The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Organ Collection and Analyses
2.3. Statistical Analysis
3. Results
3.1. Duodenum
3.1.1. Thickness Related Structural Parameters
3.1.2. Quantity Related Structural Parameters
3.1.3. Shape and Absorption Surface Related Parameters
3.2. Jejunum
3.2.1. Thickness Related Structural Parameters
3.2.2. Quantity Related Structural Parameters
3.2.3. Shape and Absorption Surface Related Parameters
3.3. Ileum
3.3.1. Thickness Related Structural Parameters
3.3.2. Quantity Related Structural Parameters
3.3.3. Shape and Absorption Surface Related Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tomaszewska, E.; Dobrowolski, P.; Puzio, I.; Prost, L.; Kurlak, P.; Sawczuk, P.; Badzian, B.; Hulas-Stasiak, M.; Kostro, K. Acrylamide-induced prenatal programming of intstine sructure in guinea pig. J. Physiol. Pharmacol. 2014, 65, 107–115. [Google Scholar] [PubMed]
- Tomaszewska, E.; Dobrowolski, P.; Puzio, I.; Donaldson, J.; Muszyński, S. Acrylamide-induced prenatal programming of bone structure in mammal model. Ann. Anim. Sci. 2020, 20, 1–50. [Google Scholar] [CrossRef]
- Tatara, M.R.; Krupski, W.; Tymczyna, B.; Studziński, T. Effects of combined maternal administration with alpha-ketoglutarate (AKG) and β-hydroxy-β-methylbutyrate (HMB) on prenatal programming of skeletal properties in the offspring. Nutr. Metab. 2012, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śliwa, E.; Dobrowolski, P.; Tatara, M.R.; Pierzynowski, S.G. Alpha-ketoglutarate partially protects newborns from metabolic changes evoked by chronic maternal exposure to glucocorticoids. J. Pre-Clin. Clin. Res. 2007, 1, 55–59. [Google Scholar]
- Edlow, A.G.; Guedj, F.; Sverdlov, D.; Pennings, J.L.A.; Bianchi, D.W. Significant Effects of Maternal Diet During Pregnancy on the Murine Fetal Brain Transcriptome and Offspring Behavior. Front. Neurosci. 2019, 13, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.H.; O’Connor, T.G.; Roth, C.; Susser, E.; Bjørke-Monsen, A.L. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front. Neurosci. 2013, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chu, D.M.; Meyer, K.M.; Prince, A.L.; Aagaard, K.M. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes 2016, 7, 459–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macpherson, A.J.; De Agüero, M.G.; Ganal-Vonarburg, S.C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 2017, 17, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Corbeels, K.; Desmet, L.; Segers, A.; Wang, Q.; Van Der Schueren, B.; Depoortere, I. Involvement of the GHSR in the developmental programming and metabolic disturbances induced by maternal undernutrition. J. Nutr. Biochem. 2020, 85, 108468. [Google Scholar] [CrossRef]
- Meyer, A.M.; Caton, J.S. Role of the small intestine in developmentalprogramming: Impact of maternal nutrition on thedam and offspring. Adv. Nutr. 2016, 7, 169–178. [Google Scholar] [CrossRef]
- Hułas-Stasiak, M.; Jakubowicz-Gil, J.; Dobrowolski, P.; Grzesiak, M.; Muszyński, S.; Świątkiewicz, M.; Tomaszewska, E. Regulation of Folliculogenesis by Growth Factors in Piglet Ovary Exposed Prenatally to β-Hydroxy-β-Methylbutyrate (HMB). Ann. Anim. Sci. 2020, 20, 899–917. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Dobrowolski, P.; Bieńko, M.; Prost, L.; Szymańczyk, S.; Zdybel, A. Effects of 2-oxoglutaric acid on bone morphometry, densitometry, mechanics, and immunohistochemistry in 9-month-old boars with prenatal dexamethasone-induced osteopenia. Connect. Tissue Res. 2015, 56, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Tatara, M.R.; Śliwa, E.; Krupski, W. Prenatal programming of skeletal development in the offspring: Effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone 2007, 40, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Ludwiczak, A.; Stanisz, M. The reproductive success of farmed American mink (Neovison vison)A review. Ann. Anim. Sci. 2019, 19, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Pond, W.G.; Ott, T.; Bazer, F.W. Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J. Nutr. 1998, 128, 894–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.E.; Jones, A.K.; Pillai, S.M.; Hoffman, M.L.; McFadden, K.K.; Zinn, S.A.; Govoni, K.E.; Reed, S.A. Maternal restricted- And overfeeding during gestation result in distinct lipid and amino acid metabolite profiles in the longissimus muscle of the offspring. Front. Physiol. 2019, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Huergo, L.F.; Dixon, R. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiol. Mol. Biol. Rev. 2015, 79, 419–435. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Wydrych, J. Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol. 2012, 63, 547–554. [Google Scholar]
- Tomaszewska, E.; Dobrowolski, P.; Świetlicka, I.; Muszyński, S.; Kostro, K.; Jakubczak, A.; Taszkun, I.; Żmuda, A.; Rycerz, K.; Blicharski, T.; et al. Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr. 2018, 102, e299–e308. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Świątkiewicz, M.; Donaldson, J.; Puzio, I.; Muszyński, S. Is dietary 2-oxoglutaric acid effective in accelerating bone growth and development in experimentally-induced intrauterine growth retarded gilts? Animals 2020, 10, 728. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Wiącek, D.; Tomczyk-Warunek, A.; Świetlicka, I.; Pierzynowski, S.G. Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr. 2019, 103, 626–643. [Google Scholar] [CrossRef] [PubMed]
- Blicharski, T.; Tomaszewska, E.; Dobrowolski, P.; Hułas-Stasiak, M.; Muszyński, S. A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS ONE 2017, 12, e0179693. [Google Scholar] [CrossRef] [PubMed]
- Hułas-Stasiak, M.; Jakubowicz-Gil, J.; Dobrowolski, P.; Tomaszewska, E.; Muszyński, S. Maternal β-hydroxy-β-methylbutyrate (HMB) supplementation during pregnancy affects early folliculogenesis in the ovary of newborn piglets. Theriogenology 2019, 128, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Yang, M.; Gaur, U.; Xu, H.; Yao, Y.; Li, D. Alpha-Ketoglutarate. Physiol. Funct. Appl. 2016, 24, 1–8. [Google Scholar]
- Harrison, A.P.; Pierzynowski, S.G. Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state. J. Physiol. Pharmacol. 2008, 59, 91–106. [Google Scholar] [PubMed]
- Śliwa, E.; Dobrowolski, P.; Tatara, M.R.; Piersiak, T.; Siwicki, A.; Rokita, E.; Pierzynowski, S.G. Alpha-ketoglutarate protects the liver of piglets exposed during prenatal life to chronic excess of dexamethasone from metabolic and structural changes. J. Anim. Physiol. Anim. Nutr. 2009, 93, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Mathé, G.; Couvreur, P.; Tew, K.D. II. Glutamine and glutamate. Biomed. Pharmacother. 2002, 56, 446–457. [Google Scholar] [CrossRef]
- Śliwa, E.; Dobrowolski, P.; Siwicki, A.K.; Pierzynowski, S.G. Changes of a non-specific defence mechanism in blood serum of piglets induced by prenatal and postnatal administration of α-ketoglutarate. Bull. Vet. Inst. Pulawy 2007, 51, 297–301. [Google Scholar]
- Nissen, S.L.; Abumrad, N.N. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J. Nutr. Biochem. 1997, 8, 300–311. [Google Scholar] [CrossRef]
- Śliwa, E.; Adaszek, Ł.; Tatara, M.; Dobrowolski, P. Short- and long-term consequences on biochemical markers after fundectomy in pigs supplemented with 3-hydroxy-3-methylbutyrate and alpha-ketoglutarate. Berl. Munch. Tierarztl. Wochenschr. 2010, 123, 397–405. [Google Scholar]
- Świetlicka, I.; Muszyński, S.; Tomaszewska, E.; Dobrowolski, P.; Kwaśniewska, A.; Świetlicki, M.; Skic, A.; Gołacki, K. Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study. Arch. Oral Biol. 2016, 70, 24–31. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Czech, A.; Chmielowiec-korzeniowska, A. Fermented Rapeseed Meal as a Component of the Mink Diet ( Neovison vison) Modulating the Gastrointestinal Tract Microbiota. Animals 2021, 11, 1337. [Google Scholar] [CrossRef]
- Do, D.N.; Miar, Y. Evaluation of growth curve models for body weight in american mink. Animals 2020, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Dobrowolski, P.; Tomaszewska, E.; Muszyński, S.; Blicharski, T.; Pierzynowski, S.G. Dietary 2-oxoglutarate prevents bone loss caused by neonatal treatment with maximal dexamethasone dose. Exp. Biol. Med. 2017, 242, 671–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrowolski, P.; Huet, P.; Karlsson, P.; Eriksson, S.; Tomaszewska, E.; Gawron, A.; Pierzynowski, S.G. Potato fiber protects the small intestinal wall against the toxic influence of acrylamide. Nutrition 2012, 28, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, P.; Tomaszewska, E.; Klebaniuk, R.; Tomczyk-Warunek, A.; Szymańczyk, S.; Donaldson, J.; Świetlicka, I.; Mielnik-Błaszczak, M.; Kuc, D.; Muszyński, S. Structural changes in the small intestine of female turkeys receiving a probiotic preparation are dose and region dependent. Animal 2019, 13, 2773–2781. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780702042263. [Google Scholar]
- Kisielinski, K.; Willis, S.; Prescher, A.; Klosterhalfen, B.; Schumpelick, V. A simple new method to calculate small intestine absorptive surface in the rat. Clin. Exp. Med. 2002, 2, 131–135. [Google Scholar] [CrossRef]
- Kotrlik, J.; Williams, H.; Jabor, K. Reporting and Interpreting Effect Size in Quantitative Agricultural Education Research. J. Agric. Educ. 2011, 52, 132–142. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Dobrowolski, P.; Hułas-Stasiak, M.; Tomczyk, A. Maternal Nutrition with B-Hydroxy-B-Methylbutyrate as Strong Determinants of the Development of Newborn Offspring in Pigs. J. Neonatal Biol. 2015, 4, 1–3. [Google Scholar]
- De Greeff, A.; Schokker, D.; Den Hil, P.R.; Ramaekers, P.; Vastenhouw, S.A.; Harders, F.; Bossers, A.; Smits, M.A.; Rebel, J.M.J. Animal Health and Well Being The effect of maternal antibiotic use in sows on intestinal development in offspring. J. Anim. Sci. 2020, 98, 1–13. [Google Scholar] [CrossRef]
- Meyer, A.M.; Neville, T.L.; Reed, J.J.; Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Hammer, C.J.; Vonnahme, K.A.; Caton, J.S. Maternal nutritional plane and selenium supply during gestation impact visceral organ mass and intestinal growth and vascularity of neonatal lamb offspring. J. Anim. Sci. 2013, 91, 2628–2639. [Google Scholar] [CrossRef]
- Rycerz, K.; Krawczyk, A.; Jaworska-Adamu, J.; Szalak, R.; Tomaszewska, E.; Dobrowolski, P. Influence of oral administration of HMB to pregnant dams on calbindin expression in the dentate gyrus of the hippocampus during postnatal development in spiny mice offspring. Med. Weter. 2017, 73, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Grzesiak, P.; Słupecka-Ziemilska, M.; Woliński, J. The biological role of a-ketoglutaric acid in physiological processes and its therapeutic potential. Dev. Period Med. 2016, 20, 61–67. [Google Scholar] [PubMed]
- Broom, D.M.; Fraser, A.F. The welfare of animals kept for fur production. In Domestic Animal Behaviour and Welfare; Cabi: Wallingford, UK, 2015; pp. 308–312. [Google Scholar]
- Birch, J.M.; Agger, J.F.; Dahlin, C.; Jensen, V.F.; Hammer, A.S.; Struve, T.; Jensen, H.E. Risk factors associated with diarrhea in Danish commercial mink (Neovison vison) during the pre-weaning period. Acta Vet. Scand. 2017, 59, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Śliwa, E.; Tatara, M.R.; Nowakowski, H.; Pierzynowski, S.G.; Studziński, T. Effect of maternal dexamethasone and alpha-ketoglutarate administration on skeletal development during the last three weeks of prenatal life in pigs. J. Matern.-Fetal Neonatal Med. 2006, 19, 489–493. [Google Scholar] [CrossRef]
- Chen, Y.; Mou, D.; Hu, L.; Zhen, J.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; Feng, B.; Li, J.; et al. Effects of maternal low-energy diet during gestation on intestinal morphology, disaccharidase activity, and immune response to lipopolysaccharide challenge in pig offspring. Nutrients 2017, 9, 1115. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, P.; Liu, Y.; Wu, Y.; Chen, Y.; Guo, Y.; Zhang, S.; Zheng, X.; Zhou, L.; Liu, W.; et al. Alpha-ketoglutarate ameliorates age-related osteoporosis via regulating histone methylations. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Kaczka, P.; Michalczyk, M.M.; Jastrzab, R.; Gawelczyk, M.; Kubicka, K. Mechanism of action and the effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation on different types of physical performance-A systematic review. J. Hum. Kinet. 2019, 68, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Zhu, J.; Wu, C.; Zhou, P.; Shen, Y.; Lin, Y.; Xu, S.; Che, L.; Feng, B.; Li, J.; et al. Transfer of β-hydroxy-β-methylbutyrate from sows to their offspring and its impact on muscle fiber type transformation and performance in pigs. J. Anim. Sci. Biotechnol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Song, B.; Duan, Y.; Zhong, Y.; Yan, Z.; Zhang, S.; Li, F. Dietary β-hydroxy-β-methylbutyrate improves intestinal function in weaned piglets after lipopolysaccharide challenge. Nutrition 2020, 78, 110839. [Google Scholar] [CrossRef]
- Meyer, A.M.; Hess, B.W.; Paisley, S.I.; Du, M.; Caton, J.S.; Du, M. Small intestinal growth measures are correlated with feed efficiency in market weight cattle, despite minimal effects of maternal nutrition during early to midgestation. J. Anim. Sci. 2014, 92, 3855–3867. [Google Scholar] [CrossRef] [PubMed]
Duodenum | Jejunum | Ileum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wilks-λ | F | p | Eta-Squared (η2) | Wilks-λ | F | p | Eta-Squared (η2) | Wilks-λ | F | p | Eta-Squared (η2) | |
Mother | 0.18 | 29.64 | <0.001 | 0.82 | 0.33 | 13.05 | <0.001 | 0.67 | 0.23 | 21.07 | <0.001 | 0.77 |
Diet | 0.19 | 4.64 | <0.001 | 0.42 | 0.12 | 6.75 | <0.001 | 0.51 | 0.10 | 7.21 | <0.001 | 0.53 |
Sex | 0.38 | 10.56 | <0.001 | 0.62 | 0.48 | 6.95 | <0.001 | 0.52 | 0.74 | 2.23 | 0.002 | 0.26 |
Mother×Diet | 0.11 | 7.12 | <0.001 | 0.53 | 0.15 | 5.67 | <0.001 | 0.47 | 0.11 | 6.94 | <0.001 | 0.52 |
Mother×Sex | 0.31 | 14.31 | <0.001 | 0.69 | 0.59 | 4.45 | <0.001 | 0.41 | 0.52 | 5.99 | <0.001 | 0.48 |
Diet×Sex | 0.19 | 4.68 | <0.001 | 0.42 | 0.08 | 8.66 | <0.001 | 0.58 | 0.17 | 5.16 | <0.001 | 0.45 |
Mother×Diet×Sex | 0.28 | 3.40 | <0.001 | 0.35 | 0.07 | 9.17 | <0.001 | 0.59 | 0.24 | 3.85 | <0.001 | 0.38 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Thickness of the mucosa (µm) | 1233 | 974 ab | 1109 | 877b | 1306 | 1219 a | 1127 | 977 ab | 1171 ac | 964 b | 1338 a | 1228 a | 591 b | 1145 ab | 984 c | 1060 ab | 21.5 |
Thickness of the submucosa (µm) | 219 a | 143 | 143 bc | 169 | 157 b | 152 | 104 c | 130 | 121 | 116 | 110 | 133 | 102 | 122 | 132 | 134 | 3.8 |
Thickness of the inner muscle layer (µm) | 80 a | 55 | 53 b | 64 | 62 ab | 59 | 45 b | 58 | 70 ab | 39 ab | 47 b | 44 ab | 75 a | 53 a | 59 ab | 29b | 1.6 |
Thickness of the outer muscle layer (µm) | 291 a | 312 | 250 ab | 266 | 289 a | 239 | 183 b | 241 | 208 b | 144 | 169 b | 162 | 368 a | 140 | 350 a | 151 | 7.6 |
Total thickness of muscularis (µm) | 373 a | 368 | 304 ab | 331 | 353 a | 296 | 237 b | 300 | 278 bc | 183 | 217 c | 207 | 445 a | 183 | 414 ab | 182 | 8.6 |
Muscle to mucosa ratio | 0.32 a | 0.36 | 0.28 ab | 0.37 | 0.29 ab | 0.25 | 0.20 b | 0.34 | 0.24 b | 0.22 | 0.17 b | 0.17 | 0.96 a | 0.16 | 0.53 a | 0.18 | 0.02 |
Submucosa to mucosa ratio | 0.18 a | 0.12 b | 0.13 ab | 0.24a | 0.13 b | 0.14 ab | 0.09 b | 0.15 ab | 0.11 b | 0.14 | 0.08 b | 0.11 | 0.17 a | 0.12 | 0.15 a | 0.13 | 0.01 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Total number of crypts/mm | 15.7 | 19.5 | 17.9 | 15.8 | 17.0 | 15.9 | 18.8 | 15.4 | 17.2 | 11.6 b | 18.3 | 18.1 a | 20.3 | 18.5 a | 16.3 | 16.4 a | 0.3 |
Number of open crypts/mm | 7.9 | 12.3 | 8.4 | 9.6 | 9.6 | 9.0 | 8.7 | 8.9 | 12.6 ab | 7.6 | 10.3 b | 7.1 | 18.7 a | 10.5 | 10.2 b | 6.7 | 0.4 |
Number of closed crypts/mm | 7.8 | 7.3 | 9.5 | 6.2 | 7.4 | 6.9 | 8.7 | 6.5 | 4.6 cb | 4.0 b | 7.9 a | 11.0a | 1.6 c | 8.0 a | 5.7 ab | 9.7 a | 0.3 |
Number of undamaged villi/mm | 7.9 | 7.9 | 7.0 | 8.1 | 8.1 | 8.3 | 6.9 | 6.9 | 9.4 ab | 10.3 | 6.9 b | 8.6 | 11.3 a | 7.6 | 8.9 ab | 8.9 | 0.2 |
Number of damaged villi/mm | 1.0 | 0.4 ab | 1.0 | 1.0 a | 0.2 | 0.3 b | 0.7 | 0.2 b | 2.7 a | 2.4 | 0.5 b | 2.6 | 0.8 b | 2.6 | 0.5 b | 2.9 | 0.1 |
Total number of villi/mm | 8.9 | 8.3 a | 8.0 | 9.1 a | 8.3 | 8.6 a | 7.5 | 6.6 b | 12.1 a | 12.7 | 7.4 b | 11.3 | 12.1 a | 10.5 | 9.4 b | 11.8 | 0.2 |
Number of crypts to villi/mm ratio | 1.76 b | 2.32 a | 2.27 a | 1.76 b | 2.08 ab | 1.87 b | 2.25 a | 2.17 a | 1.41 b | 1.02 c | 2.48 a | 1.57 ab | 1.68 b | 1.78 a | 1.79 b | 1.39 b | 0.04 |
Number of enterocytes/mm | 117.5 | 164.3 ab | 159.5 | 167.2ab | 145.9 | 198.8 a | 148.4 | 139.5 b | 122.1 b | 143.7 a | 117.1 b | 93.3 b | 92.1 b | 128.6 ab | 201.8 a | 167.3 a | 3.9 |
Number of Goblet cells/mm | 47.6 a | 14.8 b | 18.8 b | 31.6 a | 14.7 b | 20.8 b | 29.9 ab | 17.3 b | 21.8 b | 17.5 ab | 12.4 b | 12.5 b | 50.3 a | 25.6 a | 29.5 b | 18.4 ab | 1.2 |
Enterocytes to Goblet cells ratio | 4.1c | 10.5 a | 9.5 ab | 6.4 b | 10.5 a | 10.6 a | 6.3 bc | 8.4 ab | 6.7 b | 8.7 ab | 11.2 a | 9.9 a | 2.7 c | 5.6 b | 7.7 b | 8.7 ab | 0.6 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
The height of enterocytes (µm) | 22 c | 37 | 24 bc | 31 | 33 ab | 41 | 40 a | 38 | 31 ab | 37 | 36 a | 41 | 45 a | 41 | 20 b | 37 | 1.9 |
Villi height (µm) | 1040 | 692 b | 894 | 1065 a | 1073 | 930 ab | 988 | 827 ab | 888 ab | 751 b | 1145 a | 990 a | 520 c | 946 a | 866 b | 819 ab | 32.6 |
Villi width (µm) | 52 b | 68 | 66 ab | 63 | 77 a | 71 | 68 ab | 67 | 81 a | 85 | 68 ab | 65 | 50 b | 72 | 67 ab | 73 | 3.1 |
Crypts width (µm) | 33 | 30 b | 37 | 31 ab | 35 | 33 ab | 36 | 36 a | 35 | 33 b | 35 | 37 a | 32 | 29 b | 34 | 32 b | 0.7 |
Crypts depth (µm) | 167 | 118 b | 193 | 164 a | 173 | 152 ab | 182 | 141 ab | 366 a | 395 b | 162 b | 438 a | 153 b | 386 b | 130 b | 280 b | 19.1 |
Villus/crypt ratio | 6.55 a | 5.83 | 4.76 b | 6.71 | 6.46 a | 6.31 | 5.49 ab | 5.80 | 2.59 c | 1.91 b | 7.31 a | 2.19 b | 3.38 c | 2.54 ab | 5.71 b | 2.98 a | 0.21 |
Absorption surface (µm2) | 22.9 | 19.7 c | 22.9 | 30.9 a | 26.9 | 26.1 abc | 25.6 | 21.8 bc | 22.0 b | 18.9 c | 29.7 a | 25.3 ab | 11.9 c | 27.6 a | 23.5 ab | 22.2 bc | 1.1 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Thickness of the mucosa (µm) | 1135 | 1141 a | 1226 | 1002 b | 1254 | 1135 ab | 1131 | 1142 a | 1187 b | 1010 bc | 1273 a | 1120 ab | 1208 b | 1219 a | 1002 b | 910 c | 11.9 |
Thickness of the submucosa (µm) | 84 | 120 a | 83 | 77 c | 101 | 109 ab | 94 | 82 bc | 109 ab | 94 | 93 b | 93 | 126 a | 109 | 92 b | 110 | 1.9 |
Thickness of the inner muscle layer (µm) | 38 | 56 a | 36 | 35 b | 40 | 58 a | 32 | 33 b | 60 a | 29 bc | 41 b | 40 b | 28 b | 57 a | 33 b | 22 c | 1.2 |
Thickness of the outer muscle layer (µm) | 193 | 171 b | 150 | 128 b | 155 | 248 a | 173 | 139 b | 153 ab | 122 b | 176 a | 140 b | 115 b | 222 a | 165 a | 119 b | 4.2 |
Total thickness of muscularis (µm) | 232 | 263 a | 187 | 165 b | 196 | 309 a | 200 | 175 b | 215 a | 154 b | 217 a | 181 b | 145 b | 280 a | 199 a | 145 b | 5.0 |
Muscle to mucosa ratio | 0.20 | 0.21 ab | 0.15 | 0.17 b | 0.16 | 0.28 a | 0.19 | 0.16 b | 0.18 a | 0.15 b | 0.17 a | 0.17 b | 0.12 b | 0.24 a | 0.20 a | 0.16 b | 0.01 |
Submucosa to mucosa ratio | 0.07 | 0.09 a | 0.07 | 0.08 ab | 0.08 | 0.10 a | 0.08 | 0.07 b | 0.09 ab | 0.09 b | 0.07 b | 0.08 b | 0.11 a | 0.09 b | 0.10 ab | 0.13 a | 0.002 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Total number of crypts/mm | 20.3 | 15.6 b | 18.4 | 19.2 ab | 17.3 | 20.2 a | 20.4 | 19.8 ab | 14.1 b | 17.5 | 18.7 a | 14.7 | 20.6 a | 15.9 | 19.8 a | 20.8 | 0.3 |
Number of open crypts/mm | 9.8 | 8.2 b | 9.1 | 11.5 a | 10.5 | 11.0 ab | 10.3 | 9.3 ab | 7.2 b | 4.7 b | 8.5 b | 8.1 ab | 12.1 a | 8.6 a | 10.0 ab | 7.5 ab | 0.2 |
Number of closed crypts/mm | 10.5 | 7.4 b | 9.2 | 7.6 b | 7.7 | 9.2 ab | 10.1 | 10.4 a | 6.9 b | 12.8 a | 9.0 ab | 6.0 b | 8.5 ab | 7.3 ab | 9.9 a | 10.9 ab | 0.3 |
Number of undamaged villi/mm | 8.3 | 7.6 | 8.2 | 8.3 | 7.2 | 8.3 | 8.1 | 7.4 | 7.0 | 8.8 a | 7.5 | 7.8 ab | 8.2 | 7.0 b | 7.8 | 8.1 ab | 0.1 |
Number of damaged villi/mm | 1.7 a | 2.1 a | 0.6 b | 0.6 b | 0.4c | 0.4 b | 1.5 ab | 1.2 ab | 1.7 b | 5.1 a | 1.1 bc | 2.0 b | 4.2 a | 1.6 b | 0.5 c | 4.5 a | 0.1 |
Total number of villi/mm | 10.0 | 9.8 | 8.6 | 8.9 | 7.8 | 8.6 | 9.7 | 8.6 | 8.7 b | 13.8 a | 8.7 b | 9.8 b | 12.4 a | 8.6 b | 8.7 b | 12.6 a | 0.2 |
Number of crypts to villi/mm ratio | 2.07 | 1.64 b | 2.13 | 2.17 a | 2.29 | 2.35 a | 2.14 | 2.32 a | 1.65 b | 1.30 b | 2.14 a | 1.45 ab | 1.63 b | 1.86 a | 2.37 a | 1.66 ab | 0.04 |
Number of enterocytes/mm | 224.1 a | 88.7 b | 131.1 b | 175.9 a | 181.4 ab | 146.3 a | 210.6 a | 170.6 a | 172.7 | 190.1 b | 142.8 | 170.7 b | 170.4 | 268.1 a | 186.6 | 155.3 b | 4.5 |
Number of Goblet cells/mm | 19.1 | 15.5 ab | 12.2 | 17.9 ab | 16.1 | 22.3 a | 20.3 | 12.8 b | 21.9 a | 17.4 | 9.9 b | 13.8 | 20.5 a | 15.3 | 13.3 b | 15.0 | 0.6 |
Enterocytes to Goblet cells ratio | 14.36 | 6.18 b | 12.51 | 9.82 a | 12.60 | 7.55 b | 11.37 | 13.18 a | 8.32 b | 12.35 | 17.44 a | 16.35 | 8.17 b | 17.54 | 14.18 a | 10.30 | 0.44 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
The height of enterocytes (µm) | 49 | 61 a | 41 | 40b | 40 | 39 b | 38 | 24c | 36 | 27 c | 48 | 40 ab | 47 | 34 bc | 40 | 45 a | 1.1 |
Villi height (µm) | 883 | 895 | 1012 | 840 | 1027 | 920 | 924 | 845 | 941 bc | 726 b | 1125 a | 967 a | 999 b | 986 a | 809 c | 706 b | 12.0 |
Villi width (µm) | 82 | 80 a | 65 | 75b | 82 | 72 bc | 64 | 58 c | 75 | 73 | 82 | 69 | 81 | 81 | 71 | 76 | 1.8 |
Crypts width (µm) | 34 | 42 a | 35 | 36b | 38 | 33 b | 34 | 32 b | 37 ab | 31 b | 40 a | 48 a | 26 c | 43 a | 33 b | 30 b | 0.6 |
Crypts depth (µm) | 164.0 | 142.8 b | 178.0 | 184.5 a | 174.6 | 181.6 a | 169.7 | 168.1 ab | 163.0 c | 294.9 a | 202.6 b | 145.4 c | 315.3 a | 156.1 c | 152.5 c | 229.9 b | 4.1 |
Villus/crypt ratio | 5.38 | 6.48 a | 5.79 | 4.67 b | 5.71 | 5.12 b | 5.64 | 5.08 b | 5.84 a | 2.40 b | 5.65 a | 6.57 a | 3.06 b | 6.36 a | 5.38 a | 3.19 b | 0.11 |
Absorption surface (µm2) | 22.7 | 13.1 c | 27.0 | 20.4b | 24.3 | 24.9 ab | 24.6 | 25.4 a | 23.3 b | 20.5 | 25.6 ab | 19.2 | 29.2 a | 21.0 | 22.2 b | 19.6 | 0.4 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Thickness of the mucosa (µm) | 727 b | 743 | 846 ab | 827 | 949 a | 846 | 785 ab | 790 | 671 b | 562 b | 889 a | 887 a | 727 ab | 770 a | 748 ab | 886 a | 13.0 |
Thickness of the submucosa (µm) | 102 | 99 a | 111 | 74 b | 117 | 99 a | 105 | 80 ab | 243 a | 211 a | 128 bc | 125 b | 221 ab | 132 b | 110 c | 180 ab | 5.6 |
Thickness of the inner muscle layer (µm) | 41 b | 48 | 85 a | 39 | 45 b | 40 | 59 b | 39 | 43 b | 95 a | 76 a | 77 ab | 37 b | 51 b | 62 a | 43 b | 2.0 |
Thickness of the outer muscle layer (µm) | 196 b | 221 b | 287 a | 198 b | 234 ab | 279 a | 263 ab | 213 b | 206 b | 306 a | 332 a | 329 a | 209 b | 191 b | 241 b | 241 ab | 5.9 |
Total thickness of muscularis (µm) | 232 b | 269 | 373 a | 239 | 281 bc | 307 | 323 ac | 254 | 258 b | 403 ab | 425 a | 419 a | 248 b | 278 b | 304 b | 285 b | 7.9 |
Muscle to mucosa ratio | 0.32 b | 0.38 | 0.47 a | 0.29 | 0.30 b | 0.37 | 0.41 ab | 0.32 | 0.38 | 0.74 a | 0.50 | 0.47 ab | 0.36 | 0.36 b | 0.46 | 0.32 b | 0.01 |
Submucosa to mucosa ratio | 0.14 | 0.14 a | 0.14 | 0.09 b | 0.12 | 0.12 ab | 0.13 | 0.10 b | 0.28 a | 0.39 a | 0.14 b | 0.14 b | 0.32 a | 0.17 b | 0.14 b | 0.21 b | 0.01 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
Total number of crypts/mm | 19.9 a | 16.9 | 14.8 b | 16.0 | 15.2 b | 17.1 | 18.5 a | 17.0 | 20.4 | 23.4 a | 17.4 | 17.9 b | 18.7 | 18.4 ab | 19.0 | 17.8 b | 0.3 |
Number of open crypts/mm | 13.8 a | 9.9 | 7.7 b | 10.1 | 9.2 b | 8.8 | 11.4 ab | 9.8 | 12.8 | 18.7 a | 10.3 | 11 b | 11.7 | 16.8 a | 10.7 | 9.0 b | 0.3 |
Number of closed crypts/mm | 6.1 | 6.8 ab | 6.6 | 5.9b | 7.4 | 8.3a | 7.1 | 7.2 ab | 7.6 | 4.7 bc | 7.1 | 7.5 ab | 7.0 | 1.6 c | 8.3 | 8.8 a | 0.2 |
Number of undamaged villi/mm | 9.3 a | 7.9 | 7.4 b | 6.5 | 7.7 ab | 7.7 | 9.0 ab | 6.7 | 8.8 ab | 15.6 a | 7.3 b | 7.0 b | 10.1 a | 8.7 b | 8.0 ab | 8.1 b | 0.2 |
Number of damaged villi/mm | 2.1 a | 0.7 a | 0.1 b | 0.1 b | 0.2 b | 0.2 ab | 0.6 b | 0.5 ab | 4.2 a | 3.6 a | 0.5 c | 0.4 b | 2.3 b | 2.9 a | 0.5 c | 2.3 a | 0.1 |
Total number of villi/mm | 11.4 a | 8.5 a | 7.5 b | 6.5 b | 7.9 b | 7.3 ab | 9.4 ab | 7.2 ab | 12.9 a | 19.2 a | 7.8 b | 7.4 b | 12.4 a | 11.6 b | 8.5 b | 10.7 b | 0.3 |
Number of crypts to villi/mm ratio | 1.83 | 2.07 b | 2.00 | 2.52 a | 2.00 | 2.24 ab | 1.98 | 2.39 ab | 1.64 b | 1.36 b | 2.23 a | 2.50 a | 1.52 b | 1.65 b | 2.25 a | 1.74 b | 0.04 |
Number of enterocytes/mm | 131.2 | 213.1 ab | 139.4 | 133.7 c | 110.0 | 154.3 bc | 150.7 | 215.4 a | 122.4 c | 63.6 c | 185.9 b | 180.0 a | 97.1 c | 128.2 b | 236.2 a | 110.0 b | 4.6 |
Number of Goblet cells/mm | 47.1 a | 36.2 a | 23.4 b | 20.8 b | 23.1 b | 34.9 a | 48.2 a | 36.6 a | 42.0 a | 28.8 b | 34.0 a | 36.0 ab | 20.1 b | 40.3 ab | 37.6 a | 46.6 a | 1.2 |
Enterocytes to Goblet cells ratio | 3.13 b | 7.46 a | 7.15 a | 6.19 ab | 5.75 a | 4.58 b | 3.47 b | 5.60 ab | 3.31 b | 2.13 b | 4.14 b | 5.00 a | 5.01 b | 2.76 a | 7.18 a | 2.28 a | 0.19 |
Mother | Primiparous | Multiparous | SEM | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Diet | C | HMB | AKG | HMB + AKG | C | HMB | AKG | HMB + AKG | |||||||||
Sex | m | f | m | f | m | f | m | f | m | f | m | f | m | f | m | f | |
The height of enterocytes (µm) | 42 | 29 b | 34 | 35 a | 36 | 40 a | 41 | 36 a | 38 | 38 | 42 | 40 | 39 | 38 | 33 | 37 | 0.6 |
Villi height (µm) | 561 b | 556 | 607 ab | 602 | 717 a | 580 | 583 b | 605 | 571 ab | 459 c | 542 ab | 551 bc | 616 a | 593 ab | 493 b | 685 a | 8.1 |
Villi width (µm) | 94 a | 75 ab | 70 bc | 84 a | 58 c | 89 a | 87 ab | 65 b | 89 a | 35 c | 80 ab | 82 ab | 61 b | 73 b | 85 ab | 95 a | 1.7 |
Crypts width (µm) | 39 b | 38 | 51 a | 38 | 43 a | 39 | 36 a | 36 | 30 b | 38 | 38 a | 38 | 32 ab | 35 | 37 ab | 33 | 0.5 |
Crypts depth (µm) | 186 a | 145 a | 166 a | 175 b | 174 a | 131 a | 127 b | 142 a | 267 a | 256 b | 134 b | 143 c | 287 a | 329 a | 125 b | 278 b | 5.3 |
Villus/crypt ratio | 3.04 b | 3.88 | 3.69 ab | 3.54 | 4.27 a | 4.49 | 4.54 a | 4.41 | 2.17 b | 1.83 b | 4.09 a | 3.85 a | 2.22 b | 1.78 b | 3.84 a | 2.42 b | 0.09 |
Absorption surface (µm2) | 12.6 | 13.0 b | 12.4 | 14.1 ab | 15.3 | 13.3 ab | 14.2 | 16.1 a | 14.9 a | 11.6 c | 13.1 b | 13.1 bc | 17.2 a | 15.4 ab | 11.8 bc | 16.6 a | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrowolski, P.; Muszyński, S.; Donaldson, J.; Jakubczak, A.; Żmuda, A.; Taszkun, I.; Rycerz, K.; Mielnik-Błaszczak, M.; Kuc, D.; Tomaszewska, E. The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring. Animals 2021, 11, 1468. https://doi.org/10.3390/ani11051468
Dobrowolski P, Muszyński S, Donaldson J, Jakubczak A, Żmuda A, Taszkun I, Rycerz K, Mielnik-Błaszczak M, Kuc D, Tomaszewska E. The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring. Animals. 2021; 11(5):1468. https://doi.org/10.3390/ani11051468
Chicago/Turabian StyleDobrowolski, Piotr, Siemowit Muszyński, Janine Donaldson, Andrzej Jakubczak, Andrzej Żmuda, Iwona Taszkun, Karol Rycerz, Maria Mielnik-Błaszczak, Damian Kuc, and Ewa Tomaszewska. 2021. "The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring" Animals 11, no. 5: 1468. https://doi.org/10.3390/ani11051468
APA StyleDobrowolski, P., Muszyński, S., Donaldson, J., Jakubczak, A., Żmuda, A., Taszkun, I., Rycerz, K., Mielnik-Błaszczak, M., Kuc, D., & Tomaszewska, E. (2021). The Effects of Prenatal Supplementation with β-Hydroxy-β-Methylbutyrate and/or Alpha-Ketoglutaric Acid on the Development and Maturation of Mink Intestines Are Dependent on the Number of Pregnancies and the Sex of the Offspring. Animals, 11(5), 1468. https://doi.org/10.3390/ani11051468