A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Recruitment
2.2. Animals and Farm Data
2.3. Antimicrobial Consumption Data
2.4. Statistical Analysis
3. Results
3.1. Animal and Farm Data
3.2. Antimicrobial Consumption
3.3. Associations between Antimicrobial Consumption and Possible Risk Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014. Available online: https://amr-review.org/ (accessed on 17 April 2018).
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- ECDC. EFSA Panel on Biological Hazards (BIOHAZ), and E.C. for M.P. for V.U. (CVMP) ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals. EFSA J. 2017. [Google Scholar] [CrossRef]
- European Commission. COMMISSION NOTICE—Guidelines for the prudent use of antimicrobials in veterinary medicine (2015/C-299/04). Off. J. Eur. Union. 2015, 299, 7–26. [Google Scholar]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance due to Non-Human Use; WHO: Geneva, Switzerland, 2016; ISBN 9789241512220. [Google Scholar]
- European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, L4, 43–167. [Google Scholar]
- EMA Committee for Medicinal Products for Veterinary Use (CVMP) and EFSA Panel on Biological Hazards (BIOHAZ). EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J. 2017, 15. [Google Scholar] [CrossRef]
- Jensen, V.F.; Jacobsen, E.; Bager, F. Veterinary antimicrobial-usage statistics based on standardized measures of dosage. Prev. Vet. Med. 2004, 64, 201–215. [Google Scholar] [CrossRef]
- Mevius, D.J.K.; Koene, M.G.J.; Witt, B.; Van Pelt, W.; Bondt, W. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2009; Central Veterinary Institute of Wageningen, University and Research Centre: Wageningen, The Netherlands, 2009. [Google Scholar]
- Consiglio Superiore della Sanità Piano Nazionale di Contrasto Dell’antibiotico Resistenza (PNCAR) 2017–2020. 2017. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2660_allegato.pdf (accessed on 2 June 2021).
- Sezione per la Farmacosorveglianza sui Medicinali Veterinari del Ministero della Salute Linee Guida Per L’Uso Prudente Degli Antimicrobici Negli Allevamenti Zootecnici Per La Prevenzione Dell’Antimicrobico-Resistenza E Proposte Alternative. 2017. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_2782_allegato.pdf (accessed on 2 June 2021).
- Castanon, J.I.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Hocquette, J.F.; Ellies-Oury, M.P.; Lherm, M.; Pineau, C.; Deblitz, C.; Farmer, L. Current situation and future prospects for beef production in—A review. Asian Australasian J. Anim. Sci. 2018, 31, 1017–1035. [Google Scholar] [CrossRef] [Green Version]
- Cozzi, G. Present situation and future challenges of beef cattle production in Italy and the role of the research. Ital. J. Anim. Sci. 2007, 6, 389–396. [Google Scholar] [CrossRef]
- European Commission EU Beef Farms—Report 2012—Based on FADN Data. 2013. Available online: https://ec.europa.eu/agriculture/rica/pdf/beef_report_2012.pdf (accessed on 6 June 2021).
- Henke, R.; Macrì, M.C. Osservatorio sulle sulle Politiche Politiche Agricole dell ’UE Roberto Henke e Maria Carmela Macrì. 2018. Available online: https://www.researchgate.net/publication/263620633_L’allevamento_del_bovino_da_carne_in_Veneto_Piemonte_Sicilia (accessed on 1 June 2021).
- Caucci, C.; Di Martino, G.; Schiavon, E.; Garbo, A.; Soranzo, E.; Tripepi, L.; Stefani, A.L.; Gagliazzo, L.; Bonfanti, L. Impact of bovine respiratory disease on lung lesions, slaughter performance and antimicrobial usage in French beef cattle finished in North-Eastern Italy. Ital. J. Anim. Sci. 2018, 17, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Diana, A.; Santinello, M.; Penasa, M.; Scali, F.; Magni, E.; Lori Aborali, G.; Bertocchi, L.; De Marchi, M. Use of antimicrobials in beef cattle: An observational study in the north of Italy. Prev. Vet. Med. 2020, 181, 105032. [Google Scholar] [CrossRef]
- Pardon, B.; Catry, B.; Dewulf, J.; Persoons, D.; Hostens, M.; De Bleecker, K. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 2012, 67, 1027–1038. [Google Scholar] [CrossRef] [Green Version]
- ESVAC; EMA. Principles on Assignment of Defined Daily Dose for Animals (DDDvet) and Defined Course Dose for Animals (DCDvet) (EMA/710019/2014). 2015. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/principles-assignment-defined-daily-dose-animals-dddvet-defined-course-dose-animals-dcdvet_en.pdf (accessed on 3 June 2021).
- EMA European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Web Based Sales Data and Animal Population Data Collection Protocol (version 2). Eur. Med. Agency 2016, 44, 1–15.
- DeDonder, K.D.; Apley, M.D.; Li, M.; Gehring, R.; Harhay, D.M.; Lubbers, B.V.; White, B.J.; Capik, S.F.; Kukanich, B.; Riviere, J.E.; et al. Pharmacokinetics and pharmacodynamics of gamithromycin in pulmonary epithelial lining fluid in naturally occurring bovine respiratory disease in multisource commingled feedlot cattle. J. Vet. Pharmacol. Ther. 2016, 39, 157–166. [Google Scholar] [CrossRef]
- Lava, M.; Schüpbach-Regula, G.; Steiner, A.; Meylan, M. Antimicrobial drug use and risk factors associated with treatment incidence and mortality in Swiss veal calves reared under improved welfare conditions. Prev. Vet. Med. 2016, 126, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, T.; Dewulf, J.; Catry, B.; Feyen, B.; Opsomer, G.; De Kruif, A.; Maes, D. Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Prev. Vet. Med. 2006, 74, 251–263. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Categorisation of Antibiotics in the European Union. 2019. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 31 May 2021).
- Hoogkamp-Korstanje, J.A.A.; Mouton, J.W.; van der Bij, A.K.; de Neeling, A.J.; Mevius, D.J.; Koene, M.G.J. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in Netherlands in 2012; Wageningen University & Research: Wageningen, The Netherlands, 2012. [Google Scholar]
- Veldman, K.T.; Mevius, D.J.; Ven Pelt, W.; Heederik, D. MARAN 2017: Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2016. In Combined with NETHMAP-2017: Consumption of Antimicrobial Agents and Antimicrobial Resistance Among Medically Important Bacteria in The Netherlands; Wageningen University & Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Brault, S.A.; Hannon, S.J.; Gow, S.P.; Otto, S.J.G.; Booker, C.W.; Morley, P.S. Calculation of Antimicrobial Use Indicators in Beef Feedlots—Effects of Choice of Metric and Standardized Values. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Merle, R.; Hajek, P.; Käsbohrer, A.; Hegger-Gravenhorst, C.; Mollenhauer, Y.; Robanus, M.; Ungemach, F.R.; Kreienbrock, L. Monitoring of antibiotic consumption in livestock: A German feasibility study. Prev. Vet. Med. 2012, 104, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef]
- Kuipers, A.; Koops, W.J.; Wemmenhove, H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012. J. Dairy Sci. 2016, 99, 1632–1648. [Google Scholar] [CrossRef] [Green Version]
- Jarrige, N.; Cazeau, G.; Morignat, E.; Chanteperdrix, M.; Gay, E. Quantitative and qualitative analysis of antimicrobial usage in white veal calves in France. Prev. Vet. Med. 2017, 144, 158–166. [Google Scholar] [CrossRef]
- Merle, R.; Robanus, M.; Hegger-Gravenhorst, C.; Mollenhauer, Y.; Hajek, P.; Käsbohrer, A.; Honscha, W.; Kreienbrock, L. Feasibility study of veterinary antibiotic consumption in Germany—Comparison of ADDs and UDDs by animal production type, antimicrobial class and indication. BMC Vet. Res. 2014, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, C.A.; Reid-Smith, R.; Irwin, R.J.; Martin, W.S.; McEwen, S.A. Antimicrobial use on 24 beef farms in Ontario. Can. J. Vet. Res. 2008, 72, 109. [Google Scholar] [CrossRef] [PubMed]
- Brault, S.A.; Hannon, S.J.; Gow, S.P.; Warr, B.N.; Withell, J.; Song, J.; Williams, C.M.; Otto, S.J.G.; Booker, C.W.; Morley, P.S. Antimicrobial Use on 36 Beef Feedlots in Western Canada: 2008–2012. Front. Vet. Sci. 2019, 6, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobayes, M.; Opsomer, G.; De Kruif, A.; Haesebrouck, F. Effect of Antimicrobial Consumption and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract. PLoS ONE 2016, 11, e0146488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fertner, M.; Toft, N.; Martin, H.L.; Boklund, A. A register-based study of the antimicrobial usage in Danish veal calves and young bulls. Prev. Vet. Med. 2016, 131, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Ives, S.E.; Richeson, J.T. Use of Antimicrobial Metaphylaxis for the Control of Bovine Respiratory Disease in High-Risk Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 341–350. [Google Scholar] [CrossRef]
- Godinho, K.S.; Wolf, R.M.-L.G.; Sherington, J.; Rowan, T.G.; Sunderland, S.J.; Evans, N.A. Efficacy of Tulathromycin in the Treatment and Prevention of Natural Outbreaks of Bovine Respiratory Disease in European Cattle. Vet. Ther. 2005, 6, 122–135. [Google Scholar]
- Menge, M.; Rose, M.; Bohland, C.; Zschiesche, E.; Kilp, S.; Metz, W.; Allan, M.; Röpke, R.; Nürnberger, M. Pharmacokinetics of tildipirosin in bovine plasma, lung tissue, and bronchial fluid (from live, nonanesthetized cattle). J. Vet. Pharmacol. Ther. 2012, 35, 550–559. [Google Scholar] [CrossRef] [PubMed]
- EMA Committee for Veterinary Medicinal Products Florfenicol Summary Report (1). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014274.pdf (accessed on 29 April 2018).
- EMA Committee for Veterinary Medicinal Products Marbofloxacin Summary Report (1). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014864.pdf (accessed on 29 April 2018).
- EMA Committee for Veterinary Medicinal Products Tylosin Summary Report (3). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500015764.pdf (accessed on 29 April 2018).
- Roberts, J.A.; Kruger, P.; Paterson, D.L.; Lipman, J. Antibiotic resistance-What’s dosing got to do with it? Crit. Care Med. 2008, 36, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Checkley, S.L.; Campbell, J.R.; Chirino-Trejo, M.; Janzen, E.D.; Waldner, C.L. Associations between antimicrobial use and the prevalence of antimicrobial resistance in fecal Escherichia coli from feedlot cattle in western Canada. Can. Vet. J. 2010, 51, 853–861. [Google Scholar] [PubMed]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Lubbers, B.V.; Hanzlicek, G.A. Antimicrobial multidrug resistance and coresistance patterns of Mannheimia haemolytica isolated from bovine respiratory disease cases—A three-year (2009–2011) retrospective analysis. J. Vet. Diagn. Investig. 2013, 25, 413–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portis, E.; Lindeman, C.; Johansen, L.; Stoltman, G. A ten-year (2000–2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex—Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni—In the United States and Canada. J. Vet. Diagn. Investig. 2012, 24, 932–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, S.; McKernan, C.; Benson, T.; Elliott, C.; Dean, M. Understanding farmers’ and veterinarians’ behavior in relation to antimicrobial use and resistance in dairy cattle: A systematic review. J. Dairy Sci. 2021, 104, 4584–4603. [Google Scholar] [CrossRef]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Brooks, K.R.; Raper, K.C.; Ward, C.E.; Holland, B.P.; Krehbiel, C.R.; Step, D.L. Economic effects of bovine respiratory disease on feedlot cattle during backgrounding and finishing phases1. Prof. Anim. Sci. 2011, 27, 195–203. [Google Scholar] [CrossRef]
- Schneider, M.J.; Tait, R.G.; Busby, W.D.; Reecy, J.M. An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. J. Anim. Sci. 2009, 87, 1821–1827. [Google Scholar] [CrossRef]
- Canali, E.; Fallon, R.; Le Neindre, P.; Lidfors, L.; Manteca, X.; Sundrum, A. The Welfare of Cattle Kept for Beef Production. 2001. Available online: https://core.ac.uk/display/10919221 (accessed on 6 June 2021).
- Mader, T.L. Environmental stress in confined beef cattle. J. Anim. Sci. 2003, 81, 110–119. [Google Scholar]
- Gilhespy, S.L.; Webb, J.; Chadwick, D.R.; Misselbrook, T.H.; Kay, R.; Camp, V.; Retter, A.L.; Bason, A. Will additional straw bedding in buildings housing cattle and pigs reduce ammonia emissions? Biosyst. Eng. 2009, 102, 180–189. [Google Scholar] [CrossRef]
- Hamilton, T.D.; Roe, J.M.; Webster, A.J. Synergistic role of gaseous ammonia in etiology of Pasteurella multocida-induced atrophic rhinitis in swine. J. Clin. Microbiol. 1996, 34, 2185–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caswell, J.L. Failure of respiratory defenses in the pathogenesis of bacterial pneumonia of cattle. Vet. Pathol. 2014, 51, 393–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, A.; Penasa, M.; Santinello, M.; Scali, F.; Magni, E.; Alborali, G.L.; Bertocchi, L.; De Marchi, M. Exploring potential risk factors of antimicrobial use in beef cattle. Animal 2021, 15, 100091. [Google Scholar] [CrossRef]
- Pucken, V.B.; Bodmer, M.; Lovis, B.; Pont, J.; Savioli, G.; Sousa, F.M.; Schüpbach-Regula, G. Antimicrobial consumption: Comparison of three different data collection methods. Prev. Vet. Med. 2021, 186, 105221. [Google Scholar] [CrossRef] [PubMed]
Parameter | Median | Min | Max |
---|---|---|---|
Average number of animals/year | 886 | 151 | 4200 |
Mortality/year (%) | 0.9 | 0.14 | 4.94 |
Average weight at the beginning of production cycle (kg) | 346 | 195 | 475 |
Average weight at the end of the production cycle (kg) | 665 | 475 | 750 |
Interval between veterinary visits (days) | 7 | 1 | 15 |
Space allowance in quarantine pens (m2/animal) | 4.6 | 3.4 | 37.4 |
Space allowance in fattening pens (m2/animal) | 4.7 | 3.4 | 6.7 |
Space allowance in hospital pens (m2/animal) | 9.2 | 2.9 | 30 |
Number of animals/pen in quarantine area | 14 | 6 | 60 |
Number of animals/pen in fattening area | 9 | 5 | 20 |
Number of animals/pen in hospital pens area | 3 | 1 | 9 |
Frequency of straw adding (days) | 2 | 1 | 17 |
Amount of straw added per animal per day (kg) | 3.1 | 1 | 5.7 |
Cleaning frequency in quarantine area (days) a | 20 | 10.5 | 91 |
Cleaning frequency in fattening area (days) b | 20.5 | 12.5 | 53 |
Cleaning frequency in hospital pens area (days) c | 20.5 | 10 | 60 |
Disinfection frequency in quarantine area (days) d | 20.5 | 15 | 365 |
Disinfection frequency in fattening area (days) e | 53 | 12.5 | 365 |
Disinfection frequency in hospital pens area (days) f | 25 | 1 | 365 |
Duration of depopulation period in quarantine area (days) | 7 | 0 | 30 |
Parameters | Category | n° Farms | Percent | Mean of nADDa ± SD (Median, Max) | ||
---|---|---|---|---|---|---|
Total Treatments | Single Treatments | Group Treatments | ||||
Purchase at least the 10% of females | Yes | 10 | 38.5% | 3.2 ± 2.1 (3.2, 8.3) | 1.2 ± 0.8 (1.2, 2.6) | 2.1 ± 2 (1.6, 6.8) |
No | 16 | 61.5% | 2.9 ± 2.1 (2.5, 8.2) | 1.4 ± 0.7 (1.5, 3) | 1.5 ± 1.8 (0.8, 6) | |
Maximal weight difference between batches’ average weight at arrival (kg) | <50 | 7 | 26.9% | 3.1 ± 2.6 (2.6, 8.3) | 1.3 ± 1 (1.6, 3) | 1.8 ± 2.4 (1, 6.8) |
50–100 | 13 | 50% | 3.2 ± 2.3 (2.6, 8.2) | 1.3 ± 0.7 (1.4, 2.6) | 1.9 ± 2 (1.2, 6) | |
>100 | 6 | 23.1% | 2.4 ± 1.2 (2.5, 3.8) | 1.2 ± 0.5 (1.2, 1.7) | 1.2 ± 1 (1.1, 2.5) | |
Pre-arrival health information | Yes | 1 | 3.8% | 7 | 1.6 | 5.4 |
No | 25 | 96.2% | 2.8 ± 2 (2.6, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.6 ± 1.8 (1, 6.8) | |
Thorough physical examination at arrival | Yes | 8 | 30.8% | 2.5 ± 1.2 (2.5, 4.4) | 0.9 ± 0.4 (0.9, 1.6) | 1.6 ± 1.2 (1.5, 3.9) |
No | 18 | 69.2% | 3.2 ± 2.4 (2.8, 8.3) | 1.4 ± 0.7 (1.5, 3) | 1.8 ± 2.1 (0.9, 6.8) | |
Vaccination against bacteria | Yes | 23 | 88.5% | 3 ± 2.2 (2.6, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.8 ± 2 (1, 6.8) |
No | 3 | 11.5% | 2.7 ± 1.2 (2.3, 4) | 1.2 ± 0.7 (1.6, 1.6) | 1.5 ± 0.9 (1.2, 2.4) | |
More than 1 days between arrival and vaccination | Yes | 10 | 38.5% | 2.8 ± 2.3 (2.1, 8.3) | 1.1 ± 0.8 (0.9, 3) | 1.7 ± 2.2 (1.1, 6.8) |
No | 16 | 61.5% | 3.1 ± 2.1 (2.9, 8.2) | 1.4 ± 0.6 (1.5, 2.6) | 1.7 ± 1.7 (1.1, 6) | |
Parasiticides at arrival | Yes | 23 | 88.5% | 2.7 ± 2 (2.3, 8.3) | 1.2 ± 0.7 (1.1, 3) | 1.5 ± 1.8 (0.8, 6.8) |
No | 3 | 11.5% | 5.1 ± 2.8 (4, 8.2) | 1.9 ± 0.3 (1.7, 2.2) | 3.3 ± 2.4 (2.4, 6) | |
Regular antimicrobial prophylactic/metaphylactic treatment at arrival | Yes | 15 | 57.7% | 3.9 ± 2.3 (3.5, 8.3) | 1.2 ± 0.6 (1.5, 2.2) | 2.6 ± 2 (2, 6.8) |
No | 11 | 42.3% | 1.8 ± 1.1 (1.5, 4.4) | 1.3 ± 0.9 (1.1, 3) | 0.5 ± 0.6 (0.1, 1.8) | |
Presence of a cattle crush | Yes | 9 | 34.6% | 3.5 ± 2.6 (3.5, 8.2) | 1.3 ± 0.5 (1.5, 2.2) | 2.2 ± 2.2 (2, 6) |
No | 17 | 65.4% | 2.7 ± 1.9 (2.6, 8.3) | 1.2 ± 0.8 (1.4, 3) | 1.5 ± 1.7 (0.8, 6.8) | |
Animal handling corridor | Yes | 15 | 57.7% | 3.2 ± 2.1 (3, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.9 ± 2 (1.4, 6.8) |
No | 11 | 42.3% | 2.8 ± 2.2 (2.3, 8.2) | 1.3 ± 0.8 (1.4, 2.6) | 1.5 ± 1.7 (0.8, 6) | |
Specific diet for animals in quarantine | Yes | 7 | 26.9% | 2.8 ± 2.6 (2, 8.2) | 1.2 ± 0.7 (1.5, 2.2) | 1.6 ± 2.1 (0.8, 6) |
No | 19 | 73.1% | 3.1 ± 2 (2.6, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.8 ± 1.9 (1.2, 6.8) | |
Fattening group divided by origin or arrival | Yes | 5 | 19.2% | 2.3 ± 1.7 (1.2, 4.4) | 0.8 ± 0.6 (1, 1.5) | 1.5 ± 1.6 (1, 3.9) |
No | 21 | 80.8% | 3.2 ± 2.2 (2.6, 8.3) | 1.4 ± 0.7 (1.5, 3) | 1.8 ± 2 (1.2, 6.8) | |
Fattening group divided by weight at arrival | Yes | 24 | 92.3% | 3 ± 2.2 (2.6, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.7 ± 2 (1, 6.8) |
No | 2 | 7.7% | 2.4 ± 2 (2.4, 3.8) | 0.8 ± 1 (0.8, 1.5) | 1.7 ± 0.9 (1.7, 2.3) | |
Daily check on animal by entering the pen | Yes | 5 | 19.2% | 3.6 ± 2.2 (2.6, 7) | 1.2 ± 0.5 (1.1, 1.8) | 2.4 ± 2.2 (1.9, 5.4) |
No | 21 | 80.8% | 2.9 ± 2.2 (2.3, 8.3) | 1.3 ± 0.8 (1.5, 3) | 1.6 ± 1.8 (1, 6.8) | |
All sick animals examined by veterinarian before treatment * | Yes | 9 | 34.6% | 2.1 ± 1.3 (1.5, 4.4) | 1.2 ± 0.8 (1.5, 2.6) | 0.9 ± 0.8 (0.8, 2.3) |
No | 17 | 65.4% | 3.5 ± 2.4 (3, 8.3) | 1.3 ± 0.7 (1.4, 3) | 2.1 ± 2.2 (1.9, 6.8) | |
Animals moved to infirmary at the first onset clinical signs | Yes | 5 | 19.2% | 2.2 ± 1.1 (1.7, 3.5) | 0.8 ± 0.6 (0.8, 1.5) | 1.4 ± 0.6 (1.2, 2) |
No | 21 | 80.8% | 3.2 ± 2.3 (2.6, 8.3) | 1.4 ± 0.7 (1.5, 3) | 1.8 ± 2.1 (0.8, 6.8) | |
Mechanical ventilation in closed areas | Yes | 23 | 88.5% | 3.2 ± 2.2 (3, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.8 ± 2 (1.4, 6.8) |
No | 3 | 11.5% | 1.7 ± 0.8 (1.3, 2.6) | 0.8 ± 0.9 (0.5, 1.8) | 0.9 ± 0.1 (0.8, 1) | |
Scraper in at least one area | Yes | 13 | 50% | 3.2 ± 2.3 (3, 8.2) | 1.3 ± 0.8 (1, 3) | 1.9 ± 2.1 (1.2, 6) |
No | 13 | 50% | 2.8 ± 2 (2.6, 8.3) | 1.3 ± 0.7 (1.5, 2.6) | 1.5 ± 1.7 (1, 6.8) | |
Open quarantine area | Yes | 17 | 65.4% | 2.9 ± 2.2 (2.6, 8.2) | 1.2 ± 0.7 (1.1, 3) | 1.7 ± 1.9 (1.2, 6) |
No | 9 | 34.6% | 3.1 ± 2.2 (2.6, 8.3) | 1.3 ± 0.8 (1.5, 2.6) | 1.8 ± 2 (1, 6.8) | |
Isolated quarantine area | Yes | 23 | 88.5% | 3 ± 2.2 (2.6, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.8 ± 2 (1.2, 6.8) |
No | 3 | 11.5% | 2.5 ± 1.4 (2.6, 3.8) | 1.1 ± 0.9 (1.5, 1.8) | 1.4 ± 0.8 (1, 2.3) | |
Paddock in quarantine area | Yes | 6 | 23.1% | 2.8 ± 2.4 (1.6, 7) | 0.9 ± 0.4 (0.9, 1.6) | 1.9 ± 2.2 (1, 5.4) |
No | 20 | 76.9% | 3 ± 2.1 (2.8, 8.3) | 1.4 ± 0.7 (1.5, 3) | 1.7 ± 1.8 (1.2, 6.8) | |
Scraper in the quarantine area | Yes | 2 | 7.7% | 2.5 ± 1.4 (2.5, 3.5) | 0.9 ± 0.2 (0.9, 1) | 1.6 ± 1.3 (1.6, 2.5) |
No | 24 | 92.3% | 3 ± 2.2 (2.6, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.7 ± 1.9 (1.1, 6.8) | |
Quarantine disinfection | Yes | 24 | 92.3% | 3.1 ± 2.2 (2.8, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.8 ± 1.9 (1.3, 6.8) |
No | 2 | 7.7% | 1.3 ± 0.9 (1.3, 2) | 1.1 ± 0.6 (1.1, 1.5) | 0.2 ± 0.3 (0.2, 0.4) | |
Open fattening area | Yes | 3 | 11.5% | 1.5 ± 0.5 (1.3, 2) | 1 ± 0.5 (1, 1.6) | 0.5 ± 0.4 (0.5, 0.8) |
No | 23 | 88.5% | 3.2 ± 2.2 (3, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.9 ± 1.9 (1.4, 6.8) | |
Paddock in fattening area | Yes | 6 | 23.1% | 3 ± 2.2 (2.8, 7) | 1.4 ± 0.9 (1.3, 3) | 1.6 ± 2.1 (0.9, 5.4) |
No | 20 | 76.9% | 3 ± 2.2 (2.5, 8.3) | 1.2 ± 0.7 (1.5, 2.6) | 1.8 ± 1.9 (1.1, 6.8) | |
Scraper in fattening area | Yes | 12 | 46.2% | 3.4 ± 2.4 (3.3, 8.2) | 1.3 ± 0.8 (1.2, 3) | 2.1 ± 2.1 (1.8, 6) |
No | 14 | 53.8% | 2.7 ± 2 (2.5, 8.3) | 1.3 ± 0.7 (1.5, 2.6) | 1.4 ± 1.7 (0.9, 6.8) | |
Bedding removal in fattening area | Scraper | 6 | 23.1% | 4.3 ± 2.8 (3.9, 8.2) | 1.3 ± 0.7 (1.5, 2.2) | 3 ± 2.2 (2.4, 6) |
Scraper and manual | 6 | 23.1% | 2.4 ± 1.4 (2.2, 4.4) | 1.2 ± 0.9 (0.9, 3) | 1.2 ± 1.6 (0.4, 3.9) | |
Manual | 14 | 53.8% | 2.7 ± 2 (2.5, 8.3) | 1.3 ± 0.7 (1.5, 2.6) | 1.4 ± 1.7 (0.9, 6.8) | |
Fattening area disinfection | Yes | 21 | 80.8% | 3.2 ± 2.3 (2.6, 8.3) | 1.3 ± 0.7 (1.4, 3) | 1.9 ± 2 (1.2, 6.8) |
No | 5 | 19.2% | 2.3 ± 1.6 (2, 4) | 1.2 ± 0.5 (1.5, 1.6) | 1.2 ± 1.1 (0.6, 2.4) | |
Depopulation period in fattening area | Yes | 2 | 7.7% | 5.4 ± 4 (5.4, 8.2) | 2 ± 0.3 (2, 2.2) | 3.4 ± 3.7 (3.4, 6) |
No | 24 | 92.3% | 2.8 ± 1.9 (2.5, 8.3) | 1.2 ± 0.7 (1.3, 3) | 1.6 ± 1.7 (1.1, 6.8) | |
Open hospital pens | Yes | 12 | 46.2% | 2.4 ± 1.3 (2.3, 4.4) | 1.1 ± 0.6 (1.3, 1.8) | 1.3 ± 1.1 (1, 3.9) |
No | 14 | 53.8% | 3.5 ± 2.6 (2.8, 8.3) | 1.4 ± 0.8 (1.5, 3) | 2.1 ± 2.3 (1.4, 6.8) | |
Hospital pens isolated from rest of the barn | Yes | 8 | 30.8% | 2.4 ± 1.6 (2.2, 4.4) | 1.2 ± 0.7 (1.1, 2.6) | 1.2 ± 1.3 (1, 3.9) |
No | 18 | 69.2% | 3.3 ± 2.3 (2.6, 8.3) | 1.3 ± 0.7 (1.5, 3) | 1.9 ± 2.1 (1.1, 6.8) | |
Paddock in the hospital pens | Yes | 1 | 3.8% | 1.2 | 1.1 | 0.09 |
No | 25 | 96.2% | 3.1 ± 2.2 (2.6, 8.3) | 1.3 ± 0.7 (1.5 3) | 1.8 ± 1.9 (1.2, 6.8) | |
Scraper in hospital pens | Yes | 6 | 23.1% | 2.5 ± 2.3 (1.6, 7) | 1.2 ± 1 (0.9, 3) | 1.2 ± 2.1 (0.4, 5.4) |
No | 20 | 76.9% | 3.1 ± 2.1 (2.9, 8.3) | 1.3 ± 0.6 (1.5, 2.6) | 1.9 ± 1.8 (1.6, 6.8) | |
Bedding removing in hospital pens | Scraper | 3 | 11.5% | 3.4 ± 3.1 (1.7, 7) | 0.9 ± 0.6 (0.8, 1.6) | 2.4 ± 2.5 (1.2, 5.4) |
Scraper and manual | 3 | 11.5% | 1.6 ± 1.3 (1.1, 3) | 1.6 ± 1.3 (1, 3) | 0.03 ± 0.05 (0, 0.08) | |
Manual | 20 | 77% | 3.1 ± 2.1 (2.9, 8.3) | 1.3 ± 0.6 (1.5, 2.6) | 1.9 ± 1.8 (1.6, 6.8) | |
Hospital pens disinfection | Yes | 24 | 92.3% | 3.1 ± 2.2 (2.8, 8.3) | 1. ± 0.7 (1.5, 3) | 1.8 ± 1.9 (1.2, 6.8) |
No | 2 | 7.7% | 1.2 ± 0.7 (1.2, 1.7) | 0.6 ± 0.1 (0.6, 0.7) | 0.6 ± 0.9 (0.6, 1.2) | |
Depopulation period in hospital pens | Yes | 10 | 38.5% | 3.2 ± 2 (3.1, 8.2) | 1.3 ± 0.6 (1.5, 2.2) | 2 ± 1.8 (1.6, 6) |
No | 16 | 61.5% | 2.8 ± 2.2 (2.2, 8.3) | 1.3 ± 0.8 (1.3, 3) | 1.6 ± 2 (0.8, 6.8) |
Substance Group | Parenteral | Oral | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
No. Farms | kg | % | No. Farms | kg | % | No. Farms | kg | % | |
Aminoglycosides | 22 | 20.1 | 5.7 | 0 | 0 | 0 | 22 | 20.1 | 2.4 |
Penicillines | 22 | 22.9 | 6.5 | 0 | 0 | 0 | 22 | 22.9 | 2.8 |
3rd and 4th generation Cephalosporines | 12 | 3.1 | 0.9 | 0 | 0 | 0 | 12 | 3.1 | 0.4 |
Fenicoles | 24 | 136.1 | 38.7 | 0 | 0 | 0 | 24 | 136.1 | 16.5 |
Fluoroquinolones | 25 | 23.5 | 6.7 | 1 | 0.04 | 0.01 | 25 | 23.5 | 2.9 |
Lincosamides | 18 | 8.4 | 2.4 | 0 | 0 | 0 | 18 | 8.4 | 1 |
Macrolides | 26 | 83.7 | 23.8 | 0 | 0 | 0 | 26 | 83.7 | 10.2 |
Polymyxins | 3 | 0.2 | 0.1 | 0 | 0 | 0 | 3 | 0.2 | 0.1 |
Sulfonamides | 15 | 14.8 | 4.2 | 0 | 0 | 0 | 15 | 14.8 | 1.8 |
Sulfonamide and Trimethoprim | 15 | 18.4 | 5.2 | 5 | 40.3 | 8.6 | 17 | 58.7 | 7.1 |
Tetracyclines | 20 | 20.4 | 5.8 | 17 | 429.7 | 91.4 | 21 | 450.2 | 54.8 |
Total | 26 | 351.6 | 42.8 | 17 | 470.1 | 57.2 | - | 821.7 | 100 |
nADDa | ||||||||
---|---|---|---|---|---|---|---|---|
Active Substance | ATC-Vet | LA Factor | ADD | No. of Farms | % | Mean ± SD | Median | Max |
GROUP TREATMENTS | 57.5 | |||||||
Oral formulation | 70.5 | |||||||
Doxycycline | QJ01AA02 | 1 | 10 | 17 | 97 | 1.17 ± 1.7 | 0.3 | 5.6 |
Sulfadiazine/trimethoprim | QJ01EW10 | 1 | 24 | 5 | 3 | 0.04 ± 0.1 | 0 | 0.4 |
Parenteral formulation | 29.5 | |||||||
Aminosidin | QJ01GB92 | 1 | 10.5 | 1 | 0.8 | 0.004 ± 0.02 | 0 | 0.1 |
Amoxicillin | QJ01CA04 | 1–2 | 7.25 | 1 | 0.08 | 0.0004 ± 0.002 | 0 | 0.01 |
Enrofloxacin | QJ01MA90 | 1–2 | 4.4 | 3 | 3.2 | 0.02 ± 0.07 | 0 | 0.4 |
Florfenicol-Florfenicol + flunixin | QJ01BA90/ QI01BA99 | 2–4 | 12.5 | 13 | 6.9 | 0.04 ± 0.08 | 0.004 | 0.4 |
Lincomycin/spectinomycin | QJ01FF52 | 1 | 15 | 4 | 0.2 | 0.001 ± 0.005 | 0 | 0.02 |
Marbofloxacin | QJ01MA93 | 1–4 | 2 | 8 | 6.2 | 0.03 ± 0.1 | 0 | 0.5 |
Oxytetracycline | QJ01AA06 | 1–2 | 6.5 | 7 | 4 | 0.02 ± 0.09 | 0 | 0.4 |
Procaine benzylpenicillin | QJ01CE09 | 1 | 12 | 1 | 0.04 | 0.0002 ± 0.001 | 0 | 0.006 |
Spiramycin | QJ01FA02 | 2 | 15.6 | 5 | 1.7 | 0.009 ± 0.02 | 0 | 0.08 |
Sulfadimidine/Trimethoprim | QJ01EW03 | 1 | 15.5 | 1 | 0.2 | 0.001 ± 0.005 | 0 | 0.03 |
Sulfamonomethoxine | QJ01EQ18 | 1 | 40 | 1 | 0.06 | 0.0003 ± 0.002 | 0 | 0.008 |
Thiamphenicol | QJ01BA02 | 1 | 37.5 | 1 | 0.03 | 0.0002 ± 0.0008 | 0 | 0.004 |
Tildipirosin | QJ01FA96 | 5 | 0.8 | 13 | 26.8 | 0.14 ± 0.4 | 0.006 | 1.6 |
Tilmicosin | QJ01FA91 | 1–2 | 6 | 6 | 5.9 | 0.03 ± 0.1 | 0 | 0.5 |
Tylosin | QJ01FA90 | 1 | 7 | 4 | 2.5 | 0.01 ± 0.04 | 0 | 0.2 |
Tulathromycin | QJ01FA94 | 5 | 0.5 | 12 | 41.4 | 0.2 ± 0.4 | 0 | 1.8 |
INDIVIDUAL TREATMENTS | 42.5 | |||||||
Oral formulation | 1.9 | |||||||
Doxyciclyne | QJ01AA02 | 1 | 10 | 6 | 98.8 | 0.02 ± 0.09 | 0 | 0.4 |
Enrofloxacin | QJ01MA90 | 1 | 3.75 | 1 | 1.2 | 0.0003 ± 0.002 | 0 | 0.008 |
Parenteral formulation | 98.1 | |||||||
Aminosidin | QJ01GB92 | 1 | 10.5 | 2 | 0.2 | 0.003 ± 0.01 | 0 | 0.05 |
Amoxicillin | QJ01CA04 | 1–2 | 7.25 | 13 | 3.9 | 0.05 ± 0.07 | 0.02 | 0.3 |
Ampicillin | QJ01CA01 | 1 | 7.5 | 6 | 1.4 | 0.02 ± 0.05 | 0 | 0.2 |
Ampicillin/ colistin sulphate | QJ01RV01 | 1 | 11.3 | 3 | 0.3 | 0.003 ± 0.01 | 0 | 0.04 |
Ampicillin/dicloxacillin | QJ01CR50 | 1 | 10.7 | 7 | 0.9 | 0.01 ± 0.03 | 0 | 0.2 |
Procaine benzylpenicillin/dihydrostreptomycin | QJ01RA01 | 1 | 43 | 3 | 0.1 | 0.001 ± 0.005 | 0 | 0.02 |
Cefquinome | QJ01DE90 | 1 | 1 | 4 | 1.2 | 0.02 ± 0.06 | 0 | 0.3 |
Ceftiofur | QJ01DD90 | 1–6 | 1 | 9 | 6.3 | 0.08 ± 0.3 | 0 | 1.2 |
Danofloxacin | QJ01MA92 | 2 | 3 | 2 | 0.07 | 0.0009 ± 0.004 | 0 | 0.02 |
Enrofloxacin | QJ01MA90 | 1–2 | 4.4 | 11 | 6.4 | 0.08 ± 0.2 | 0 | 0.8 |
Erythromycin/sulfamonomethoxine | QJ01RA91 | 1 | 25 | 1 | 0.05 | 0.0007 ± 0.003 | 0 | 0.02 |
Florfenicol-Florfenicol + flunixin | QJ01BA90/QI01BA99 | 2–4 | 12.5 | 22 | 19.9 | 0.25 ± 0.2 | 0.2 | 0.6 |
Gamithromycin | QJ01FA95 | 5 | 1.2 | 1 | 0.01 | 0.0001 ± 0.0006 | 0 | 0.003 |
Kanamycin | QJ01GB04 | 0.5 | 13.5 | 5 | 0.6 | 0.008 ± 0.03 | 0 | 0,2 |
Lincomycin/spectinomycin | QJ01FF52 | 1 | 15 | 18 | 2.9 | 0.04 ± 0.05 | 0.01 | 0.2 |
Marbofloxacin | QJ01MA93 | 1–4 | 2 | 18 | 19.5 | 0.2 ± 0.3 | 0.1 | 1 |
Oxytetracycline | QJ01AA06 | 1–2 | 6.5 | 20 | 6.3 | 0.08 ± 0.08 | 0.07 | 0.3 |
Procaine benzylpenicillin | QJ01CE09 | 1 | 12 | 1 | 0.06 | 0.0008 ± 0.004 | 0 | 0.02 |
Spiramycin | QJ01FA02 | 2 | 15.6 | 16 | 6.7 | 0.08 ± 0.1 | 0.05 | 0.4 |
Sulfadiazine/trimethoprim | QJ01EW10 | 1 | 24 | 1 | 0.1 | 0.001 ± 0.007 | 0 | 0.04 |
Sulfadimethoxine | QJ01EQ09 | 1 | 31 | 4 | 0.3 | 0.003 ± 0.01 | 0 | 0.05 |
Sulfadimidine/sulfadimethoxine/trimethoprim | QJ01EW03 | 1 | 15.5 | 1 | 0.02 | 0.0003 ± 0.001 | 0 | 0.007 |
Sulfadimidine/trimethoprim | QJ01EW03 | 1 | 15.5 | 15 | 2.3 | 0.03 ± 0.04 | 0.01 | 0.1 |
Sulfametopyrazine | QJ01EQ19 | 1 | 36 | 1 | 0.3 | 0.003 ± 0.02 | 0 | 0.08 |
Sulfamonomethoxine | QJ01EQ18 | 1 | 40 | 10 | 0.6 | 0.008 ± 0.02 | 0 | 0.06 |
Thiamphenicol | QJ01BA02 | 1 | 37.5 | 8 | 0.5 | 0.006 ± 0.02 | 0 | 0.06 |
Tildipirosin | QJ01FA96 | 5 | 0.8 | 12 | 5.3 | 0.07 ± 0.09 | 0 | 0.4 |
Tilmicosin | QJ01FA91 | 1–2 | 6 | 15 | 0.8 | 0.01 ± 0.02 | 0.004 | 0.06 |
Tylosin | QJ01FA90 | 1 | 7 | 23 | 12.4 | 0.15 ± 0.2 | 0.1 | 0.8 |
Tulathromycin | QJ01FA94 | 5 | 0.5 | 6 | 0.7 | 0.009 ± 0.03 | 0 | 0.1 |
Active Substance | ATC-Vet | RD | Mean ± SD(Min, Max) | No. of Farms | |||
---|---|---|---|---|---|---|---|
UDD | UDD/RD | <0.8 | 0.8–1.2 | >1.2 | |||
GROUP TREATMENTS | |||||||
Oral formulation | |||||||
Doxycycline | QJ01AA02 | 10 | 12.5 ± 5.7 (5.8, 29.3) | 1.2 ± 0.6 (0.6, 2.9) | 2 | 9 | 6 |
Sulfadiazine/Trimethoprim | QJ01EW10 | 24 | 12.8 ± 3.6 (7.7, 17.3) | 0.5 ± 0.2 (0.3, 0.7) | 5 | - | - |
Parenteral formulation | |||||||
Aminosidin | QJ01GB92 | 10.5 | 1.8 | 0.2 | 1 | - | - |
Amoxicillin | QJ01CA04 | 15 | 0.6 | 0.04 | 1 | - | - |
Enrofloxacin | QJ01MA90 | 5–7.5 | 1.5 ± 0.5 (1.2, 2.1) | 0.3 ± 0.1 (0.2, 0.4) | 3 | - | - |
Florfenicol/Florfenicol + flunixin | QJ01BA90/QI01BA99 | 20–40 | 11.6 ± 5.1 (3.1, 19.3) | 0.5 ± 0.2 (0.2, 1) | 12 | 1 | - |
Lincomycin/Spectinomycin | QJ01FF52 | 15 | 6.1 ± 2.3 (3.5, 9) | 0.4 ± 0.2 (0.2, 0.6) | 4 | - | - |
Marbofloxacin | QJ01MA93 | 2–8 | 4.5 ± 3.4 (1, 11) | 1.2 ± 1.3 (0.1, 3.8) | 4 | 1 | 3 |
Oxytetracycline | QJ01AA06 | 4.7–7–20 | 3.1 ± 2.9 (0.3, 7.1) | 0.4 ± 0.5 (0.06, 1.4) | 6 | - | 1 |
Procaine benzylpenicillin | QJ01CE09 | 12 | 12 | 1 | - | 1 | - |
Spiramycin | QJ01FA02 | 31.25 | 7.2 ± 4.8 (1.7, 13.7) | 0.2 ± 0.2 (0.05, 0.4) | 5 | - | - |
Sulfamidine/Trimethoprim | QJ01EW03 | 15 | 11 | 0.7 | 1 | - | - |
Sulfamonomethoxine | QJ01EQ18 | 40 | 2.5 | 0.06 | 1 | - | - |
Thiamphenicol | QJ01BA02 | 37.5 | 12.5 | 0.3 | 1 | - | - |
Tildipirosin | QJ01FA96 | 4 | 2.8 ± 1 (1, 4.3) | 0.7 ± 0.3 (0.3, 1.1) | 8 | 5 | - |
Tilmicosin | QJ01FA91 | 10 | 6.7 ± 2.1 (4.5, 10.4) | 0.7 ± 0.2 (0.5, 1) | 5 | 1 | - |
Tylosin | QJ01FA90 | 7 | 7.7 ± 6.4 (2, 14.5) | 1.1 ± 0.9 (0.3, 2.1) | 2 | - | 2 |
Tulathromycin | QJ01FA94 | 2.5 | 1.8 ± 0.4 (1.2, 2.5) | 0.7 ± 0.2 (0.5, 1) | 8 | 4 | - |
INDIVIDUAL TREATMENTS | |||||||
Oral formulation | |||||||
Doxyciclyne | QJ01AA02 | 10 | 22 ± 15.4 (9.4, 47) | 2.2 ± 1.5 (0.9, 4.7) | - | - | 4 |
Enrofloxacin | QJ01MA90 | 3.75 | 1.9 | 0.5 | 1 | - | - |
Parenteral formulation | |||||||
Aminosidin | QJ01GB92 | 10.5 | 8.6 ± 2.3 (7, 10.2) | 0.8 ± 0.2 (0.7, 1) | 1 | 1 | - |
Amoxicillin | QJ01CA04 | 7–15 | 9.7 ± 3.3 (6.6, 18.3) | 1.1 ± 0.6 (0.4, 2.6) | 5 | 5 | 3 |
Ampicillin | QJ01CA01 | 7.5 | 13.2 ± 5.3 (5, 21.4) | 1.8 ± 0.7 (0.7, 2.9) | 1 | - | 5 |
Ampicillin/colistin sulphate | QJ01RV01 | 11.2 | 6.5 ± 1.5 (4.8, 7.3) | 0.6 ± 0.1 (0.4, 0.7) | 3 | - | - |
Ampicillin/dicloxacillin | QJ01CR50 | 10.7 | 10.4 ± 3.1 (6.9, 15.6) | 1 ± 0.3 (0.6, 1.5) | 2 | 3 | 2 |
Procaine benzylpenicillin/Dihydrostreptomycin | QJ01RA01 | 19.5–40 | 20.1 ± 2.4 (18.3, 22.2) | 0.6 ± 0.4 (0.5, 1.3) | 2 | 1 | - |
Cefquinome | QJ01DE90 | 1 | 1 ± 0.3 (0.5, 1.3) | 1 ± 0.3 (0.5, 1.3) | 1 | 2 | 2 |
Ceftiofur | QJ01DD90 | 1–6.6 | 3.5 ± 2.6 (0.8, 7.8) | 1.7 ± 2.1 (0.5, 7.2) | 3 | 4 | 2 |
Danofloxacin | QJ01MA92 | 6 | 6.2 ± 0.7 (5.7, 6.7) | 1 ± 0.1 (1, 1.1) | - | 2 | - |
Enrofloxacin | QJ01MA90 | 5–7.5 | 3.1 ± 1 (1.4, 5.2) | 0.6 ± 0.2 (0.2, 1) | 10 | 1 | - |
Erythromycin/Sulfamonomethoxine | QJ01RA91 | 25 | 13.1 | 0.5 | 1 | - | - |
Florfenicol/Florfenicol + flunixin | QJ01BA90/QI01BA99 | 20–30–40 | 15.6 ± 4 (8.1, 22.2) | 0.7 ± 0.2 (0.4, 1.1) | 16 | 4 | - |
Gamithromycin | QJ01FA95 | 6 | 3.5 | 0.6 | 1 | - | - |
Kanamycin | QJ01GB04 | 16.5 | 6.2 ± 1.9 (4, 8.6) | 0.4 ± 0.1 (0.3, 0.5) | 2 | 2 | 1 |
Lincomycin/spectinomycin | QJ01FF52 | 15 | 9.6 ± 2.5 (5.6, 13.6) | 0.6 ± 0.2 (0.4, 0.9) | 14 | 4 | - |
Marbofloxacin | QJ01MA93 | 2–8 | 4.8 ± 2.1 (1.6, 10.2) | 1.1 ± 0.9 (0.2, 3.1) | 7 | 5 | 6 |
Oxytetracycline | QJ01AA06 | 4.7–7–20 | 7.3 ± 2.3 (3.9, 13.5) | 1.3 ± 0.5 (0.6, 2.3) | 6 | 4 | 11 |
Procaine benzylpenicillin | QJ01CE09 | 12 | 12.4 | 1 | - | 1 | - |
Spiramycin | QJ01FA02 | 31.25 | 11.2 ± 2.1 (7.8, 15.3) | 0.4 ± 0.07 (0.3, 0.5) | 16 | - | - |
Sulfadiazine/trimethoprim | QJ01EW10 | 20 | 29.9 | 1.5 | - | - | 1 |
Sulfadimethoxine | QJ01EQ09 | 31 | 29.8 ± 21.2 (4.4, 56.3) | 1 ± 0.6 (0.1, 1.8) | 1 | 2 | 1 |
Sulfamidine/ sulfadimethoxine/trimethoprim | QJ01EW03 | 14.4 | 11.7 | 0.8 | - | 1 | - |
Sulfadimidine/trimethoprim | QJ01EW03 | 15–16 | 17.9 ± 3.7 (11.6, 24.3) | 1.2 ± 0.3 (0.8, 1.6) | 1 | 5 | 9 |
Sulfametopyrazine | QJ01EQ19 | 36 | 21.4 | 0.6 | 1 | - | - |
Sulfamonomethoxine | QJ01EQ18 | 40 | 33.4 ± 8.6 (23.5, 52.1) | 0.8 ± 0.2 (0.6, 1.3) | 6 | 3 | 1 |
Thiamphenicol | QJ01BA02 | 37.5 | 14.2 ± 2.8 (9.3, 17.4) | 0.4 ± 0.08 (0.3, 0.5) | 8 | - | - |
Tildipirosin | QJ01FA96 | 4 | 4.1 ± 0.9 (2.9, 5.8) | 1 ± 0.2 (0.7, 1.5) | 1 | 9 | 2 |
Tilmicosin | QJ01FA91 | 7–10 | 7.2 ± 3.5 (3, 15.2) | 0.7 ± 0.4 (0.3, 1.5) | 10 | 3 | 2 |
Tylosin | QJ01FA90 | 7 | 11.6 ± 2.4 (7.4, 15.9) | 1.7 ± 0.4 (1.1, 2.3) | - | 9 | 14 |
Tulathromycin | QJ01FA94 | 2.5 | 2.2 ± 0.4 (1.5, 2.7) | 0.9 ± 0.2 (0.6, 1.1) | 1 | 5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicola, I.; Gallina, G.; Cagnotti, G.; Gianella, P.; Valentini, F.; D’Angelo, A.; Bellino, C. A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage. Animals 2021, 11, 1925. https://doi.org/10.3390/ani11071925
Nicola I, Gallina G, Cagnotti G, Gianella P, Valentini F, D’Angelo A, Bellino C. A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage. Animals. 2021; 11(7):1925. https://doi.org/10.3390/ani11071925
Chicago/Turabian StyleNicola, Isabella, Giovanni Gallina, Giulia Cagnotti, Paola Gianella, Flaminia Valentini, Antonio D’Angelo, and Claudio Bellino. 2021. "A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage" Animals 11, no. 7: 1925. https://doi.org/10.3390/ani11071925
APA StyleNicola, I., Gallina, G., Cagnotti, G., Gianella, P., Valentini, F., D’Angelo, A., & Bellino, C. (2021). A Retrospective, Observational Study on Antimicrobial Drug Use in Beef Fattening Operations in Northwestern Italy and Evaluation of Risk Factors Associated with Increased Antimicrobial Usage. Animals, 11(7), 1925. https://doi.org/10.3390/ani11071925