Influence of Residual Feed Intake and Cow Age on Dry Matter Intake Post-Weaning and Peak Lactation of Black Angus Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Heifer RFI Trials
2.2. Study 1: Non-Lactating, Pregnant Cow
2.3. Study 2: Lactating, Non-Pregnant Cow
2.4. Statistical Analysis
3. Results
3.1. Study 1: Non-Lactating, Pregnant Cow
3.2. Study 2: Lactating, Non-Pregnant Cow
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arthur, P.F.; Archer, J.A.; Herd, R.M. Feed intake and efficiency in beef cattle: Overview of recent Australian research and challenges for the future. Aust. J. Exp. Agric. 2004, 44, 361–369. [Google Scholar] [CrossRef]
- Van der Westhuizen, R.R.; Van der Westhuizen, J.; Schoeman, S.J. Genetic variance components of residual feed intake and feed conversion ratio and their correlations with other production traits in beef bulls. S. Afr. J. Anim. Sci. 2004, 34, 257–264. [Google Scholar]
- Meyer, A.M.; Kerley, M.S.; Kallenbach, R.L. The effect of residual feed intake classification on forage intake by grazing beef cows. J. Anim. Sci. 2008, 86, 2670–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and phenotypic variance and covariance components for feed intake, feed efficiency, and other postweaning traits in Angus cattle. J. Anim. Sci. 2001, 79, 2805–2811. [Google Scholar] [CrossRef] [Green Version]
- Kelly, A.K.; McGee, M.; Crews, D.H.; Sweeney, T.; Boland, T.; Kenny, D.A. Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake1. J. Anim. Sci. 2010, 88, 3214–3225. [Google Scholar] [CrossRef]
- Kelly, A.K.; McGee, M.; Crews, D.H.; Fahey, A.G.; Wylie, A.R.; Kenny, D.A. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers1. J. Anim. Sci. 2010, 88, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Basarab, J.A.; McCartney, D.; Okine, E.K.; Baron, V.S. Relationships between progeny residual feed intake and dam productivity traits. Can. J. Anim. Sci. 2007, 87, 489–502. [Google Scholar] [CrossRef]
- Manafiazar, G.; Basarab, J.A.; Baron, V.S.; McKeown, L.; Doce, R.R.; Swift, M.; Undi, M.; Wittenberg, K.; Ominski, K. Effect of post-weaning residual feed intake classification on grazed grass intake and performance in pregnant beef heifers. Can. J. Anim. Sci. 2015, 95, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Parsons, C.T.; Dafoe, J.M.; Wyffels, S.A.; Van Emon, M.; DelCurto, T.; Boss, D.L. Impacts of heifer postweaning residual feed intake classification on reproductive and performance measurements of first-, second-, and third-parity Angus beef females. Transl. Anim. Sci. 2021, 5. [Google Scholar] [CrossRef]
- Lawrence, P.; Kenny, D.A.; Earley, B.; Crews, D.H.; McGee, M. Grass silage intake, rumen and blood variables, ultrasonic and body measurements, feeding behavior, and activity in pregnant beef heifers differing in phenotypic residual feed intake1. J. Anim. Sci. 2011, 89, 3248–3261. [Google Scholar] [CrossRef] [Green Version]
- Arthur, P.F.; Herd, R.M.; Wilkins, J.F.; Archer, J.A. Maternal productivity of Angus cows divergently selected for post-weaning residual feed intake. Aust. J. Exp. Agric. 2005, 45, 985–993. [Google Scholar] [CrossRef]
- Sprinkle, J.E.; Taylor, J.B.; Clark, P.E.; Hall, J.B.; Strong, N.K.; Roberts-Lew, M.C. Grazing behavior and production characteristics among cows differing in residual feed intake while grazing late season Idaho rangelands. J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.; Dafoe, J.; Wyffels, S.; DelCurto, T.; Boss, D. The Influence of Residual Feed Intake and Cow Age on Beef Cattle Performance, Supplement Intake, Resource Use, and Grazing Behavior on Winter Mixed-Grass Rangelands. Animals 2021, 11, 1518. [Google Scholar] [CrossRef] [PubMed]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Improving feed efficiency of beef cattle—The current state of the art and future challenges. Animals 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Herd, R.; Bishop, S. Genetic variation in residual feed intake and its association with other production traits in British Hereford cattle. Livest. Prod. Sci. 2000, 63, 111–119. [Google Scholar] [CrossRef]
- Loyd, A.N.; Long, C.R.; Lewis, A.W.; Randel, R.D. Effects of physiological age on residual feed intake of growing heifers. Open J. Anim. Sci. 2011, 01, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Black, T.E.; Bischoff, K.M.; Mercadante, V.R.G.; Marquezini, G.H.L.; DiLorenzo, N.; Chase, C.C.; Coleman, S.W.; Maddock, T.D.; Lamb, G.C. Relationships among performance, residual feed intake, and temperament assessed in growing beef heifers and subsequently as 3-year-old, lactating beef cows1. J. Anim. Sci. 2013, 91, 2254–2263. [Google Scholar] [CrossRef] [Green Version]
- Freetly, H.C.; Kuehn, L.A.; Thallman, R.M.; Snelling, W.M. Heritability and genetic correlations of feed intake, body weight gain, residual gain, and residual feed intake of beef cattle as heifers and cows. J. Anim. Sci. 2020, 98, 1–6. [Google Scholar] [CrossRef]
- Durunna, O.N.; Colazo, M.G.; Ambrose, D.; McCartney, D.; Baron, V.; Basarab, J.A. Evidence of residual feed intake reranking in crossbred replacement heifers. J. Anim. Sci. 2012, 90, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Broleze, D.F.; Souza, L.L.; Zorzetto, M.F.; Savegnago, R.P.; Negrao, J.; Bonilha, S.F.M.; Mercadante, M.E.Z. Feed efficiency and maternal productivity of Bos indicus beef cows. PLoS ONE 2020, 15, e0233926. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Archer, J.A.; Reverter, A.; Herd, R.M.; Johnston, D.J.; Arthur, P.F. Genetic variation in feed intake and efficiency of mature beef cows and relationships with postweaning measurements. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 221–224. [Google Scholar]
- Williams, J.H.; Anderson, D.C.; Kress, D.D. Milk Production in Hereford Cattle. I. Effects of Separation Interval on Weigh-Suckle-Weigh Milk Production Estimates. J. Anim. Sci. 1979, 49, 1438–1442. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2020. Available online: https://www.r-project.org (accessed on 4 March 2021).
- Trenkle, A.; Willham, R.L. Beef production efficiency: The efficiency of beef production can be improved by applying knowledge of nutrition and breeding. Science 1977, 198, 1009–1015. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Cow Type and the Nutritional Environment: Nutritional Aspects. J. Anim. Sci. 1985, 61, 725–741. [Google Scholar] [CrossRef]
- Walburger, K.J.; Wells, M.; Vavra, M.; DelCurto, T.; Johnson, B.K.; Coe, P. Influence of Cow Age on Grazing Distribution in a Mixed-Conifer Forest. Rangel. Ecol. Manag. 2009, 62, 290–296. [Google Scholar] [CrossRef]
- Wyffels, S.A.; Boss, D.L.; Sowell, B.F.; DelCurto, T.; Bowman, J.G.P.; McNew, L.B. Dormant season grazing on northern mixed grass prairie agroecosystems: Does protein supplement intake, cow age, weight and body condition impact beef cattle resource use and residual vegetation cover? PLoS ONE 2020, 15, e0240629. [Google Scholar] [CrossRef]
- Earley, A.; Sowell, B.; Bowman, J. Liquid supplementation of grazing cows and calves. Anim. Feed. Sci. Technol. 1999, 80, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Sowell, B.F.; Bowman, J.G.P.; Grings, E.E.; MacNeil, M.D. Liquid supplement and forage intake by range beef cows. J. Anim. Sci. 2003, 81, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.P.; Crowley, J.J. Cell Biology Symposium: Genetics of feed efficiency in dairy and beef cattle1. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, R.S.; Martin, R.M.; Gentry, G.T. Impact of cow size on dry matter intake, residual feed intake, metabolic response, and cow performance. J. Anim. Sci. 2015, 93, 672–684. [Google Scholar] [CrossRef]
- Rutledge, J.J.; Robison, O.W.; Ahlschwede, W.T.; LeGates, J.E. Milk Yield and its Influence on 205-Day Weight of Beef Calves. J. Anim. Sci. 1971, 33, 563–567. [Google Scholar] [CrossRef]
- Melton, A.A.; Riggs, J.K.; Nelson, L.A.; Cartwright, T.C. Milk Production, Composition and Calf Gains of Angus, Charolais and Hereford Cows. J. Anim. Sci. 1967, 26, 804–809. [Google Scholar] [CrossRef]
- Christian, L.L.; Hauser, E.R.; Chapman, A.B. Association of Preweaning and Postweaning Traits with Weaning Weight in Cattle. J. Anim. Sci. 1965, 24, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Pope, L.S.; Smithson, L.; Stephens, D.F.; Pinney, D.O.; Velasco, M. Factors affecting milk production of range beef cows. Oklahoma Agric. Exp. Sta. Misc. Publ. 1968, 70, 69–77. [Google Scholar]
- Montanholi, Y.R.; Lam, S.; Peripolli, V.; Voort, G.V.; Miller, S.P. Short Communication: Associations between chemical composition and physical properties of milk and colostrum with feed efficiency in beef cows. Can. J. Anim. Sci. 2013, 93, 487–492. [Google Scholar] [CrossRef]
- Souza, L.L.; Zorzetto, M.F.; Ricci, T.J.T.; Canesin, R.C.; e Silva, N.C.D.; Negrao, J.; Cyrillo, J.N.D.S.G.; Mercadante, M.E.Z. Relationship between performance, metabolic profile, and feed efficiency of lactating beef cows. Trop. Anim. Heal. Prod. 2019, 51, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
Item | Non-Lactating, Pregnant Cow | Lactating, Non-Pregnant Cow |
---|---|---|
Ingredient, % | - | - |
Alfalfa hay | 49.53 | 79.05 |
Straw | 49.52 | - |
Corn, ground | - | 20.0 |
Ultramin 12-6 | 0.75 | 0.75 |
Trace mineral mix 1 | 0.20 | 0.20 |
Nutrient value, % | - | - |
Dry Matter | 93.6 | 90.4 |
Crude Protein | 10.5 | 16.8 |
Acid Detergent Fiber | 40.4 | 34.0 |
Total Digestible Nutrients | 62.0 | 65.1 |
Net Energy maintenance | 0.63 | 0.67 |
Net Energy gain | 0.36 | 0.40 |
Net Energy lactation | 0.64 | 0.67 |
Ca | 0.96 | 1.79 |
P | 0.19 | 0.21 |
S | 0.19 | 0.21 |
Mg | 0.20 | 0.27 |
Na | 0.02 | 0.02 |
K | 2.03 | 2.03 |
Category | Cow Age, Years | - | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1/2 | 4/5 | 7/8 | ||||||||
Low RFI | High RFI | Low RFI | High RFI | Low RFI | High RFI | SE 1 | Age | RFI | Age × RFI | |
Cows n | 10 | 10 | 10 | 10 | 10 | 9 | - | - | - | - |
Cow BW 2 | 435.2 | 444.1 | 470.2 a | 497.4 b | 567.7 | 557.9 | 4.66 | <0.01 | 0.17 | <0.01 |
Cow BCS 3 | 5.38 | 5.45 | 5.43 a | 5.65 b | 5.38 | 5.28 | 0.06 | <0.01 | 0.35 | 0.02 |
DMI kg/d | 12.86 | 12.58 | 15.15 | 17.07 | 16.59 | 16.59 | 1.00 | <0.01 | 0.77 | 0.21 |
DMI g/kg of BW | 29.57 | 28.24 | 26.63 | 28.69 | 29.35 | 30.22 | 1.68 | 0.57 | 0.48 | 0.43 |
DMI g/min | 92.24 | 92.60 | 145.88 | 144.83 | 135.04 | 132.45 | 7.95 | <0.01 | 0.97 | 0.98 |
% CV 4 | 15.95 | 22.41 | 22.50 | 17.76 | 16.53 | 20.62 | 3.37 | 0.62 | 0.16 | 0.21 |
Time at feeder min/d | 144.65 | 139.92 | 105.39 | 123.12 | 131.69 | 132.28 | 9.51 | 0.45 | 0.67 | 0.44 |
Category | Cow Age, Years | - | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2/3 | 5/6 | 8/9 | ||||||||
Low RFI | High RFI | Low RFI | High RFI | Low RFI | High RFI | SE 1 | Age | RFI | Age × RFI | |
Cows n | 7 | 10 | 9 | 10 | 9 | 9 | - | - | - | - |
Cow BW 2 | 397.5 | 408.4 | 541.8 a | 476.7 b | 534.2 a | 516.8 b | 4.96 | <0.01 | 0.12 | <0.01 |
Cow BCS 3 | 4.22 | 4.19 | 4.75 a | 4.95 b | 4.72 a | 4.50 b | 0.05 | <0.01 | 0.69 | <0.01 |
Calf n | 6 | 10 | 9 | 10 | 9 | 9 | - | - | - | - |
Calf BW 4 | 97.3 a | 91.9 b | 95.1 | 97.9 | 104.9 | 101.8 | 1.55 | <0.01 | <0.02 | <0.03 |
Calf Julian birth date | 70.2 | 66.8 | 75.5 | 73.4 | 76.1 | 76.6 | 1.41 | <0.01 | 0.09 | 0.38 |
DMI kg/d | 18.22 | 18.41 | 22.90 | 24.00 | 23.84 | 23.10 | 1.00 | <0.01 | 0.88 | 0.57 |
DMI g/kg of BW | 45.74 | 44.88 | 42.48 | 41.71 | 45.00 | 45.19 | 1.87 | 0.32 | 0.74 | 0.95 |
DMI g/min | 127.70 | 123.71 | 166.33 | 162.48 | 168.58 | 163.12 | 11.58 | 0.02 | 0.81 | 0.99 |
% CV 5 | 13.25 | 12.91 | 9.01 | 11.17 | 12.54 | 11.49 | 1.46 | 0.68 | 0.88 | 0.45 |
Time at feeder min/d | 149.42 | 154.30 | 140.00 | 153.07 | 149.28 | 152.41 | 11.99 | 0.99 | 0.75 | 0.88 |
Milk production kg | 3.89 a | 2.77 b | 4.88 a | 4.22 b | 4.23 | 4.28 | 0.16 | <0.01 | <0.01 | <0.01 |
Milk production g/kg of BW | 9.76 a | 6.82 b | 9.17 a | 7.32 b | 8.04 | 8.42 | 0.38 | <0.01 | <0.01 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, C.T.; Dafoe, J.M.; Wyffels, S.A.; DelCurto, T.; Boss, D.L. Influence of Residual Feed Intake and Cow Age on Dry Matter Intake Post-Weaning and Peak Lactation of Black Angus Cows. Animals 2021, 11, 1822. https://doi.org/10.3390/ani11061822
Parsons CT, Dafoe JM, Wyffels SA, DelCurto T, Boss DL. Influence of Residual Feed Intake and Cow Age on Dry Matter Intake Post-Weaning and Peak Lactation of Black Angus Cows. Animals. 2021; 11(6):1822. https://doi.org/10.3390/ani11061822
Chicago/Turabian StyleParsons, Cory T., Julia M. Dafoe, Samuel A. Wyffels, Timothy DelCurto, and Darrin L. Boss. 2021. "Influence of Residual Feed Intake and Cow Age on Dry Matter Intake Post-Weaning and Peak Lactation of Black Angus Cows" Animals 11, no. 6: 1822. https://doi.org/10.3390/ani11061822
APA StyleParsons, C. T., Dafoe, J. M., Wyffels, S. A., DelCurto, T., & Boss, D. L. (2021). Influence of Residual Feed Intake and Cow Age on Dry Matter Intake Post-Weaning and Peak Lactation of Black Angus Cows. Animals, 11(6), 1822. https://doi.org/10.3390/ani11061822