchez, R.; Gómez-Fidalgo, E.; Pérez-Garnelo, S.; Martín-Lluch, M.; De La Cruz-Vigo, P. Prevalence of chromosomal aberrations in breeding pigs in Spain. Reprod. Domest. Anim. 2019, 54, 98–101. [Google Scholar] [CrossRef]
- Basrur, P.; Stranzinger, G. Veterinary cytogenetics: Past and perspective. Cytogenet. Genome Res. 2008, 120, 11–25. [Google Scholar] [CrossRef]
- Dagorn, R. Note Aux Établissements Départementaux de l’Elevage; Institut Technique du Porc: Paris, France, 1978. [Google Scholar]
- Popescu, C.P.; Boscher, J.; Tixier, M. Une nouvelle translocation réciproque t, rcp (7q−; 15q+) chez un verrat «hypoprolifique» [A new reciprocal translocation, rcp (7q−; 15q+) translocation in a “hypoprolific” boar]. Génétique Sél. Évol. 1983, 15, 479–488. [Google Scholar] [CrossRef]
- Ducos, A.; Pinton, A.; Berland, H.-M.; Seguela, A.; Blanc, M.-F.; Darre, A.; Darre, R. Five New Cases of Reciprocal Translocation in the Domestic Pig. Hereditas 2004, 128, 221–229. [Google Scholar] [CrossRef]
- Ducos, A.; Pinton, A.; Yerle, M.; Séguéla, A.; Berland, H.-M.; Brun-Baronnat, C.; Bonnet, N.; Darré, R. Cytogenetic and molecular characterization of eight new reciprocal translocations in the pig species. Estimation of their incidence in French populations. Genet. Sel. Evol. 2002, 34, 1–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducos, A.; Calgaro, A.; Mouney-Bonnet, N.; Loustau, A.M.; Revel, C.; Barasc, H.; Mary, N.; Pinton, A. Chromosomal control of pig populations in France: A 20-year perspective. Journées Rech. Porc. Fr. 2017, 49, 49–50. [Google Scholar]
- Pinton, A.; Calgaro, A.; Bonnet, N.; Mary, N.; Dudez, A.M.; Barasc, H.; Plard, C.; Yerle, M.; Ducos, A. Chromosomal control of pig populations in France: 2007–2010 survey. Journées Rech. Porc. Franc. 2012, 44, 43–44. [Google Scholar]
- Villagómez, D.A.; Revay, T.; Donaldson, B.; Rezaei, S.; Pinton, A.; Palomino, M.; Junaidi, A.; Honaramooz, A.; King, W.A. Azoospermia and Testicular Hypoplasia in a Boar Carrier of a Novel Y-Autosome Translocation. Sex. Dev. 2017, 11, 46–51. [Google Scholar] [CrossRef]
- Tikhonov, V.N.; Troshina, A.I. Chromosome translocations in the karyotypes of wild boars Sus scrofa L. of the European and the Asian areas of USSR. Theor. Appl. Genet. 1975, 45, 304–308. [Google Scholar] [CrossRef]
- Rejduch, B.; Slota, E.; Rozycki, M.; Koscielny, M. Chromosome number polymorphism in a litter of European wild boar (Sus scrofa scrofa L.). Anim. Sci. Pap. Rep. 2003, 1, 57–62. [Google Scholar]
- Miyake, Y.-I.; Kawata, K.; Ishikawa, T.; Umezu, M. Translocation heterozygosity in a malformed piglet and its normal littermates. Teratology 1977, 16, 163–167. [Google Scholar] [CrossRef]
- Alonso, R.A.; Cantu, J.M. A Robertsonian translocation in the domestic pig (Sus scrofa) 37,XX,-13,-17,t rob(13;17). Ann. Génétique 1982, 25, 50–52. [Google Scholar]
- Schwerin, M.; Golisch, D.; Ritter, E. A Robertsonian translocation in swine. Genet. Sel. Evol. 1986, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Słota, E. A new case of reciprocal translocation t (10;13) (q16;q21) diagnosed in an AI boar. J. Appl. Genet. 2007, 48, 379–382. [Google Scholar] [CrossRef]
- Pinton, A.; Calgaro, A.; Bonnet, N.; Ferchaud, S.; Billoux, S.; Dudez, A.; Mary, N.; Massip, K.; Bonnet-Garnier, A.; Yerle, M.; et al. Influence of sex on the meiotic segregation of a t (13;17) Robertsonian translocation: A case study in the pig. Hum. Reprod. 2009, 24, 2034–2043. [Google Scholar] [CrossRef] [Green Version]
- Switonski, M.; Stranzinger, G. Studies of synaptonemal complexes in farm mammals—A review. J. Hered. 1998, 89, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villagómez, D.; Pinton, A. Chromosomal abnormalities, meiotic behavior and fertility in domestic animals. Cytogenet. Genome Res. 2008, 120, 69–80. [Google Scholar]
- McFeely, R.A. A direct method for the display of chromosomes from early pig embryos. Reproduction 1996, 11, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Lojda, L. The cytogenetic pattern in pigs with hereditary intersexuality similar to the syndrome of testicular feminization in man. Acta Vet. Brno 1975, 8, 71–82. [Google Scholar]
- Breeuwsma, A.J. A case of XXY sex chromosome constitution in an intersex pig. Reproduction 1968, 16, 119–120. [Google Scholar] [CrossRef]
- Hancock, J.L.; Daker, M.G. Testicular hypoplasia in a boar with abnormal sex chromosome constitution (39 XXY). Reproduction 1981, 61, 395–397. [Google Scholar] [CrossRef] [Green Version]
- Mäkinen, A.; Andersson, M.; Nikunen, S. Detection of the X chromosomes in a Klinefelter boar using a whole human X chromosome painting probe. Anim. Reprod. Sci. 1998, 52, 317–323. [Google Scholar] [CrossRef]
- Ducos, A.; Berland, H.M.; Pinton, A.; Calgaro, A.; Brun-Baronnat, C.; Bonnet, N.; Garnier-Bonnet, A.; Darré, R. Chromosome control of domestic animal populations in France. 16th European Colloquium on Animal Cytogenetics and Gene Mapping. Cytogenet. Genome Res. 2004, 106, 1–27. [Google Scholar]
- Villagómez, D.A.F.; Gustavsson, I.; Jönsson, L.; Plöen, L. Reciprocal Chromosome Translocation, rcp(7;17)(q26;q11), in a Boar Giving Reduced Litter Size and Increased Rate of Piglets Dying in the Early Life. Hereditas 2004, 122, 257–267. [Google Scholar] [CrossRef]
- Rezaei, S.; Donaldson, B.; Villagomez, D.A.F.; Revay, T.; Mary, N.; Grossi, D.A.; King, W.A. Routine Karyotyping Reveals Frequent Mosaic Reciprocal Chromosome Translocations in Swine: Prevalence, Pedigree, and Litter Size. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Musilova, P.; Drbalova, J.; Kubickova, S.; Cernohorska, H.; Stepanova, H.; Rubes, J. Illegitimate recombination between T cell receptor genes in humans and pigs (Sus scrofa domestica). Chromosom. Res. 2014, 22, 483–493. [Google Scholar] [CrossRef]
- Quilter, C.R.; Wood, D.; Southwood, O.I.; Griffin, D.K. X/XY/XYY mosaicism as a cause of subfertility in boars: A single case study. Anim. Genet. 2003, 34, 51–54. [Google Scholar] [CrossRef]
- Bruère, A.; Fielden, E.; Hutchings, H. XX/XY mosaicism in lymphocyte cultures from a pig with freemartin characteristics. N. Z. Vet. J. 1968, 16, 31–38. [Google Scholar] [CrossRef]
- Somlev, B.; Hansen-Melander, E.; Melander, Y.; Holm, L. XX/XY chimerism in leucocytes of two intersexual pigs. Hereditas 2009, 64, 203–210. [Google Scholar] [CrossRef]
- Toyama, Y. Sex chromosome mosaicisms in five swine intersexes. Jpn. J. Zootech. Sci. 1974, 45, 551–557. [Google Scholar]
- Christensen, K.; Nielsen, P.B. A case of blood chimerism (XX, XY) in pigs. Anim. Blood Groups Biochem. Genet. 1980, 11, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, B.G.; Fisher, K.R.S.; Partlow, G.D. Agonadal presumptive XX/XY leukochimeric pig. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 1995, 242, 195–199. [Google Scholar] [CrossRef]
- Tsai, A.G.; Lieber, M.R. Mechanisms of chromosomal rearrangement in the human genome. BMC Genom. 2010, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiraiwa, H.; Uenishi, H.; Kiuchi, S.; Watanabe, M.; Takagaki, Y.; Yasue, H. Assignment of T cell receptor (TCR) alpha-chain gene (A), beta-chain gene (B), gamma-chain gene (G), and delta-chain gene (D) loci on swine chromosomes by in situ hybridization and radiation hybrid mapping. Cytogenet. Cell Genet. 2001, 93, 94–99. [Google Scholar] [CrossRef]
- Riggs, P.; Kuczek, T.; Chrisman, C.; Bidwell, C. Analysis of aphidicolin-induced chromosome fragility in the domestic pig (Sus scrofa). Cytogenet. Genome Res. 1993, 62, 110–116. [Google Scholar] [CrossRef]
- Yang, M.; Long, S. Folate sensitive common fragile sites in chromosomes of the domestic pig (Sus scrofa). Res. Vet. Sci. 1993, 55, 231–235. [Google Scholar] [CrossRef]
- Rønne, M. Localization of Fragile Sites in the Karyotype of Sus scrofa domestica: Present Status. Hereditas 2004, 122, 153–162. [Google Scholar] [CrossRef]
- Riggs, P.; Rønne, M. Fragile Sites in Domestic Animal Chromosomes: Molecular Insights and Challenges. Cytogenet. Genome Res. 2009, 126, 97–109. [Google Scholar] [CrossRef]
- Rubeš, J.; Pinton, A.; Bonnet-Garnier, A.; Fillon, V.; Musilova, P.; Michalova, K.; Kubíčková, S.; Ducos, A.; Yerle, M. Fluorescence in situ Hybridization Applied to Domestic Animal Cytogenetics. Cytogenet. Genome Res. 2009, 126, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Pinkel, D.; Straume, T.; Gray, J.W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA 1986, 83, 2934–2938. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.Y.; Mullins, J.M. Conjugation of fluorochromes to antibodies. In Immunocytochemical Methods and Protocols; Humana Press: Totowa, NJ, USA, 2010; pp. 43–48. [Google Scholar]
- Fahrenkrug, S.C.; Rohrer, G.A.; Freking, B.A.; Smith, T.P.; Osoegawa, K.; Shu, C.L.; Catanese, J.J.; De Jong, P.J. A porcine BAC library with tenfold genome coverage: A resource for physical and genetic map integration. Mamm. Genome 2001, 12, 472–474. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, A.; Chaput, B.; Fouchet, P.; Guilly, M.N.; Frelat, G.; Vaiman, M. Swine chromosomal DNA quantification by bivariate flow karyotyping and karyotype interpretation. Cytom. J. Int. Soc. Anal. Cytol. 1992, 13, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Telenius, H.; Ponder, B.A.J.; Tunnacliffe, A.; Pelmear, A.H.; Carter, N.P.; Ferguson-Smith, M.A.; Behmel, A.; Nordenskjöld, M.; Pfragner, R. Cytogenetic analysis by chromosome painting using dop-pcr amplified flow-sorted chromosomes. Genes Chromosom. Cancer 1992, 4, 257–263. [Google Scholar] [CrossRef]
- Langford, C.F.; Telenius, H.; Miller, N.G.A.; Thomsen, P.D.; Tucker, E.M. Preparation of chromosome-specific paints and complete assignment of chromosomes in the pig flow karyotype. Anim. Genet. 2009, 24, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Scalenghe, F.; Turco, E.; Edström, J.E.; Pirrotta, V.; Melli, M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma 1981, 82, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Kijas, J.; Raudsepp, T.; Guan, X.Y.; Zhang, H.; Chowdhary, B.P. Microdissection of pig chromosomes: Dissection of whole chromosomes, arms and bands for construction of paints and libraries. Hereditas 1998, 128, 265–271. [Google Scholar] [CrossRef]
- Pinton, A.; Ducos, A.; Yerle, M. Chromosomal rearrangements in cattle and pigs revealed by chromosome microdissection and chromosome painting. Genet. Sel. Evol. 2003, 35, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schermelleh, L.; Thalhammer, S.; Heckl, W.; Pösl, H.; Cremer, T.; Schütze, K.; Cremer, M. Laser Microdissection and Laser Pressure Catapulting for the Generation of Chromosome-Specific Paint Probes. Biotechniques 1999, 27, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Kubickova, S.; Cernohorska, H.; Musilova, P.; Rubes, J. The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosom. Res. 2002, 10, 571–577. [Google Scholar] [CrossRef]
- Ried, T.; Schröck, E.; Ning, Y.; Wienberg, J. Chromosome painting: A useful art. Hum. Mol. Genet. 1998, 7, 1619–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, J.; Hindkjaer, J.; Mogensen, J.; Kølvraa, S.; Bolund, L. An improved method for chromosome-specific labeling of α satellite DNA in situ by using denatured double-stranded DNA probes as primers in a primed in situ labeling (PRINS) procedure. Genet. Anal. Biomol. Eng. 1991, 8, 171–178. [Google Scholar] [CrossRef]
- Seña, C.D.L.; Chowdhary, B.P.; Gustavsson, I. Localization of the telomeric (TTAGGG) n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 1995, 123, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Hindkjaer, J.; Gustavsson, I.; Bolund, L. A signal of telomeric sequences on porcine chromosome 6q21–q22 detected by primed in situ labelling. Chromosom. Res. 1996, 4, 251–252. [Google Scholar] [CrossRef]
- Pellestor, F.; Girardet, A.; Lefort, G.; Andréo, B.; Charlieu, J.P. Use of the primed in situ labelling (PRINS) technique for a rapid detection of chromosomes 13, 16, 18, 21, X and Y. Hum. Genet. 1995, 95, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Hindkjaer, J.; Thomsen, P.D. A chromosomal basis for the differential organization of a porcine centromere-specific repeat. Cytogenet. Genome Res. 1993, 62, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Rogel-Gaillard, C.; Bourgeaux, N.; Save, J.C.; Renard, C.; Coullin, P.; Pinton, P.; Yerle, M.; Vaiman, M.; Chardon, P. Construction of a swine YAC library allowing an efficient recovery of unique and centromeric repeated sequences. Mamm. Genome 1997, 8, 186–192. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Rejduch, B.; Kozubska-Sobocińska, A. Identification of telomeric sequences in pigs with rearranged karyotype using PRINS technique. Ann. Anim. Sci. 2013, 13, 495–502. [Google Scholar] [CrossRef]
- Goureau, A.; Yerle, M.; Schmitz, A.; Riquet, J.; Milan, D.; Pinton, P.; Frelat, G.; Gellin, J. Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 1996, 36, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, B.P.; Raudsepp, T.; Frönicke, L.; Scherthan, H. Emerging patterns of comparative genome organization in some mammalian species as revealed by Zoo-FISH. Genome Res. 1998, 8, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Sarrate, Z.; Anton, E. Fluorescence in situ hybridization (FISH) protocol in human sperm. J. Vis. Exp. JoVE 2009, 31, 1405. [Google Scholar] [CrossRef]
- Konfortova, G.; Miller, N.; Tucker, E. A new reciprocal translocation (7q+;15q−) in the domestic pig. Cytogenet. Genome Res. 1995, 71, 285–288. [Google Scholar] [CrossRef]
- Pinton, A.; Faraut, T.; Yerle, M.; Gruand, J.; Pellestor, F.; Ducos, A. Comparison of male and female meiotic segregation patterns in translocation heterozygotes: A case study in an animal model (Sus scrofa domestica L.). Hum. Reprod. 2005, 20, 2476–2482. [Google Scholar] [CrossRef] [Green Version]
- Pinton, A.; Ducos, A.; Séguéla, A.; Berland, H.M.; Darré, R.; Darré, A.; Pinton, P.; Schmitz, A.; Cribiu, E.P.; Yerle, M. Characterization of reciprocal translocations in pigs using dual-colour chromosome painting and primed in situ DNA labelling. Chromosome Res. 1998, 6, 361–366. [Google Scholar] [CrossRef]
- Pinton, A.; Pailhoux, E.; Piumi, F.; Rogel-Gaillard, C.; Darré, R.; Yerle, M.; Ducos, A.; Cotinot, C. A case of intersexuality in pigs associated with a de novo paracentric inversion 9 (p1. 2; p2. 2). Anim. Genet. 2002, 33, 69–71. [Google Scholar] [CrossRef]
- O’Connor, R.E.; Fonseka, G.; Frodsham, R.; Archibald, A.L.; Lawrie, M.; Walling, G.A.; Griffin, D.K. Isolation of subtelomeric sequences of porcine chromosomes for translocation screening reveals errors in the pig genome assembly. Anim. Genet. 2017, 48, 395–403. [Google Scholar] [CrossRef]
- Barasc, H.; Mary, N.; Letron, R.; Calgaro, A.; Dudez, A.; Bonnet, N.; Lahbib-Mansais, Y.; Yerle, M.; Ducos, A.; Pinton, A. Y-Autosome Translocation Interferes with Meiotic Sex Inactivation and Expression of Autosomal Genes: A Case Study in the Pig. Sex. Dev. 2012, 6, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Mary, N.; Barasc, H.; Ferchaud, S.; Billon, Y.; Meslier, F.; Robelin, D.; Calgaro, A.; Loustau-Dudez, A.M.; Bonnet, N.; Yerle, M.; et al. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PLoS ONE 2014, 9, e99123. [Google Scholar] [CrossRef] [PubMed]
- Pinton, A.; Letron, I.R.; Berland, H.; Bonnet, N.; Calgaro, A.; Garnier-Bonnet, A.; Yerle, M.; Ducos, A. Meiotic studies in an azoospermic boar carrying a Y;14 translocation. Cytogenet. Genome Res. 2008, 120, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Bonnet-Garnier, A.; Guardia, S.; Pinton, A.; Ducos, A.; Yerle, M. Analysis using sperm-FISH of a putative interchromosomal effect in boars carrying reciprocal translocations. Cytogenet. Genome Res. 2009, 126, 194–201. [Google Scholar] [CrossRef]
- Massip, K.; Bonnet, N.; Calgaro, A.; Billoux, S.; Baquié, V.; Mary, N.; Bonnet-Garnier, A.; Ducos, A.; Yerle, M.; Pinton, A. Male Meiotic Segregation Analyses of Peri- and Paracentric Inversions in the Pig Species. Cytogenet. Genome Res. 2009, 125, 117–124. [Google Scholar] [CrossRef]
- Massip, K.; Yerle, M.; Billon, Y.; Ferchaud, S.; Bonnet, N.; Calgaro, A.; Mary, N.; Dudez, A.-M.; Sentenac, C.; Plard, C.; et al. Studies of male and female meiosis in inv (4) (p1.4; q2.3) pig carriers. Chromosom. Res. 2010, 18, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Kozubska-Sobocińska, A.; Rejduch, B. Diagnosis of tandem fusion translocation in the boar using FISH technique with human painting probes. Ann. Anim. Sci. 2010, 10, 361–366. [Google Scholar]
- Rejduch, B.; Slota, E.; Sysa, P.; Koscielny, M.; Wrzeska, M.; Babicz, M. Synaptonemal complexes analysis of the European wild boars û carriers of the 15; 17 Robertsonian translocation. Rocz. Nauk. Zootech. 2003, 3, 255–262. [Google Scholar]
- Kawarasaki, T.; Matsumoto, K.; ChiKyu, M.; Itagaki, Y.; Horiuchi, A.; Murofushi, J. Sexing of porcine embryo by in situ hybridization using chromosome Y- and 1-specific DNA probes. Theriogenology 2000, 53, 1501–1509. [Google Scholar] [CrossRef]
- Parrilla, I.; Vázquez, J.M.; Oliver-Bonet, M.; Navarro, J.; Yelamos, J.; Roca, J.; Martínez, E.A. Fluorescence in situ hybridization in diluted and flow cytometrically sorted boar spermatozoa using specific DNA direct probes labelled by nick translation. Reprod. Camb. 2003, 126, 317–325. [Google Scholar] [CrossRef]
- Rubeš, J.; Vozdova, M.; Kubíčková, S. Aneuploidy in pig sperm: Multicolor fluorescence in situ hybridization using probes for chromosomes 1, 10, and Y. Cytogenet. Genome Res. 1999, 85, 200–204. [Google Scholar] [CrossRef]
- Pinton, A.; Ducos, A.; Yerle, M. Estimation of the proportion of genetically unbalanced spermatozoa in the semen of boars carrying chromosomal rearrangements using FISH on sperm nuclei. Genet. Sel. Evol. 2004, 36, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massip, K.; Berland, H.; Bonnet, N.; Calgaro, A.; Billoux, S.; Baquié, V.; Mary, N.; Bonnet-Garnier, A.; Ducos, A.; Yerle, M.; et al. Study of inter- and intra-individual variation of meiotic segregation patterns in t (3;15) (q27;q13) boars. Theriogenology 2008, 70, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.D.; Di Giacomo, G.; Cignini, P.; Padula, F.; Mangiafico, L.; Mesoraca, A.; D’Emidio, L.; McCluskey, M.R.; Paganelli, A.; Giorlandino, C. Comparative study of aCGH and Next Generation Sequencing (NGS) for chromosomal microdeletion and microduplication screening. J. Prenat. Med. 2014, 8, 57. [Google Scholar]
- Crosetto, N.; Mitra, A.; Silva, M.J.; Bienko, M.; Dojer, N.; Wang, Q.; Karaca, E.; Chiarle, R.; Skrzypczak, M.; Ginalski, K.; et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 2013, 10, 361–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warr, A.; Affara, N.; Aken, B.; Beiki, H.; Bickhart, D.M.; Billis, K.; Chow, W.; Eory, L.; Finlayson, H.A.; Flicek, P.; et al. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 2020, 9, giaa051. [Google Scholar] [CrossRef] [PubMed]
- Servin, B.; Faraut, T.; Iannuccelli, N.; Zelenika, D.; Milan, D. High-Resolution autosomal radiation hybrid maps of the pig genome and their contribution to the genome sequence assembly. BMC Genom. 2012, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortereau, F.; Servin, B.; Frantz, L.; Megens, H.J.; Milan, D.; Rohrer, G.; Wiedmann, R.; Beever, J.; Archibald, A.L.; Schook, L.B.; et al. A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genom. 2012, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yerle, M.; Lahbib-Mansais, Y.; Mellink, C.; Goureau, A.; Pinton, P.; Echard, G.; Gellin, J.; Zijlstra, C.; De Haan, N.; Bosma, A.A.; et al. The PiGMaP consortium cytogenetic map of the domestic pig (Sus scrofa domestica). Mamm. Genome 1995, 6, 176–186. [Google Scholar] [CrossRef]
- Humphray, S.J.; Scott, C.E.; Clark, R.; Marron, B.; Bender, C.; Camm, N.; Davis, J.; Jenks, A.; Noon, A.; Patel, M.; et al. A high utility integrated map of the pig genome. Genome Biol. 2007, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Groenen, M.A.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Schook, L.B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Ramos, A.M.; Crooijmans, R.P.M.A.; Affara, N.A.; Amaral, A.J.; Archibald, A.L.; Beever, J.E.; Bendixen, C.; Churcher, C.; Clark, R.; Dehais, P.; et al. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE 2009, 4, e06524. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Developmental progress and current status of the Animal QTLdb. Nucleic Acids Res. 2016, 44, D827–D833. [Google Scholar] [CrossRef] [Green Version]
- Bumgarner, R. Overview of DNA microarrays: Types, applications, and their future. Curr. Protoc. Mol. Biol. 2013, 101, 22. [Google Scholar]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating Improvement of Livestock with Genomic Selection. Annu. Rev. Anim. Biosci. 2013, 1, 221–237. [Google Scholar] [CrossRef]
- Ibáñez-Escriche, N.; Forni, S.; Noguera, J.L.; Varona, L. Genomic information in pig breeding: Science meets industry needs. Livest. Sci. 2014, 166, 94–100. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Robinson, J.; Buhr, M. Impact of genetic selection on management of boar replacement. Theriogenology 2005, 63, 668–678. [Google Scholar] [CrossRef]
- Christensen, O.; Madsen, P.; Nielsen, B.; Ostersen, T.; Su, G. Single-step methods for genomic evaluation in pigs. Animal 2012, 6, 1565–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-S.; Shin, D. Genome-Wide Association Studies Associated with Backfat Thickness in Landrace and Yorkshire Pigs. Genom. Inform. 2018, 16, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Verardo, L.L.; Sevón-Aimonen, M.-L.; Serenius, T.; Hietakangas, V.; Uimari, P. Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs. BMC Genet. 2017, 18, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ding, X.; Tan, Z.; Ning, C.; Xing, K.; Yang, T.; Pan, Y.; Sun, D.; Wang, C. Genome-Wide Association Study of Piglet Uniformity and Farrowing Interval. Front. Genet. 2017, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Apiou, F.; Vincent-Naulleau, S.; Spatz, A.; Vielh, P.; Geffrotin, C.; Frelat, G.; Dutrillaux, B.; Le Chalony, C. Comparative genomic hybridization analysis of hereditary swine cutaneous melanoma revealed loss of the swine 13q36-49 chromosomal region in the nodular melanoma subtype. Int. J. Cancer 2004, 110, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Horňák, M.; Hulinska, P.; Musilova, P.; Kubíčková, S.; Rubeš, J. Investigation of Chromosome Aneuploidies in Early Porcine Embryos Using Comparative Genomic Hybridization. Cytogenet. Genome Res. 2009, 126, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Shinawi, M.; Cheung, S.W. The array CGH and its clinical applications. Drug Discov. Today 2008, 13, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Fadista, J.; Nygaard, M.; Holm, L.-E.; Thomsen, B.; Bendixen, C. A Snapshot of CNVs in the Pig Genome. PLoS ONE 2008, 3, e03916. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, D.; Pettersson, M.; Gustavsson, P.; Förster, A.; Hofmeister, W.; Wincent, J.; Zachariadis, V.; Anderlid, B.-M.; Nordgren, A.; Mäkitie, O.; et al. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation. Hum. Mutat. 2017, 38, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, L.; Tian, S.; Lin, Y.; Tang, Q.; Zhou, X.; Li, D.; Yeung, C.K.L.; Che, T.; Li, X.; et al. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Res. 2017, 27, 865–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frantz, L.A.F.; Schraiber, J.G.; Madsen, O.D.; Megens, H.-J.; Cagan, A.; Bosse, M.; Paudel, Y.; Crooijmans, R.P.M.A.; Larson, G.; Groenen, M.A.M. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 2015, 47, 1141–1148. [Google Scholar] [CrossRef]
- Groenen, M.A.M. A decade of pig genome sequencing: A window on pig domestication and evolution. Genet. Sel. Evol. 2016, 48, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Conroy, J.M.; Morrison, C.D.; Odunsi, A.O.; Qin, M.; Wei, L.; Trump, D.L.; Johnson, C.S.; Liu, S.; Wang, J. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives. Oncotarget 2015, 6, 5477–5489. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.S.; Urban, A.E.; Mills, R.E. Structural variation in the sequencing era. Nat. Rev. Genet. 2019, 21, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Pollard, M.O.; Gurdasani, D.; Mentzer, A.J.; Porter, T.; Sandhu, M.S. Long reads: Their purpose and place. Hum. Mol. Genet. 2018, 27, R234–R241. [Google Scholar] [CrossRef]
- Chow, J.F.; Cheng, H.H.; Lau, E.Y.; Yeung, W.S.; Ng, E.H. Distinguishing between carrier and noncarrier embryos with the use of long-read sequencing in preimplantation genetic testing for reciprocal translocations. Genomics 2020, 112, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liang, F.; Cheng, D.; Zhang, Z.; Yu, G.; Zha, J.; Wang, Y.; Xia, Q.; Yuan, D.; Tan, Y.; et al. Location of Balanced Chromosome-Translocation Breakpoints by Long-Read Sequencing on the Oxford Nanopore Platform. Front. Genet. 2020, 10, 1313. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333. [Google Scholar] [CrossRef]
- Dong, Z.; Jiang, L.; Yang, C.; Hu, H.; Wang, X.; Chen, H.; Choy, K.W.; Hu, H.; Dong, Y.; Hu, B.; et al. A Robust Approach for Blind Detection of Balanced Chromosomal Rearrangements with Whole-Genome Low-Coverage Sequencing. Hum. Mutat. 2014, 35, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Redin, C.; Brand, H.; Collins, R.L.; Kammin, T.; Mitchell, E.; Hodge, J.C.; Hanscom, C.; Pillalamarri, V.; Seabra, C.M.; Abbott, M.-A.; et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 2017, 49, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Talkowski, M.E.; Ernst, C.; Heilbut, A.; Chiang, C.; Hanscom, C.; Lindgren, A.; Kirby, A.; Liu, S.; Muddukrishna, B.; Ohsumi, T.K.; et al. Next-Generation Sequencing Strategies Enable Routine Detection of Balanced Chromosome Rearrangements for Clinical Diagnostics and Genetic Research. Am. J. Hum. Genet. 2011, 88, 469–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.X.Y.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.; Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016, 34, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Uguen, K.; Jubin, C.; Duffourd, Y.; Bardel, C.; Malan, V.; Dupont, J.M.; Khattabi, L.E.; Chatron, N.; Vitobello, A.; Sanlaville, D.; et al. Genome sequencing in cytogenetics: Comparison of short-read and linked-read approaches for germline structural variant detection and characterization. Mol. Genet. Genom. Med. 2020, 8, e1114. [Google Scholar] [CrossRef] [Green Version]
- Gross, A.M.; Ajay, S.S.; Rajan, V.; Brown, C.; Bluske, K.; Burns, N.J.; Chawla, A.; Coffey, A.J.; Malhotra, A.; Scocchia, A.; et al. Copy-Number variants in clinical genome sequencing: Deployment and interpretation for rare and undiagnosed disease. Genet. Med. 2019, 21, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, B.; Walker, S.; Wang, Z.; Thiruvahindrapuram, B.; MacDonald, J.R.; Sung, W.W.; Pereira, S.L.; Whitney, J.; Chan, A.J.S.; Scherer, S.W.; et al. A comprehensive workflow for read depth-based identification of copy-number variation from whole-genome sequence data. Am. J. Hum. Genet. 2018, 102, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Ellingford, J.M.; Campbell, C.; Barton, S.; Bhaskar, S.; Gupta, S.; Taylor, R.L.; Sergouniotis, P.I.; Horn, B.; Lamb, J.A.; Michaelides, M.; et al. Validation of copy number variation analysis for next-generation sequencing diagnostics. Eur. J. Hum. Genet. 2017, 25, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Bramswig, N.C.; Lüdecke, H.J.; Pettersson, M.; Albrecht, B.; Bernier, R.A.; Cremer, K.; Eichler, E.E.; Falkenstein, D.; Gerdts, J.; Wieczorek, D.; et al. Identification of new TRIP12 variants and detailed clinical evaluation of individuals with non-syndromic intellectual disability with or without autism. Hum. Genet. 2017, 136, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Grigelioniene, G.; Nevalainen, P.I.; Reyes, M.; Thiele, S.; Tafaj, O.; Molinaro, A.; Takatani, R.; Ala-Houhala, M.; Nilsson, D.; Jüppner, H.; et al. A large inversion involving GNAS exon A/B and all exons encoding Gsα is associated with autosomal dominant pseudohypoparathyroidism type Ib (PHP1B). J. Bone Miner. Res. 2017, 32, 776–783. [Google Scholar] [CrossRef] [Green Version]
- Hochstenbach, R.; Liehr, T.; Hastings, R.J. Chromosomes in the genomic age. Preserving cytogenomic competence of diagnostic genome laboratories. Eur. J. Hum. Genet. 2021, 29, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, B.A.; De Leeuw, N.; Al Ruivenkamp, C.; Sikkema-Raddatz, B.; Crolla, J.A.; Thoelen, R.; Koopmans, M.; Hollander, N.D.; Van Haeringen, A.; Van Der Kevie-Kersemaekers, A.-M.; et al. Parental insertional balanced translocations are an important cause of apparently de novo CNVs in patients with developmental anomalies. Eur. J. Hum. Genet. 2011, 20, 166–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.; De Leeuw, N.; Mann, K.; Schuring-Blom, H.; Morgan, S.; Giardino, D.; Rack, K.; Hastings, R. European guidelines for constitutional cytogenomic analysis. Eur. J. Hum. Genet. 2018, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Treff, N.R.; Tao, X.; Schillings, W.J.; Bergh, P.A.; Scott, R.T., Jr.; Levy, B. Use of single nucleotide polymorphism microarrays to distinguish between balanced and normal chromosomes in embryos from a translocation carrier. Fertil. Steril. 2011, 96, e58–e65. [Google Scholar] [CrossRef]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy Number Variation in Human Health, Disease, and Evolution. Annu. Rev. Genom. Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xu, L.; Liu, X.; Zhang, T.; Li, N.; Hay, E.H.; Zhang, Y.; Yan, H.; Zhao, K.; Liu, G.E.; et al. Copy number variation-based genome wide association study reveals additional variants contributing to meat quality in Swine. Sci. Rep. 2015, 5, 12535. [Google Scholar] [CrossRef] [Green Version]
- Revay, T.; Quach, A.T.; Maignel, L.; Sullivan, B.; King, W.A. Copy number variations in high and low fertility breeding boars. BMC Genom. 2015, 16, 280. [Google Scholar] [CrossRef] [Green Version]
- Hay, E.H.A.; Choi, I.; Xu, L.; Zhou, Y.; Rowland, R.R.R.; Lunney, J.K.; Liu, G.E. CNV Analysis of Host Responses to Porcine Reproductive and Respiratory Syndrome Virus Infection. J. Genom. 2017, 5, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Handyside, A.H.; Harton, G.L.; Mariani, B.; Thornhill, A.R.; Affara, N.; Shaw, M.-A.; Griffin, D.K. Karyomapping: A universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J. Med. Genet. 2009, 47, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, T.M.; Mehrjouy, M.M.; Pöyhönen, M.; Anttonen, A.K.; Lahermo, P.; Ellonen, P.; Paulin, L.; Tommerup, N.; Palotie, A.; Varilo, T. Breakpoint mapping and haplotype analysis of translocation t (1; 12) (q43; q21. 1) in two apparently independent families with vascular phenotypes. Mol. Genet. Genom. Med. 2018, 6, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, A.C.; Derks, M.F.L.; Broekhuijse, M.L.W.J.; Harlizius, B.; Veerkamp, R.F. Using short read sequencing to characterise balanced reciprocal translocations in pigs. BMC Genom. 2020, 21, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, B. Reciprocal Chromosome Translocations in the Domestic Pig, the Prevalence, Genetic and Genomic Factors Associated with Breakpoint Formation. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2020. [Google Scholar]
- Wetterstrand, K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). 2020. Available online: www.genome.gov/sequencingcostsdata (accessed on 25 February 2021).
- Madan, K.; Ford, C.E.; Polge, C. A reciprocal translocation, t (6p+; 14q−), in the pig. Reproduction 1978, 53, 395–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donaldson, B.; Villagomez, D.A.F.; King, W.A. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals 2021, 11, 1257. https://doi.org/10.3390/ani11051257
Donaldson B, Villagomez DAF, King WA. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals. 2021; 11(5):1257. https://doi.org/10.3390/ani11051257
Chicago/Turabian StyleDonaldson, Brendan, Daniel A. F. Villagomez, and W. Allan King. 2021. "Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective" Animals 11, no. 5: 1257. https://doi.org/10.3390/ani11051257
APA StyleDonaldson, B., Villagomez, D. A. F., & King, W. A. (2021). Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals, 11(5), 1257. https://doi.org/10.3390/ani11051257