Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry
Abstract
:Simple Summary
Abstract
1. Introduction
Trace Mineral | Functions | Example of NRC [9,10] Recommendations | Example of Commercial Specifications (average) | Reference (s) |
---|---|---|---|---|
Zinc |
|
| Up to 534 mg/kg | [11] |
| 110 mg/kg | [12] | ||
Copper |
|
| Up to 82.5 mg/kg | [11] |
| 16 mg/kg | [12] | ||
Manganese |
|
| Up to 70.3 mg/kg | [11] |
| 120 mg/kg | [12] |
2. Zinc, Copper, and Manganese Influences on Intestinal Health
2.1. Zinc in Pigs and Poultry
2.2. Copper in Pigs and Poultry
2.3. Manganese and Gut Health
Mineral | Species | Mineral Supplementation Level and Source | Key Mechanistic Insights | Reference (s) |
---|---|---|---|---|
Zinc | Pig | Pharmacological (2500 mg/kg ZnO) Alternative Zn sources (50–220 mg/kg Zn) |
| [16] |
[22] | ||||
[26] | ||||
[20] | ||||
[27] | ||||
Chicken | Zn deficiency Various forms (30–90 mg/kg Zn) |
| [33] | |
[35,37] | ||||
[36] | ||||
[38] | ||||
Copper | Pig | 0–300 mg/kg (CuSO4 or HCl) |
| [42] |
[44] | ||||
[45] | ||||
Chicken | 1.7–250 mg/kg (nanoparticles, CuSO4 or Cu acetate) |
| [51] | |
[53] | ||||
[55] | ||||
Manganese | Chicken | 0–400 mg/kg (MnSO4) |
| [63] |
[64] |
2.4. Nanoforms
3. Perspective and Conclusions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CABI: London, UK, 2010. [Google Scholar]
- Bao, Y.M.; Choct, M. Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Anim. Prod. Sci. 2009, 49, 269–282. [Google Scholar] [CrossRef]
- Nys, Y.; Schlegel, P.; Durosoy, S.; Jondreville, C.; Narcy, A. Adapting trace mineral nutrition of birds for optimizing the environment and poultry product quality . World’s Poult. Sci. J. 2018, 74, 225–238. [Google Scholar]
- Yazdankhah, S.; Skjerve, E.; Wasteson, Y. Antimicrobial resistance due to the content of potentially toxic metals in soil and fertilizing products. Microb. Ecol. Health Dis. 2018, 29, 1548248. [Google Scholar] [CrossRef] [PubMed]
- European Commission implementing regulation (EU) 2016/1095 of 6 July 2016 concerning the authorization of zinc acetate dihydrate, zinc chloride anhydrous, zinc oxide, zinc sulphate heptahydrate, zinc sulphate monohydrate, zinc chelate of amino acids hydrate, zinc chelate of protein hydrolysates, zinc chelate of glycine hydrate (solid) and zinc chelate of glycine hydrate (liquid) as feed additives for all animal species and amending regulations (EC) No 1334/2003, (EC) No 479/2006, (EU) No 335/2010 and implementing regulations (EU) No 991/2012 and (EU) No 636/2013. OJEU 2016, 182, 7–27.
- Powell, J.J.; Jugdaohsingh, R.; Thomopson, R.P.H. The regulation of mineral absorption in the gastrointestinal tract. Proc. Nutr. Soc. 1999, 58, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrough, E.R.; De Mille, C.; Gabler, N.K. Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts. J. Vet. Diagn. Investig. 2019, 31, 537–545. [Google Scholar] [CrossRef] [PubMed]
- King, J.C.; Shames, D.M.; Woodhouse, L.R. Zinc homeostasis in humans. J. Nutr. 2000, 130, 1360S–1366S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Yang, P.; Wang, H.K.; Li, L.X.; Ma, Y.X. The strategies for the supplementation of vitamins and trace minerals in pig production: Surveying major producers in China. Asian Australas. J. Anim. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Ross Broiler: Nutrient Specifications. 2019. Available online: http://eu.aviagen.com/tech-center/download/1304/RossBroilerNutritionSpecs2019-EN.pdf (accessed on 15 February 2021).
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Arendsen, L.P.; Thakar, R.; Sultan, A.H. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 2019, 32, e00125-18. [Google Scholar] [CrossRef]
- Read, S.A.; Obeid, S.; Ahlenstiel, C.; Ahlenstiel, G. The Role of Zinc in Antiviral Immunity. Adv. Nutr. 2019, 10, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Pieper, R.; Dadi, T.H.; Pieper, L.; Vahjen, W.; Franke, A.; Reinert, K.; Zentek, J. Concentration and chemical form of dietary zinc shape the porcine colon microbiome, its functional capacity and antibiotic resistance gene repertoire. ISME J. 2020, 14, 2783–2793. [Google Scholar] [CrossRef]
- Broom, L.J.; Miller, H.M.; Kerr, K.G.; Knapp, J.S. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Res. Vet. Sci. 2006, 80, 45–54. [Google Scholar] [CrossRef]
- Starke, I.C.; Pieper, R.; Neumann, K.; Zentek, J.; Vahjen, W. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol. 2014, 87, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Min Oh, S.; Kim, M.J.; Hosseindoust, A.; Kim, K.Y.; Choi, Y.H.; Ham, H.B.; Hwang, S.J.; Lee, J.H.; Cho, H.J.; Kang, W.S.; et al. Hot melt extruded-based nano zinc as an alternative to the pharmacological dose of ZnO in weanling piglets. Asian Australas. J. Anim. Sci. 2020, 33, 992–1001. [Google Scholar]
- Wang, W.; Van Noten, N.; Degroote, J.; Romeo, A.; Vermeir, P.; Michiels, J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 231–241. [Google Scholar] [CrossRef]
- Hojberg, O.; Canibe, N.; Poulsen, H.D.; Hedemann, M.S.; Jensen, B.B. Influence of dietary zinc oxide and copper sulphate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol. 2005, 71, 2267–2277. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.T.; Hu, O.; Faris, R.J.; Guo, J.; Urriola, P.E.; Shurson, G.C.; Chen, C.; Saqui-Salces, M. Analysis of gastrointestinal responses revealed both shared and specific targets of zinc oxide and carbadox in weaned pigs. Antibiotics 2020, 9, 463. [Google Scholar] [CrossRef]
- Johanns, V.C.; Epping, L.; Semmler, T.; Ghazisaeedi, F.; Lübke-Becker, A.; Pfeifer, Y.; Eichhorn, I.; Merle, R.; Bethe, A.; Walther, B.; et al. High-Zinc Supplementation of weaned piglets affects frequencies of virulence and bacteriocin associated genes among intestinal Escherichia coli populations. Front. Vet. Sci. 2020, 7, 614513. [Google Scholar] [CrossRef]
- Bearson, B.L.; Trachsel, J.M.; Shippy, D.C.; Sivasankaran, S.K.; Kerr, B.J.; Loving, C.L.; Brunelle, B.W.; Curry, S.M.; Gabler, N.K.; Bearson, S.M.D. The role of Salmonella genomic island 4 in metal tolerance of Salmonella enterica Serovar I 4,[5],12:i:- pork outbreak isolate USDA15WA-1. Genes 2020, 11, 1291. [Google Scholar] [CrossRef]
- Peng, P.; Deng, D.; Chen, S.; Li, C.; Luo, J.; Romeo, A.; Li, T.; Tang, X.; Fang, R. The effects of dietary porous zinc oxide supplementation on growth performance, inflammatory cytokines and tight junction’s gene expression in early-weaned piglets. J. Nutr. Sci. Vitaminol. 2020, 66, 311–318. [Google Scholar] [CrossRef]
- Kreuzer-Redmer, S.; Arends, D.; Schulte, J.N.; Karweina, D.; Korkuc, P.; Wöltje, N.; Hesse, D.; Pieper, R.; Gerdts, V.; Zentek, J.; et al. High dosage of zinc modulates T-cells in a time-dependent manner within porcine gut-associated lymphatic tissue. Br. J. Nutr. 2018, 120, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Leite, F.L.; Vasquez, E.; Vannucci, F.A.; Gebhart, C.J.; Rendahl, A.; Torrison, J.; Mueller, A.; Winkelman, N.L.; Rambo, Z.J.; Isaacson, R.E. The effects of zinc amino acid complex supplementation on the porcine host response to Lawsonia intracellularis infection. Vet. Res. 2018, 49, 88. [Google Scholar] [CrossRef] [Green Version]
- Bücker, R.; Zakrzewski, S.S.; Wiegand, S.; Pieper, R.; Fromm, A.; Fromm, M.; Günzel, D.; Schulzke, J.D. Zinc prevents intestinal epithelial barrier dysfunction induced by alpha hemolysin-producing Escherichia coli 536 infection in porcine colon. Vet. Microbiol. 2020, 243, 108632. [Google Scholar] [CrossRef]
- Dupont, D.P.; Duhamel, G.E.; Carlson, M.P.; Mathiesen, M.R. Effect of divalent cations on hemolysin synthesis by Serpulina (Treponema) hyodysenteriae: Inhibition induced by zinc and copper. Vet. Microbiol. 1994, 41, 63–73. [Google Scholar] [CrossRef]
- Zhang, P.; Carlson, M.P.; Schneider, N.R.; Duhamel, G.E. Minimal prophylactic concentration of dietary zinc compounds in a mouse model of swine dysentery. Anim. Health Res. Rev. 2001, 2, 67–74. [Google Scholar] [CrossRef]
- Lammers, G.; Berkel, R.; Roijackers, D.; Vulders, C.; Brouwer-Middelesch, H.; van Hout, J. Treatment of clinical Brachyspira hyodysenteriae with zinc chelate in pigs: A blinded, randomised controlled trial. Vet. Rec. 2019, 185, 659. [Google Scholar] [CrossRef]
- Vangroenweghe, F.; Allais, L.; Van Driessche, E.; van Berkel, R.; Lammers, G.; Thas, O. Evaluation of a zinc chelate on clinical swine dysentery under field conditions. Porc. Health Manag. 2020, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Reed, S.; Neuman, H.; Moscovich, S.; Glahn, R.P.; Koren, O.; Tako, E. Chronic zinc deficiency alters chick gut microbiota composition and function. Nutrients 2015, 7, 9768–9784. [Google Scholar] [CrossRef]
- Dogra, S.K.; Doré, J.; Damak, S. Gut microbiota resilience: Definition, link to health and strategies for intervention. Front. Microbiol. 2020, 11, 572921. [Google Scholar] [CrossRef]
- De Grande, A.; Leleu, S.; Delezie, E.; Rapp, C.; De Smet, S.; Goossens, E.; Haesebrouck, F.; Van Immerseel, F.; Ducatelle, R. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poult. Sci. 2020, 99, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, C.; Vieira, B.S.; Lumpkins, B.; Mathis, G.F.; King, W.D.; Graugnard, D.; Dawson, K.A.; Applegate, T.J. Can dietary zinc diminish the impact of necrotic enteritis on growth performance of broiler chickens by modulating the intestinal immune-system and microbiota? Poult. Sci. 2019, 98, 3181–3193. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Khan, R.U.; Shah, M.; Naz, S.; Tinelli, A. Zinc source modulates zootechnical characteristics, intestinal features, humoral response, and paraoxonase (PON1) activity in broilers. Trop. Anim. Health Prod. 2020, 52, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Zaneb, H.; Masood, S.; Khan, R.U.; Mobashar, M.; Khan, I.; Din, S.; Khan, M.S.; Rehman, H.U.; Tinelli, A. Single or combined applications of zinc and multi-strain probiotic on intestinal histomorphology of broilers under cyclic heat stress. Probiotics Antimicrob. Proteins 2020, 12, 473–480. [Google Scholar] [CrossRef]
- Matte, J.J.; Girard, C.L.; Guay, F. Intestinal fate of dietary zinc and copper: Postprandial net fluxes of these trace elements in portal vein of pigs. J. Trace Elem. Med. Biol. 2017, 44, 65–70. [Google Scholar] [CrossRef]
- Namkung, H.; Gong, J.; Yu, H.; de Lange, C.F.M. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can. J. Anim. Sci. 2006, 86, 511–522. [Google Scholar] [CrossRef]
- Mei, S.F.; Yu, B.; Ju, C.F.; Zhu, D.; Chen, D.W. Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets. Ital. J. Anim. Sci. 2009, 9, 378–381. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, W.; Xue, Y.; Yao, W. Suhuai suckling piglet hindgut microbiome-metabolome responses to different dietary copper levels. Appl. Microbiol. Biotechnol. 2019, 103, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zheng, W.; Guo, R.; Yao, W. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J. Microbiol. 2017, 55, 694–702. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Dong, Z.; Li, G.; Wang, J.; Li, Y.; Wan, D.; Yang, H.; Yin, Y. Effect of dietary copper on intestinal microbiota and antimicrobial resistance profiles of Escherichia coli in weaned piglets. Front. Microbiol. 2019, 10, 2808. [Google Scholar] [CrossRef]
- Villagómez-Estrada, S.; Pérez, J.F.; Darwich, L.; Vidal, A.; van Kuijk, S.; Melo-Durán, D.; Solà-Oriol, D. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. J. Anim. Sci. 2020, 98, 1–15. [Google Scholar] [CrossRef]
- Villagómez-Estrada, S.; Pérez, J.F.; van Kuijk, S.; Melo-Durán, D.; Karimirad, R.; Solà-Oriol, D. Dietary preference of newly weaned pigs and nutrient interactions according to copper levels and sources with different solubility characteristics. Animals 2020, 10, 1133. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, W.; Che, D.; Adams, S.; Yang, L. Advances in the mechanism of high copper diets in restraining pigs growth. J. Anim. Physiol. Anim. Nutr. 2019, 104, 667–678. [Google Scholar] [CrossRef]
- Thompson, K.; Burkholder, K.; Patterson, J.; Applegate, T.J. Microbial ecology shifts in the ileum of broilers during feed withdrawal and dietary manipulations. Poult. Sci. 2008, 87, 1624–1632. [Google Scholar] [CrossRef]
- Pang, Y.; Patterson, J.A.; Applegate, T.J. The influence of copper concentration and source on ileal microbiota. Poult. Sci. 2009, 88, 586–592. [Google Scholar] [CrossRef]
- Arias, V.J.; Koutsos, E.A. Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poult. Sci. 2006, 85, 999–1007. [Google Scholar] [CrossRef]
- Yausheva, E.; Miroshnikov, S.; Sizova, E. Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts. Environ. Sci. Pollut. Res. 2018, 25, 18109–18120. [Google Scholar] [CrossRef]
- Broom, L.J. The sub-inhibitory theory for antibiotic growth promoters. Poult Sci. 2017, 96, 3104–3108. [Google Scholar] [CrossRef]
- Dos Santos, T.S.; Teng, P.Y.; Yadav, S.; de Souza Castro, F.L.; Gould, R.L.; Craig, S.W.; Chen, C.; Fuller, A.L.; Sartori, R.P.J.R.; Kim, W.K. Effects of inorganic Zn and Cu supplementation on gut health in broiler chickens challenged with Eimeria spp. Front. Vet. Sci. 2020, 7, 230. [Google Scholar] [CrossRef]
- Broom, L.J. Evidence-based consideration of dietary ‘alternatives’ to anticoccidial drugs to help control poultry coccidial infections. World’s Poult. Sci. J. 2021, 77, 43–54. [Google Scholar] [CrossRef]
- Leyva-Diaz, A.A.; Hernandez-Patlan, D.; Solis-Cruz, B.; Adhikari, B.; Kwon, Y.M.; Latorre, J.D.; Hernandez-Velasco, X.; Fuente-Martinez, B.; Hargis, B.M.; Lopez-Arellano, R.; et al. Evaluation of curcumin and copper acetate against Salmonella Typhimurium infection, intestinal permeability, and cecal microbiota composition in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 23. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The controversial role of human gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Carrothers, J.M.; York, M.A.; Brooker, S.L.; Lackey, K.A.; Williams, J.E.; Shafii, B.; Price, W.J.; Settles, M.L.; McGuire, M.A.; McGuire, M.K. Fecal microbial community structure ss stable over time and related to variation in macronutrient and micronutrient intakes in lactating women. J. Nutr. 2015, 145, 2379–2388. [Google Scholar] [CrossRef] [Green Version]
- Ghaisas, S.; Maher, J.; Kanthasamy, A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 2016, 158, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Chi, L.; Gao, B.; Bian, X.; Tu, P.; Ru, H.; Lu, K. Manganese-induced sex-specific gut microbiome perturbations in C57BL/6 mice. Toxicol. Appl. Pharmacol. 2017, 331, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.K.; Aring, L.; Das, N.K.; Solanki, S.; Inohara, N.; Iwase, S.; Samuelson, L.C.; Shah, Y.M.; Seo, Y.A. Impact of dietary manganese on experimental colitis in mice. FASEB J. 2020, 34, 2929–2943. [Google Scholar] [CrossRef] [Green Version]
- Krüger, M.; Neuhaus, J.; Herrenthey, A.G.; Gokce, M.M.; Schrodl, W.; Shehata, A.A. Chronic botulism in a Saxony dairy farm: Sources, predisposing factors, development of the disease and treatment possibilities. Anaerobe 2014, 28, 220–225. [Google Scholar] [CrossRef]
- Kisidayova, S.; Pristas, P.; Zimovčakova, M.; Wencelova, M.B.; Homolova, L.; Mihalikova, K.; Čobanova, K.; Gresakova, L.; Varadyova, Z. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem. PLoS ONE 2018, 13, e0191158. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Zhang, K.; Ding, X.; Wang, J.; Peng, H.; Zeng, Q.; Xuan, Y.; Su, Z.; Wu, B.; Bai, S. Effect of high dietary manganese on the immune responses of broilers following oral Salmonella typhimurium inoculation. Biol. Trace Elem. Res. 2018, 181, 347–360. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, S.; Zhang, K.; Michiels, J.; Zeng, Q.; Ding, X.; Wang, J.; Peng, H.; Bai, J.; Xuan, Y.; et al. Impact of dietary manganese on intestinal barrier and inflammatory response in broilers challenged with Salmonella typhimurium. Microorganisms 2020, 8, 757. [Google Scholar] [CrossRef]
- Burin, A.M., Jr.; Fernandes, N.L.M.; Snak, A.; Fireman, A.; Horn, D.; Ines, I.; Fernandes, M. Arginine and manganese supplementation on the immune competence of broilers immune stimulated with vaccine against Salmonella Enteritidis. Poult. Sci. 2019, 98, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Hassan, F.; Rehman, M.S. Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biol. Trace Elem. Res. 2020, 195, 591–612. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.; Vadalasetty, K.P.; Chwalibog, A.; Sawosz, E. Copper nanoparticles as an alternative feed additive in poultry diet: A review. Nanotechnol. Rev. 2018, 7, 69–93. [Google Scholar] [CrossRef]
- Lopez, C.A.; Skaar, E.P. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe 2018, 23, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besold, A.N.; Culbertson, E.M.; Culotta, V.C. The yin and yang of copper during infection. J. Biol. Inorg. Chem. 2016, 21, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Klasing, K.C.; Nazipipour, A. Effect of dietary copper source and level on GI copper levels and ileal E. coli survival in broiler chicks. Poult. Sci. 2010, 89, 498. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broom, L.J.; Monteiro, A.; Piñon, A. Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals 2021, 11, 1276. https://doi.org/10.3390/ani11051276
Broom LJ, Monteiro A, Piñon A. Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals. 2021; 11(5):1276. https://doi.org/10.3390/ani11051276
Chicago/Turabian StyleBroom, Leon J., Alessandra Monteiro, and Arturo Piñon. 2021. "Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry" Animals 11, no. 5: 1276. https://doi.org/10.3390/ani11051276
APA StyleBroom, L. J., Monteiro, A., & Piñon, A. (2021). Recent Advances in Understanding the Influence of Zinc, Copper, and Manganese on the Gastrointestinal Environment of Pigs and Poultry. Animals, 11(5), 1276. https://doi.org/10.3390/ani11051276