ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Isolation and Identification of ESBL/AmpC E. coli
2.4. Analysis of Resistance Genes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wasyl, D.; Zając, M.; Lalak, A.; Skarżyńska, M.; Samcik, I.; Kwit, R.; Jabłoński, A.; Bocian, Ł.; Woźniakowski, G.; Hoszowski, A.; et al. Antimicrobial Resistance in Escherichia coli Isolated from Wild Animals in Poland. Microb. Drug Resist. 2018, 24, 807–815. [Google Scholar] [CrossRef]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S.; et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Taneja, N.; Sharma, M. Antimicrobial resistance in the environment: The Indian scenario. Indian J. Med. Res. 2019, 149, 119. [Google Scholar] [CrossRef] [PubMed]
- Dahms, C.; Hubner, N.O.; Kossow, A.; Mellmann, A.; Dittmann, K.; Kramer, A. Occurrence of ESBL-Producing Escherichia coli in Livestock and Farm Workers in Mecklenburg-Western Pomerania, Germany. PLoS ONE 2015, 10, e0143326. [Google Scholar] [CrossRef] [PubMed]
- von Salviati, C.; Laube, H.; Guerra, B.; Roesler, U.; Friese, A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet. Microbiol. 2015, 175, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Aarestrup, F.M. Voluntary ban on cephalosporin use in Danish pig production has effectively reduced extended-spectrum cephalosporinase-producing Escherichia coli in slaughter pigs. J. Antimicrob. Chemother. 2013, 68, 569–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtmann, A.R.; Meemken, D.; Müller, A.; Seinige, D.; Büttner, K.; Failing, K.; Kehrenberg, C. Wild Boars Carry Extended-Spectrum β-Lactamase- and AmpC-Producing Escherichia coli. Microorganisms 2021, 9, 367. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Vale, A.P.; Cousins, C.; Tzora, A.; McCarron, M.-T.; Green, A.; Molloy, S.; Bainbridge, J.; Leonard, F. Molecular characterization of fecal Escherichia coli isolated from zoo animals. J. Zoo Wildl. Med. 2020, 50, 813–821. [Google Scholar] [CrossRef]
- Turchi, B.; Dec, M.; Bertelloni, F.; Winiarczyk, S.; Gnat, S.; Bresciani, F.; Viviani, F.; Cerri, D.; Fratini, F. Antibiotic susceptibility and virulence factors in Escherichia coli from sympatric wildlife of the Apuan Alps Regional Park (Tuscany, Italy). Microb. Drug Resist. 2019, 25, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef]
- Tinoco Torres, R.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild boar as a reservoir of antimicrobial resistance. Sci. Total Environ. 2020, 717, 135001. [Google Scholar] [CrossRef] [PubMed]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. Ital. J. Anim. Sci. 2010, 9, e61. [Google Scholar]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock–wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolny-Koładka, K.; Lenart-Boroń, A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environ. Sci. Pollut. Res. 2018, 25, 21789–21800. [Google Scholar] [CrossRef]
- Dhama, K.; Chakraborty, S.; Kapoor, S.; Tiwari, R.; Kumar, A.; Deb, R.; Rajagunalan, S.; Singh, R.; Vora, K.; Natesan, S. One World, One Health-Veterinary Perspectives. Adv. Anim. Vet. Sci. 2013, 1, 5–13. [Google Scholar]
- Mateus-Vargas, R.H.; Atanassova, V.; Reich, F.; Klein, G. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiol. 2017, 63, 164–169. [Google Scholar] [CrossRef]
- Chiari, M.; Ferrari, N.; Bertoletti, M.; Avisani, D.; Cerioli, M.; Zanoni, M.; Alborali, L.G.; Lanfranchi, P.; Lelli, D.; Moreno Martin, A.; et al. Long-Term Surveillance of Aujeszky’s Disease in the Alpine Wild Boar (Sus scrofa). EcoHealth 2015, 12, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, I.; Garcia-Graells, C.; Biasino, W.; Gowda, T.; Botteldoorn, N.; De Zutter, L. High abundance and diversity of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli in faeces and tonsils of pigs at slaughter. Vet. Microbiol. 2017, 208, 190–194. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlet, G.; Rouveau, M.; Philippon, A. Substitution of alanine for aspartate at position 179 in the SHV-6 extended-spectrum β-lactamase. FEMS Microbiol. Lett. 1997, 152, 163–167. [Google Scholar] [CrossRef]
- Mabilat, C.; Goussard, S.; Sougakoff, W.; Spencer, R.C.; Courvalin, P. Direct sequencing of the amplified structural gene and promoter for the extendedbroad-spectrum β-lactamase TEM-9 (RHH-1) of Klebsiella pneumonia. Plasmid 1990, 23, 27–34. [Google Scholar] [CrossRef]
- Dierikx, C.; van Essen-Zandbergen, A.; Veldman, K.; Smith, H.; Mevius, D. Increased detection of extended-spectrum β-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet. Microbiol. 2010, 145, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Baldo, V.; Salogni, C.; Giovannini, S.; D’Incau, M.; Boniotti, M.B.; Birbes, L.; Pitozzi, A.; Formenti, N.; Grassi, A.; Pasquali, P.; et al. Pathogenicity of Shiga Toxin Type 2e Escherichia coli in Pig Colibacillosis. Front. Vet. Sci. 2020, 7, 545818. [Google Scholar] [CrossRef]
- Agresti, A. An Introduction to Categorical Data Analysis, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 8 February 2021).
- Poeta, P.; Radhouani, H.; Pinto, L.; Martinho, A.; Rego, V.; Rodrigues, R.; Gonçalves, A.; Rodrigues, J.; Estepa, V.; Torres, C.; et al. Wild boars as reservoirs of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli of different phylogenetic groups. J. Basic Microbiol. 2009, 49, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.A.; González-Barrio, D.; Ruiz-Fons, F.; Ruiz-Ripa, L.; Torres, C. High frequency of B2 phylogroup among non-clonally related fecal Escherichia coli isolates from wild boars, including the lineage ST131. FEMS Microbiol. Ecol. 2017, 93, fix016. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Rodríguez, C.; Alt, K.; Grobbel, M.; Hammerl, J.A.; Irrgang, A.; Szabo, I.; Stingl, K.; Schuh, E.; Wiehle, L.; Pfefferkorn, B.; et al. Wildlife as Sentinels of Antimicrobial Resistance in Germany? Front. Vet. Sci. 2021, 7, 627821. [Google Scholar] [CrossRef] [PubMed]
- Literak, I.; Dolejska, M.; Radimersky, T.; Klimes, J.; Friedman, M.; Aarestrup, F.M.; Hasman, H.; Cizek, A. Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: Multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J. Appl. Microbiol. 2010, 108, 1702–1711. [Google Scholar] [CrossRef]
- Bonardi, S.; Cabassi, C.S.; Longhi, S.; Pia, F.; Corradi, M.; Gilioli, S.; Scaltriti, E. Detection of Extended- Spectrum Beta-Lactamase producing Escherichia coli from mesenteric lymph nodes of wild boars (Sus scrofa). Ital. J. Food Saf. 2018, 7, 7707. [Google Scholar] [CrossRef]
- Friese, A.; Schulz, J.; Laube, H.; von Salviati, C.; Hartung, J.; Roesler, U. Faecal occurrence and emissions of livestock-associated methicillin-resistant S. aureus (laMRSA) and ESbl/AmpC-producing E. coli from animal farms in Germany. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 175–180. [Google Scholar]
- European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Project. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2018 (EMA/24309/2020). Available online: https://www.ema.europa.eu/en/documents/report/sales-veterinary-antimicrobial-agents-31-europeancountries-2018-trends-2010-2018-tenth-esvac-report_en.pdf (accessed on 6 November 2020).
- Scali, F.; Santucci, G.; Maisano, A.M.; Giudici, F.; Guadagno, F.; Tonni, M.; Amicabile, A.; Formenti, N.; Giacomini, E.; Lazzaro, M.; et al. The Use of Antimicrobials in Italian Heavy Pig Fattening Farms. Antibiotics 2020, 9, 892. [Google Scholar] [CrossRef]
- Jiang, F.; Wu, Z.; Zheng, Y.; Frana, T.S.; Sahin, O.; Zhang, Q.; Li, G. Genotypes and Antimicrobial Susceptibility Profiles of Hemolytic Escherichia coli from Diarrheic Piglets. Foodborne Pathog. Dis. 2019, 16, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.V.V.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. In Vivo Selection of Resistant E. coli after ingestion of Milk with Added Drug Residues. PLoS ONE 2014, 9, e115223. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Canton, R.; Gniadkowski, M.; Nordmann, P.; Rossolini, G.M.; Arlet, G.; Ayala, J.; Coque, T.M.; Kern-Zdanowicz, I.; Luzzaro, F.; et al. CTX-M: Changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 2007, 59, 165–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mrowiec, P.; Klesiewicz, K.; Małek, M.; Skiba-Kurek, I.; Sowa-Sierant, I.; Skałkowska, M.; Budak, A.; Karczewska, E. Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol. 2019, 42, 197–204. [Google Scholar] [PubMed]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli. J. Antimicrob. Chemother. 2011, 66, 745–751. [Google Scholar] [CrossRef]
- González, D.; Gallagher, E.; Zúñiga, T.; Leiva, J.; Vitas, A.I. Prevalence and characterization of β-lactamase-producing Enterobacteriaceae in healthy human carriers. Int. Microbiol. 2020, 23, 171–177. [Google Scholar] [CrossRef]
- Cantón, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T.M. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonavoglia, A.; Leone, P.; Solimando, A.G.; Fasano, R.; Malerba, E.; Prete, M.; Corrente, M.; Prati, C.; Vacca, A.; Racanelli, V. Antibiotics or No Antibiotics, That Is the Question: An Update on Efficient and Effective Use of Antibiotics in Dental Practice. Antibiotics 2021, 10, 550. [Google Scholar] [CrossRef]
Hunting Areas (HA) | Area (km2) | Mean Number of Hunted Wild Boar (Sus scrofa) | Abundance (Wild Boar/km2) | No. of People | Human Density |
---|---|---|---|---|---|
HA 1 | 887.45 | 272 | 0.31 | 518,424 | 584.17 |
HA 2 | 231.62 | 323 | 1.40 | 25,036 | 108.09 |
HA 3 | 401.15 | 132 | 0.33 | 24,867 | 61.99 |
HA 4 | 272.21 | 403 | 1.48 | 12,659 | 46.5 |
Factors | Positive | Total | Prevalence % | 95% C.I. * | |
---|---|---|---|---|---|
Sex | Female | 129 | 802 | 16.08 | 13.61–18.81 |
Male | 111 | 702 | 15.81 | 13.19–18.72 | |
Age class | Young | 71 | 345 | 20.58 | 16.44–25.24 |
Sub-adult | 49 | 368 | 13.32 | 10.02–17.22 | |
Adult | 120 | 791 | 15.17 | 12.74–17.86 | |
Hunting season | 2017–2018 | 108 | 525 | 20.57 | 17.19–24.29 |
2018–2019 | 55 | 381 | 14.44 | 11.06–18.37 | |
2019–2020 | 77 | 598 | 12.88 | 10.30–15.83 | |
Hunting area | HA 1 | 83 | 506 | 16.40 | 13.28–19.92 |
HA 2 | 11 | 63 | 17.46 | 9.05–29.10 | |
HA 3 | 22 | 79 | 27.85 | 18.35–39.07 | |
HA 4 | 124 | 856 | 14.49 | 12.20–17.02 |
Factors | Positive | Total | Prevalence % | 95% C.I. * | |
---|---|---|---|---|---|
Sex | Female | 96 | 802 | 11.97 | 9.8–14.42 |
Male | 89 | 702 | 12.68 | 10.31–15.37 | |
Age class | Young | 57 | 345 | 16.52 | 12.76–20.87 |
Sub-adult | 37 | 368 | 10.05 | 7.18–13.59 | |
Adult | 91 | 791 | 11.5 | 9.36–13.94 | |
Hunting season | 2017–2018 | 84 | 525 | 16.00 | 12.97–19.42 |
2018–2019 | 48 | 381 | 12.60 | 9.44–16.35 | |
2019–2020 | 53 | 598 | 8.86 | 6.71–11.43 | |
Hunting area | HA 1 | 66 | 506 | 13.04 | 10.23–16.29 |
HA 2 | 10 | 63 | 15.87 | 7.88–27.26 | |
HA 3 | 14 | 79 | 17.72 | 10.04–27.94 | |
HA 4 | 95 | 856 | 11.10 | 9.07–13.40 |
Factors | Positive | Total | Prevalence % | 95% C.I. * | |
---|---|---|---|---|---|
Sex | Female | 58 | 802 | 7.23 | 5.54–9.25 |
Male | 47 | 702 | 6.70 | 4.96–8.80 | |
Age class | Young | 27 | 345 | 7.83 | 5.22–11.18 |
Sub-adult | 19 | 368 | 5.16 | 3.14–7.95 | |
Adult | 59 | 791 | 7.46 | 5.73–9.52 | |
Hunting season | 2017–2018 | 49 | 525 | 9.33 | 6.98–12.15 |
2018–2019 | 21 | 381 | 5.51 | 3.44–8.30 | |
2019–2020 | 35 | 598 | 5.85 | 4.11–8.05 | |
Hunting area | HA 1 | 46 | 506 | 9.09 | 6.73–11.94 |
HA 2 | 4 | 63 | 6.35 | 1.76–15.47 | |
HA 3 | 7 | 79 | 8.86 | 3.64–17.41 | |
HA 4 | 48 | 856 | 5.61 | 4.16–7.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formenti, N.; Calò, S.; Parisio, G.; Guarneri, F.; Birbes, L.; Pitozzi, A.; Scali, F.; Tonni, M.; Guadagno, F.; Giovannini, S.; et al. ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors. Animals 2021, 11, 1855. https://doi.org/10.3390/ani11071855
Formenti N, Calò S, Parisio G, Guarneri F, Birbes L, Pitozzi A, Scali F, Tonni M, Guadagno F, Giovannini S, et al. ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors. Animals. 2021; 11(7):1855. https://doi.org/10.3390/ani11071855
Chicago/Turabian StyleFormenti, Nicoletta, Stefania Calò, Giovanni Parisio, Flavia Guarneri, Laura Birbes, Alessandra Pitozzi, Federico Scali, Matteo Tonni, Federica Guadagno, Stefano Giovannini, and et al. 2021. "ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors" Animals 11, no. 7: 1855. https://doi.org/10.3390/ani11071855
APA StyleFormenti, N., Calò, S., Parisio, G., Guarneri, F., Birbes, L., Pitozzi, A., Scali, F., Tonni, M., Guadagno, F., Giovannini, S., Salogni, C., Ianieri, A., Bellini, S., Pasquali, P., & Alborali, G. L. (2021). ESBL/AmpC-Producing Escherichia coli in Wild Boar: Epidemiology and Risk Factors. Animals, 11(7), 1855. https://doi.org/10.3390/ani11071855