Impact of Ag Nanoparticles (AgNPs) and Multimicrobial Preparation (EM) on the Carcass, Mineral, and Fatty Acid Composition of Cornu aspersum aspersum Snails
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Experimental and Analytical Procedures
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Chemical Composition
4.2. Mineral Composition
4.3. Profile of Fatty Acids
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- International Trade Centre–Trade Map: Trade Statistics for International Business Development. Available online: https://www.trademap.org/Index.aspx (accessed on 19 February 2021).
- Ekwu, S. Snail Farming. Risk Factors, Diseases and Conservation Practice in the Humid Tropics; GRIN Verlag: Munich, Germany, 2016. [Google Scholar]
- Koleva, Z.; Kizheva, Y.; Tishkov, S.; Dedov, I.; Kirova, E.; Stefanova, P.; Moncheva, P.; Hristova, P. Dynamics of bacterial community in the gut of Cornu aspersum. J. BioSci. Biotechnol. 2015, 4, 263–269. [Google Scholar]
- Cobbinah, J.R.; Vink, A.; Onwuka, B. Snail Farming: Production, Processing and Marketing; Agromisa Foundation: Wageningen, The Netherlands, 2008; ISBN 978-92-9081-398-9. [Google Scholar]
- Kodjo, A.; Haond, F.; Richard, Y. Molecular and Phenotypic Features of Aeromonads Isolated from Snails (Helix aspersa) Affected with a New Summer Disease. J. Vet. Med. Ser. B 1997, 44, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Kiebre-Toe, M.B.; Lacheretz, A.; Villard, L.; Richard, Y.; Kodjo, A. Pulsed-field gel electrophoresis profiles of aeromonads isolated from healthy and diseased Helix aspersa from French snail farms. Can. J. Microbiol. 2005, 51, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Dushku, E.; Kotzamanidis, C.; Avgousti, K.; Zdragas, A.; Vafeas, G.; Giantzi, V.; Staikou, A.; Yiangou, M. Listeria monocytogenes induced dysbiosis in snails and rebiosis achieved by administration of the gut commensal Lactobacillus plantarum Sgs14 strain. Fish Shellfish Immunol. 2020, 104, 337–346. [Google Scholar] [CrossRef]
- Dewulf, J.; Van Immerseel, F. Biosecurity in Animal Production and Veterinary Medicine: From Principles to Practice; Dewulf, J., van Immerseel, F., Eds.; CABI: Wallingford, CT, USA, 2019; ISBN 9781789245684. [Google Scholar]
- Ligaszewski, M.; Pol, P. Wybrane Zagadnienia Z Dziedziny Helikultury; Dobrowolska, D., Ed.; Instytut Zootechniki Państwowy Instytut Badawczy: Kraków, Poland, 2019; ISBN 9788376073927. [Google Scholar]
- Walker, A.J.; Glen, D.M.; Shewry, P.R. Bacteria associated with the digestive system of the slug Deroceras reticulatum are not required for protein digestion. Soil Biol. Biochem. 1999, 31, 1387–1394. [Google Scholar] [CrossRef]
- Konoplya, E.F.; Higa, T. EM1 application in animal husbandry—Poultry farming and its action mechanisms. In Proceedings of the Paper Presented at the International Conference on EM Technology and Nature Farming, Pyongyang, Democratic People’s Republic of Korea, 9 October 2000. [Google Scholar]
- Rybarczyk, A.; Bogusławska-Wąs, E.; Łupkowska, A. Effect of EM® probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest. Sci. 2020, 241, 104206. [Google Scholar] [CrossRef]
- Gemiyo, D. Effect of Inclusion Rate of Effective Microbes (Em) On Growth Rate of Lambs Fed Low Protein Diet. Biomed. J. Sci. Tech. Res. 2017, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Worku, B.; Workicha, H.; Senait, G. Effect of Effective Microbes ( EM ) Bokashi Supplementation on Weight Gain Performance of Yearling Bucks of Woito Guji Goat Breeds Fed Natural Hay as Basal Diet. Adv. Life Sci. Technol. 2016, 41, 36–40. [Google Scholar]
- Hu, C.; Qi, Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013, 46, 63–67. [Google Scholar] [CrossRef]
- Saleh, M.I. Influence of effective microorganisms and green manure on soil properties and productivity of pearl millet and alfalfa grown on sandy loam in Saudi Arabia. Afr. J. Microbiol. Res. 2013, 7, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Talaat, N.B. Effective Microorganisms Improve Growth Performance and Modulate the ROS-Scavenging System in Common Bean (Phaseolus vulgaris L.) Plants Exposed to Salinity Stress. J. Plant Growth Regul. 2015, 34, 35–46. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Sawosz, E.; Binek, M.; Grodzik, M.; Zielinska, M.; Sysa, P.; Szmidt, M.; Niemiec, T.; Chwalibog, A. Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Anim. Nutr. 2007, 61, 444–451. [Google Scholar] [CrossRef]
- Hill, E.K.; Li, J. Current and future prospects for nanotechnology in animal production. J. Anim. Sci. Biotechnol. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Balagna, C.; Perero, S.; Bosco, F.; Mollea, C.; Irfan, M.; Ferraris, M. Antipathogen nanostructured coating for air filters. Appl. Surf. Sci. 2020, 508, 145283. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C 2019, 97, 954–965. [Google Scholar] [CrossRef]
- Guttman, K. Wpływ Dodatku Nanocząstek Srebra do Komercyjnej Farby na Wzrost Mikroorganizmów w Stajni; Warsaw University of Life Sciences: Warsaw, Poland, 2018. [Google Scholar]
- Dobrzanski, Z.; Zygadlik, K.; Patkowska-Sokola, B.; Nowakowski, P.; Janczak, M.; Sobczak, A.; Bodkowski, R. Efficiency of nanosilver and mineral sorbents in reduction of ammonia emission from animal manure. Przem. Chem. 2010, 89, 348–351. [Google Scholar]
- Hassanabadi, A.; Hajati, H.; Bahreini, L. The effects of nano-silver on performance, carcass characteristics, immune system and intestinal microfelora of broiler chickens. In Proceedings of the 3rd International Veterinary Poultry Congress, Tehran, Iran, 22–23 February 2012. [Google Scholar]
- Elkloub, K.; Moustafa, M.E.; Ghazalah, A.A.; Rehan, A.A.A. Effect of Dietary Nanosilver on Broiler Performance. Int. J. Poult. Sci. 2015, 14, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Minghetti, M.; Schirmer, K. Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environ. Sci. Nano 2019, 6, 1777–1790. [Google Scholar] [CrossRef]
- Hendrickson, O.D.; Klochkov, S.G.; Novikova, O.V.; Bravova, I.M.; Shevtsova, E.F.; Safenkova, I.V.; Zherdev, A.V.; Bachurin, S.O.; Dzantiev, B.B. Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects. Toxicol. Lett. 2016, 241, 184–192. [Google Scholar] [CrossRef]
- Ebabe Elle, R.; Gaillet, S.; Vidé, J.; Romain, C.; Lauret, C.; Rugani, N.; Cristol, J.P.; Rouanet, J.M. Dietary exposure to silver nanoparticles in Sprague–Dawley rats: Effects on oxidative stress and inflammation. Food Chem. Toxicol. 2013, 60, 297–301. [Google Scholar] [CrossRef]
- Çağıltay, F.; Erkan, N.; Tosun, D.; Selçuk, A. Amino acid, fatty acid, vitamin and mineral contents of the edible garden snail (Helix aspersa). J. Fish. 2011, 5, 354–363. [Google Scholar] [CrossRef]
- Ikauniece, D.; Jemeljanovs, A.; Sterna, V.; Strazdina, V. Evaluation of Nutrition Value of Roman Snail’s (Helix pomatia) Meat Obtained in Latvia. In Proceedings of the 9th Baltic Conference on Food Science and Technology “Food for Consumer Well-Being” Foodbalt, Jelgava, Latvia, 8–9 May 2014; pp. 28–31. [Google Scholar]
- Morei, V. Heliciculture-Perspective Business in the Context of Sustainable Development of Rural Areas. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2012, 12, 113–118. [Google Scholar]
- Ligaszewski, M.; Pol, P. Wartość odżywcza podstawowych elementów tuszy jadalnego ślimaka szarego (Cornu aspersum) oraz ślimaka winniczka (Helix pomatia). Wiadomości Zootech. 2018, 4, 67–79. [Google Scholar]
- Çelik, M.Y.; Duman, M.B.; Sariipek, M.; Uzun Gören, G.; Kaya Öztürk, D.; Kocatepe, D.; Karayücel, S. Comparison of Proximate and Amino Acid Composition between Farmed and Wild Land Snails (Cornu aspersum Müller, 1774). J. Aquat. Food Prod. Technol. 2020, 29, 383–390. [Google Scholar] [CrossRef]
- Čaklovica, F. Puževi–Uzgoj, Proizvodnja I Prerada; NIP Zadrugar: Sarajevo, Bosnia and Herzegovina, 1991. [Google Scholar]
- Özogul, Y.; Özogul, F.; Olgunoglu, A.I. Fatty acid profile and mineral content of the wild snail (Helix pomatia) from the region of the south of the Turkey. Eur. Food Res. Technol. 2005, 221, 547–549. [Google Scholar] [CrossRef]
- Milinsk, M.C.; das Graças Padre, R.; Hayashi, C.; de Oliveira, C.C.; Visentainer, J.V.; de Souza, N.E.; Matsushita, M. Effects of feed protein and lipid contents on fatty acid profile of snail (Helix aspersa maxima) meat. J. Food Compos. Anal. 2006, 19, 212–216. [Google Scholar] [CrossRef]
- Toader-Williams, A.; Buicu, O. Technological and Economical Considerations for Breeding Terrestrial Snails Cornu aspersum (Helix aspersa Muller) and Helix pomatia as Alternative Animal Protein Source for Human Consumption towards Ecological Protection and Sustainable Development. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 2011, 68, 287–295. [Google Scholar] [CrossRef]
- Laskowska, E.; Jarosz, Ł.; Grądzki, Z. Effect of Multi-Microbial Probiotic Formulation Bokashi on Pro- and Anti-Inflammatory Cytokines Profile in the Serum, Colostrum and Milk of Sows, and in a Culture of Polymorphonuclear Cells Isolated from Colostrum. Probiotics Antimicrob. Proteins 2019, 11, 220–232. [Google Scholar] [CrossRef] [Green Version]
- AOAC Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Gaithersburg, MD, USA, 2005.
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Standly, G.H. A simple method for the isolation and purification of total lipids from tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J. Lipid Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Łozicki, A.; Niemiec, T.; Pietrasik, R.; Pawęta, S.; Rygało-Galewska, A.; Zglińska, K. The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells. Animals 2020, 10, 2260. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk, A.; Romanowski, M.; Karamucki, T.; Ligocki, M. The effect of Bokashi probiotic on pig carcass characteristics and meat quality. Fleischwirtsch 2016, 6, 98–102. [Google Scholar]
- Pineda, L.; Chwalibog, A.; Sawosz, E.; Lauridsen, C.; Engberg, R.; Elnif, J.; Hotowy, A.; Sawosz, F.; Gao, Y.; Ali, A.; et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr. 2012, 66, 416–429. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Magd, M.A. Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ. Sci. Pollut. Res. 2018, 25, 27031–27038. [Google Scholar] [CrossRef]
- Sheikh Veisi, R.; Bagheri, T.; Sanchooli, H.; Hedayati, S.A.A. The Effects of Probiotic Lactobacillus Casei and Silver Nano-Particle Levels on Growth Performance and Carcass Composition of Common Carp (Cyprinus carpio) Fry; University of Guilan: Rasht, Iran, 2018; Volume 5. [Google Scholar]
- Yue, L.; Zhao, W.; Wang, D.; Meng, M.; Zheng, Y.; Li, Y.; Qiu, J.; Yu, J.; Yan, Y.; Lu, P.; et al. Silver nanoparticles inhibit beige fat function and promote adiposity. Mol. Metab. 2019, 22, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Sonshine, D.A.; Shervani, S.; Hurt, R.H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010, 4, 6903–6913. [Google Scholar] [CrossRef] [Green Version]
- Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517–531. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, J. Evaluation of mollusc as sensitive indicatior of heavy metal pollution in aquatic system: A review. IIOAB J. 2011, 2, 49–57. [Google Scholar]
- Ureña, R.; João Bebianno, M.; del Ramo, J.; Torreblanca, A. Metallothionein in the freshwater gastropod Melanopsis dufouri chronically exposed to cadmium: A methodological approach. Ecotoxicol. Environ. Saf. 2010, 73, 779–787. [Google Scholar] [CrossRef]
- Saito, S.; Okabe, M.; Yoshida, K.; Kurasaki, M. Role of Metallothionein on Ag Accumulation in Hepatic and Renal Cytosol after Ag Injection to Rats. Pharmacol. Toxicol. 1999, 85, 22–28. [Google Scholar] [CrossRef]
- Cortese-Krott, M.M.; Münchow, M.; Pirev, E.; Heβner, F.; Bozkurt, A.; Uciechowski, P.; Pallua, N.; Kröncke, K.-D.; Suschek, C.V. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic. Biol. Med. 2009, 47, 1570–1577. [Google Scholar] [CrossRef]
- Zelazowski, A.J.; Gasyna, Z.; Stillman, M.J. Silver Binding to Rabbit Liver Metallothionein. J. Biol. Chem. 1989, 264, 17091–17099. [Google Scholar] [CrossRef]
- Ochoa-Meza, A.R.; Álvarez-Sánchez, A.R.; Romo-Quiñonez, C.R.; Barraza, A.; Magallón-Barajas, F.J.; Chávez-Sánchez, A.; García-Ramos, J.C.; Toledano-Magaña, Y.; Bogdanchikova, N.; Pestryakov, A.; et al. Silver nanoparticles enhance survival of white spot syndrome virus infected Penaeus vannamei shrimps by activation of its immunological system. Fish Shellfish Immunol. 2019, 84, 1083–1089. [Google Scholar] [CrossRef]
- Lan, G.Q.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult. Sci. 2002, 81, 1522–1532. [Google Scholar] [CrossRef]
- Kozłowski, K.; Jankowski, J.; Jeroch, H. Efficacy of Escherichia coli-derived phytase on performance, bone mineralization and nutrient digestibility in meat-type Turkeys. Vet. Zootech. 2010, 52, 59–66. [Google Scholar]
- Tatara, M.R.; Krupski, W.; Jankowski, M.; Zduńczyk, Z.; Jankowski, J.; Studziński, T. Effects of dietary calcium content and vitamin D source on skeletal properties in growing turkeys. Br. Poult. Sci. 2011, 52, 718–729. [Google Scholar] [CrossRef]
- Matar, C.; Amiot, J.; Savoie, L.; Goulet, J. The Effect of Milk Fermentation by Lactobacillus helveticus on the Release of Peptides during in Vitro Digestion. J. Dairy Sci. 1996, 79, 971–979. [Google Scholar] [CrossRef]
- Kabir, S.M.L. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef]
- Askelson, T.E.; Campasino, A.; Lee, J.T.; Duong, T. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Appl. Environ. Microbiol. 2014, 80, 943–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Bishri, W.M.; Danial, E.N.; Abdelmajeed, N.A. Reducing osteoporosis by phytase supplemented diet in albino rats. Int. J. Pharmacol. 2018, 14, 121–126. [Google Scholar] [CrossRef]
- Sanni, D.M.; Lawal, O.T.; Enujiugha, V.N. Purification and characterization of phytase from Aspergillus fumigatus Isolated from African Giant Snail (Achatina fulica). Biocatal. Agric. Biotechnol. 2019, 17, 225–232. [Google Scholar] [CrossRef]
- Pinto, E.; Carvalho, A.P.; Cardozo, K.H.M.; Malcata, F.X.; dos Anjos, F.M.; Colepicolo, P. Effects of heavy metals and light levels on the biosynthesis of carotenoids and fatty acids in the macroalgae Gracilaria tenuistipitata (var. liui Zhang & Xia). Rev. Bras. Farmacogn. 2011, 21, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Signa, G.; Di Leonardo, R.; Vaccaro, A.; Tramati, C.D.; Mazzola, A.; Vizzini, S. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 2015, 57, 384–394. [Google Scholar] [CrossRef]
- Silva, C.O.; Simões, T.; Novais, S.C.; Pimparel, I.; Granada, L.; Soares, A.M.V.M.; Barata, C.; Lemos, M.F.L. Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. Sci. Total Environ. 2017, 586, 542–550. [Google Scholar] [CrossRef]
- Prasad, A.S. Biochemistry of Zinc; Springer Science & Business Media: New York, NY, USA, 2013; Volume 11. [Google Scholar]
- Cunnane, S.C. Evidence that adverse effects of zinc deficiency on essential fatty acid composition in rats are independent of food intake. Br. J. Nutr. 1988, 59, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Clejan, S.; Castro-Magana, M.; Collipp, P.J.; Jonas, E.; Maddaiah, V.T. Effects of zinc deficiency and castration on fatty acid composition and desaturation in rats. Lipids 1982, 17, 129–135. [Google Scholar] [CrossRef]
- Chimhashu, T.; Malan, L.; Baumgartner, J.; van Jaarsveld, P.J.; Galetti, V.; Moretti, D.; Smuts, C.M.; Zimmermann, M.B. Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: A randomised controlled trial in Beninese children. Br. J. Nutr. 2018, 119, 610–619. [Google Scholar] [CrossRef] [Green Version]
- Monroig, Ó.; Tocher, D.; Navarro, J. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms. Mar. Drugs 2013, 11, 3998–4018. [Google Scholar] [CrossRef] [Green Version]
- Surm, J.M.; Prentis, P.J.; Pavasovic, A. Comparative Analysis and Distribution of Omega-3 lcPUFA Biosynthesis Genes in Marine Molluscs. PLoS ONE 2015, 10, e0136301. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Q.Q.; Wang, D.; Zhang, J.L.; Ding, C.Z.; Luo, X.; Tao, J.; Ling, J.; Shea, D.; Chen, L.Q. Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity. Environ. Pollut. 2020, 256, 113504. [Google Scholar] [CrossRef]
- Rungby, J.; Ernst, E. Experimentally Induced Lipid Peroxidation after Exposure to Chromium, Mercury or Silver: Interactions with Carbon Tetrachloride. Pharmacol. Toxicol. 1992, 70, 205–207. [Google Scholar] [CrossRef]
- Behzadi Tayemeh, M.; Esmailbeigi, M.; Shirdel, I.; Joo, H.S.; Johari, S.A.; Banan, A.; Nourani, H.; Mashhadi, H.; Jami, M.J.; Tabarrok, M. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. Chemosphere 2020, 238, 124576. [Google Scholar] [CrossRef]
- Ross, G.R.; Van Nieuwenhove, C.P.; González, S.N. Fatty Acid Profile of Pig Meat after Probiotic Administration. J. Agric. Food Chem. 2012, 60, 5974–5978. [Google Scholar] [CrossRef]
- Mikulski, D.; Jankowski, J.; Naczmanski, J.; Mikulska, M.; Demey, V. Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult. Sci. 2012, 91, 2691–2700. [Google Scholar] [CrossRef]
- Zamroziewicz, M.K.; Paul, E.J.; Zwilling, C.E.; Barbey, A.K. Determinants of fluid intelligence in healthy aging: Omega-3 polyunsaturated fatty acid status and frontoparietal cortex structure. Nutr. Neurosci. 2018, 21, 570–579. [Google Scholar] [CrossRef]
Item | Control | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|---|
AgNPs | EM | AgNPs + EM | ||||
Dry matter [% FM] | 16.13 | 19.93 | 24.03 | 22.16 | 1.729 | 0.098 |
Ether extract [% DM] | 10.22 a | 10.30 a | 9.79 a | 12.05 b | 0.685 | 0.001 |
Crude protein [% DM] | 52.29 | 58.51 | 54.19 | 54.68 | 4.384 | 0.984 |
Crude ash [% DM] | 12.21 | 13.03 | 11.20 | 11.99 | 0.806 | 0.498 |
Item | Control | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|---|
AgNPs | EM | AgNPs + EM | ||||
Ca [%] | 2.08 b | 2.25 c | 2.17b c | 1.92 a | 0.043 | 0.000 |
Cu [mg/kg] | 15.76 a | 16.39 ab | 18.64 b | 17.65 b | 0.415 | 0.015 |
Fe [mg/kg] | 224.17 a | 261.81 b | 287.96 c | 253.57 b | 5.188 | 0.000 |
Mg [mg/kg] | 3203.67 a | 3333.00 ab | 3623.34 c | 3417.51 b | 45.865 | 0.000 |
P [mg/kg] | 12851.00 ab | 13587.90 bc | 13845.10 c | 12250.90 a | 257.441 | 0.001 |
Zn [mg/kg] | 71.06 a | 113.72 d | 83.78 b | 91.30 c | 0.883 | 0.000 |
Ag [mg/kg] | 0.06 b | 0.15 d | 0.05 a | 0.14 c | 0.002 | 0.0000 |
Item | Control | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
AgNPs | EM | AgNPs + EM | |||||
C14:0 | Myristic acid | 0.27 | 0.34 | 0.28 | 0.29 | 0.015 | 0.174 |
C16:0 | Palmitic acid | 7.51 a | 8.37 ab | 7.61 a | 8.79 b | 0.168 | 0.010 |
C17:0 | Margaric acid | 0.85 | 0.99 | 0.82 | 0.84 | 0.054 | 0.101 |
C18:0 | Stearic acid | 12.85 | 10.98 | 12.94 | 12.47 | 0.702 | 0.112 |
C20:0 | Arachidic acid | 0.75 | 0.77 | 0.75 | 0.84 | 0.055 | 0.234 |
C22:0 | Behenic acid | 1.42 b | 1.17 a | 1.42 b | 1.03 a | 0.040 | 0.000 |
Ʃ SFA | 23.66 | 22.62 | 23.83 | 24.26 | 1.048 | 0.646 | |
C16:1 | Palmitoleic acid | 0.36 a | 0.56 b | 0.32 a | 0.45 ab | 0.012 | 0.000 |
C18:1 | Oleic acid | 23.76 a | 26.61 a | 23.46 a | 28.66 b | 0.830 | 0.000 |
C18:1 t | Vaccenic acid | 0.30 | 0.28 | 0.31 | 0.31 | 0.013 | 0.213 |
C20:1 | Eicosenoic acid | 3.58 b | 2.66 a | 3.58 b | 3.14 a | 0.118 | 0.005 |
Ʃ MUFA | 28.02 a | 29.11 a | 27.68 a | 32.56 b | 0.655 | 0.002 | |
C18:2-n6 | Linoleic acid | 25.34 a | 32.22 b | 24.98 a | 27.49 a | 0.868 | 0.006 |
C18:3-n3 | α-Linolenic acid | 1.86 | 1.33 | 1.13 | 0.95 | 0.556 | 0.223 |
C20:2 | Eicosadienoic acid | 9.48 b | 6.67 a | 9.66 b | 6.57 a | 0.404 | 0.000 |
C20:3-n3 | Eicosatrienoic acid | 0.46 a | 0.42 a | 0.49 a | 0.71 b | 0.026 | 0.000 |
C20:3-n6 | Dihomo-γ-linolenic acid | 5.97 b | 4.38 a | 6.21 b | 3.44 a | 0.289 | 0.000 |
Ʃ PUFA | 43.34 | 45.23 | 42.69 | 39.36 | 2.028 | 0.088 | |
TBARS (nmol/mg fresh matter) | 0.11 a | 0.17 b | 0.11 a | 0.15 b | 0.006 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemiec, T.; Łozicki, A.; Pietrasik, R.; Pawęta, S.; Rygało-Galewska, A.; Matusiewicz, M.; Zglińska, K. Impact of Ag Nanoparticles (AgNPs) and Multimicrobial Preparation (EM) on the Carcass, Mineral, and Fatty Acid Composition of Cornu aspersum aspersum Snails. Animals 2021, 11, 1926. https://doi.org/10.3390/ani11071926
Niemiec T, Łozicki A, Pietrasik R, Pawęta S, Rygało-Galewska A, Matusiewicz M, Zglińska K. Impact of Ag Nanoparticles (AgNPs) and Multimicrobial Preparation (EM) on the Carcass, Mineral, and Fatty Acid Composition of Cornu aspersum aspersum Snails. Animals. 2021; 11(7):1926. https://doi.org/10.3390/ani11071926
Chicago/Turabian StyleNiemiec, Tomasz, Andrzej Łozicki, Robert Pietrasik, Sylwester Pawęta, Anna Rygało-Galewska, Magdalena Matusiewicz, and Klara Zglińska. 2021. "Impact of Ag Nanoparticles (AgNPs) and Multimicrobial Preparation (EM) on the Carcass, Mineral, and Fatty Acid Composition of Cornu aspersum aspersum Snails" Animals 11, no. 7: 1926. https://doi.org/10.3390/ani11071926
APA StyleNiemiec, T., Łozicki, A., Pietrasik, R., Pawęta, S., Rygało-Galewska, A., Matusiewicz, M., & Zglińska, K. (2021). Impact of Ag Nanoparticles (AgNPs) and Multimicrobial Preparation (EM) on the Carcass, Mineral, and Fatty Acid Composition of Cornu aspersum aspersum Snails. Animals, 11(7), 1926. https://doi.org/10.3390/ani11071926