A Comparison of Oxidative Stress Biomarkers in the Serum of Healthy Polish Dairy Goats with Those Naturally Infected with Small Ruminant Lentivirus in the Course of Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Samples
2.3. Biochemical Assays
2.4. Statistical Analysis
3. Results
3.1. Oxidative Stress
3.2. Antioxidant Enzyme Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.H.; Lai, C.L.; Hsieh, S.H.; Shieh, C.C.; Huang, L.M.; Wu-Hsieh, B.A. Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res. 2014, 178, 411–422. [Google Scholar] [CrossRef]
- Isaguliants, M.; Smirnova, O.; Ivanov, A.V.; Kilpelainen, A.; Kuzmenko, Y.; Petkov, S.; Latanova, A.; Krotova, O.; Engström, G.; Karpov, V.; et al. Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme’s performance in gene immunization. Hum. Vaccines Immunother. 2013, 9, 2111–2119. [Google Scholar] [CrossRef] [Green Version]
- Khomich, O.A.; Kochetkov, S.N.; Bartosch, B.; Ivanov, A.V. Redox Biology of Respiratory Viral Infections. Viruses 2018, 10, 392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Rong, L.; Li, Y.P. Flaviviridae Viruses and Oxidative Stress: Implications for Viral Pathogenesis. Oxidative Med. Cell. Longev. 2019, 1409582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayanan, A.; Amaya, M.; Voss, K.; Chung, M.; Benedict, A.; Sampey, G.; Kehn-Hall, K.; Luchini, A.; Liotta, L.; Bailey, C.; et al. Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 2014, 449, 270–286. [Google Scholar] [CrossRef] [Green Version]
- Olagnier, D.; Peri, S.; Steel, C.; van Montfoort, N.; Chiang, C.; Beljanski, V.; Slifker, M.; He, Z.; Nichols, C.N.; Lin, R.; et al. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog. 2014, 10, e1004566. [Google Scholar] [CrossRef]
- Soucy-Faulkner, A.; Mukawera, E.; Fink, K.; Martel, A.; Jouan, L.; Nzengue, Y.; Lamarre, D.; Vande Velde, C.; Grandvaux, N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog. 2010, 6, e1000930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camini, F.C.; da Silva Caetano, C.C.; Almeida, L.T.; de Brito Magalhães, C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017, 162, 907–917. [Google Scholar] [CrossRef]
- Ramezani, A.; Nahad, M.P.; Faghihloo, E. The role of Nrf2 transcription factor in viral infection. J. Cell. Biochem. 2018, 119, 6366–6382. [Google Scholar] [CrossRef] [PubMed]
- Leitner, G.; Krifucks, O.; Weisblit, L.; Lavi, Y.; Bernstein, S.; Merin, U. The effect of caprine arthritis encephalitis virus infection on production in goats. Vet. J. 2010, 183, 328–331. [Google Scholar] [CrossRef]
- Minardi da Cruz, J.C.; Singh, D.K.; Lamara, A.; Chebloune, Y. Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 2013, 5, 1867–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stonos, N.; Wootton, S.K.; Karrow, N. Immunogenetics of small ruminant lentiviral infections. Viruses 2014, 6, 3311–3333. [Google Scholar] [CrossRef]
- Luengo, C.; Sánchez, A.; Corrales, J.C.; Fernández, C.; Contreras, A. Influence of intramammary infection and non-infection factors on somatic cell counts in dairy goats. J. Dairy Res. 2004, 71, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Turin, L.; Pisoni, G.; Giannino, M.L.; Antonioni, M.; Rosati, S.; Ruffo, G.; Moroni, P. Correlation between milk parameters in CAEV seropositive and negative primiparous goats during an eradication program in Italian farm. Small Rumin. Res. 2005, 57, 73–79. [Google Scholar] [CrossRef]
- Kaba, J.; Strzałkowska, N.; Jóźwik, A.; Krzyżewski, J.; Bagnicka, E. Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J. Dairy Sci. 2012, 95, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Navalón, B.; Peris, C.; Gómez, E.A.; Peris, B.; Roche, M.L.; Caballero, C.; Goyena, E.; Berriatua, E. Quantitative estimation of the impact of caprine arthritis encephalitis virus infection on milk production by dairy goats. Vet. J. 2013, 19, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Kaba, J.; Ganter, M.; Czopowicz, M. Humoral immune response to caprine arthritis-encephalitis virus in goat herds. Cent. Eur. J. Immunol. 2010, 35, 196–198. [Google Scholar]
- Dickey, A.M.; Smith, T.P.L.; Clawson, M.L.; Heaton, M.P.; Workman, A.M. Classification of small ruminant lentivirus subtype A2, subgroups 1 and 2 based on whole genome comparisons and complex recombination patterns [version 1; peer review: Awaiting peer review]. F1000Research 2020, 9, 1449. [Google Scholar] [CrossRef]
- Souza, T.S.D.; Pinheiro, R.R.; Costa, J.N.; de Lima, C.C.; Andrioli, A.; de Azevedo, D.A.; dos Santos, V.W.S.; Araújo, J.F.; de Sousa, A.L.M.; Pinheiro, D.N.S.; et al. Interspecific transmission of small ruminant lentiviruses from goats to sheep. Braz. J. Microbiol. 2015, 46, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Kaba, J.; Rola, M.; Materniak, M.; Kuźmak, J.; Nowicki, M. Isolation and characterization of caprine arthritis encephalitis virus in goats from Poland. Pol. J. Vet. Sci. 2009, 12, 183–188. [Google Scholar]
- Gendelman, H.E.; Narayan, O.; Molineaux, S.; Clements, J.E.; Ghotbi, Z. Slow, persistent replication of lentiviruses: Role of tissue macrophages and macrophage precursors in bone marrow. Proc. Natl. Acad. Sci. USA 1985, 82, 7086–7090. [Google Scholar] [CrossRef] [Green Version]
- Blacklaws, B.A. Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef]
- Tariba, B.; Kostelić, A.; Roić, B.; Benić, M.; Šalamon, D. Prevalence of subclinical mastitis in French alpine goats with Caprine Arthritis Encephalitis Virus. In Proceedings of the Abstracts, IDF International Symposium on Sheep, Goat and Other Non-Cow Milk, Athens, Greece, 16 May 2011; Moatsou, G., Ed.; IDF National Committee of Greece: Athens, Greece, 2011; p. 223. [Google Scholar]
- Herrmann-Hoesing, L.M. Diagnostic assays used to control small ruminant lentiviruses. J. Vet. Diagn. Investig. 2010, 22, 843–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarczak, J.; Słoniewska, D.; Kaba, J.; Bagnicka, E. The expression of cytokines in the milk somatic cells, blood leukocytes and serum of goats infected with small ruminant lentivirus. BMC Vet. Res. 2019, 15, 424. [Google Scholar] [CrossRef] [PubMed]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Small ruminant lentivirus infection influences expression of acute phase proteins and cathelicidin genes in milk somatic cells and peripheral blood leukocytes of dairy goats. Vet. Res. 2018, 49, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowalski, M. Normy żywienia kóz mlecznych. W: Normy żywienia przeżuwaczy: Wartość pokarmowa francuskich i krajowych pasz dla przeżuwaczy [In Polish], Standard of dairy goats’ feeging. In Standard of Ruminants’ Feeding: Nutrient Value of French and Domestic Fodders for Ruminants; Strzelecki, J., Ed.; Research Institute of Animal Production: Cracow, Poland, 2009; pp. 109–119. [Google Scholar]
- Association of Analytical Communities. AOAC Official Methods of Analysis of Association of Official Analytical Chemist International, 18th ed.; Horwitz, W., Ed.; Association of Analytical Communities: Arlington, VA, USA, 2006. [Google Scholar]
- Reczyńska, D.; Witek, B.; Jarczak, J.; Czopowicz, M.; Mickiewicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J. Dairy Res. 2019, 86, 48–54. [Google Scholar] [CrossRef]
- Czopowicz, M.; Szaluś-Jordanow, O.; Moroz, A.; Mickiewicz, M.; Witkowski, L.; Markowska-Daniel, I.; Bagnicka, E.; Kaba, J. Use of two commercial caprine arthritis-encephalitis immunoenzymatic assays for screening of arthritic goats. J. Vet. Diagn. Investig. 2018, 30, 36–41. [Google Scholar] [CrossRef]
- Brinkhof, J.M.; van Maanen, C.; Wigger, R.; Peterson, K.; Houwers, D.J. Specific detection of small ruminant lentiviral nucleic acid sequences located in the proviral long terminal repeat and leader-gag regions using real-time polymerase chain reaction. J Virol Methods 2008, 147, 338–344. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Zaitseva, O.; Shandrenko, S. Modification of spectrophotometric method of determination of protein carbonyl groups. Ukr. Biochem. J. 2012, 84, 112–116. [Google Scholar]
- Kostiuk, V.A.; Potapovich, A.I.; Kovaleva, Z.V. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation. Vopr. Meditsinskoi Khimii 1990, 36, 88–91. [Google Scholar]
- Koroliuk, M.A.; Ivanova, L.I.; Majorova, I.G.; Tokarev, V.E. A method of determining catalase activity. Lab Delo 1988, 1, 16–19. [Google Scholar]
- Glatzle, D.; Vuilleumier, J.P.; Weber, F.; Decker, K. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in human. Experientia 1974, 30, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Moin, V.M. A simple and specific method for determining glutathione peroxidase activity in erythrocytes. Lab Delo 1986, 12, 724–727. [Google Scholar]
- Ravin, H.A. An improved colorimetric enzymatic assay of ceruloplasmin. J. Lab. Clin. Med. 1961, 58, 161–168. [Google Scholar] [PubMed]
- Galaktionova, L.P.; Molchanov, A.V.; El’chaninova, S.A.; Varshavskiĭ, B.L.A. Lipid peroxidation in patients with gastric and duodenal ulcers. Klin. Labaratornaia Diagn. 1998, 6, 10–14. [Google Scholar]
- Stanisz, A. An Accessible Course of Statistics with the Use of Statistica PL on Examples from Medicine (Przystępny Kurs Statystyki z Zastosowaniem STATISTICA PL na Przykładach z Medycyny), 3rd ed.; StatSoft Polska: Krakow, Poland, 2007; Volumes 1–3. (In Polish) [Google Scholar]
- Pławińska-Czarnak, J.; Majewska, A.; Jank, M.; Kaba, J.; Bogdan, J.; Anusz, K.; Bagnicka, E. Selected tissues of two polish goat breeds do not differ on genomic level. Anim. Sci. Pap. Rep. 2019, 37, 53–64. [Google Scholar]
- Bagnicka, E.; Hamann, H.; Distl, O. Structure and the non-genetic and genetic effects on milk traits in Polish dairy goat population. Anim. Sci. Pap. Rep. 2015, 33, 59–69. [Google Scholar]
- Bagnicka, E.; Łukaszewicz, M.; Ådnøy, T. Genetic parameters of somatic cell score and lactose content in goat’s milk. J. Anim. Feed Sci. 2016, 25, 210–215. [Google Scholar] [CrossRef]
- Roy, J.; Galano, J.M.; Durand, T.; Le Guennec, J.Y.; Lee, J.C. Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 2017, 31, 3729–3745. [Google Scholar] [CrossRef] [Green Version]
- Panieri, E.; Gogvadze, V.; Norberg, E.; Venkatesh, R.; Orrenius, S.; Zhivotovsky, B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med. 2013, 57, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed.; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Bailey, S.M.; Landar, A.; Darley-Usmar, V. Mitochondrial proteomics in free radical research. Free Radic. Biol. Med. 2005, 38, 175–188. [Google Scholar] [CrossRef]
- Mdurvwa, E.G.; Ogunbiyi, P.O.; Reddy, P.G.; Gakou, H.S.; Sodeke, S.O.; Carty, A.J. Changes in serum antioxidant concentrations during infection with caprine lentivirus. Cell. Mol. Biol. 1995, 41 (Suppl. 1), S65–S72. [Google Scholar]
- Santos, B.P.; Souza, F.N.; Blagitz, M.G.; Batista, C.F.; Bertagnon, H.G.; Diniz, S.A.; Silva, M.X.; Haddad, J.P.A.; Della Libera, A.M.M.P. Blood and milk polymorphonuclear leukocyte and monocyte/macrophage functions in naturally caprine arthritis encephalitis virus infection in dairy goats. Vet. Immunol. Immunopathol. 2017, 188, 21–26. [Google Scholar] [CrossRef]
- Balikci, E.; Yildiz, A.; Gurdogan, F. Selected acute phase proteins, oxidative stress biomarkers, and antioxidants in aborting and non-aborting goats infected with Border disease virus. Bull. Vet. Inst. Pulawy 2013, 57, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Nisbet, C.; Yarim, G.F.; Gumusova, S.O.; Yazici, Z. Investigation of the antioxidative metabolism in sheep with peste des petits ruminants. Acta Vet. Beogr. 2007, 57, 351–356. [Google Scholar]
- Tian, R.; Hou, G.; Li, D.; Yuan, T.F. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. Sci. World J. 2014. [Google Scholar] [CrossRef]
- Gong, J.; Xiao, M. Selenium and antioxidant status in dairy cows at different stages of lactation. Biol. Trace Elem. Res. 2016, 171, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Pedernera, M.; Celi, P.; García, S.C.; Salvin, H.E.; Barchia, I.; Fulkerson, W.J. Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet. J. 2010, 186, 352–357. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef]
- Piccione, G.; Borruso, M.; Fazio, F.; Grasso, F.; Caola, G. Oxidative stress evaluation during milking period in the ewes. J. Appl. Anim. Res. 2006, 29, 109–112. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Berlett, B.S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 1998, 30, 225–243. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Protein oxidation. Ann. N. Y. Acad. Sci. 2000, 899, 191–208. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, N.; Chinmoy, G.; Sumathi, M.E.; Ashakiran, S.; Dayanand, C.D. Biological vs chemically induced hepatitis. A comparative study of oxidative stress parameters. Biomed. Res. 2012, 23, 289–294. [Google Scholar]
- Halliwell, B.; Gutteridge, J.M. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 1990, 280, 1–8. [Google Scholar] [CrossRef]
- Giurgea, N.; Constantinescu, M.I.; Stanciu, R.; Suciu, S.; Muresan, A. Ceruloplasmin-acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci. Monit. 2005, 11, RA48–RA51. [Google Scholar] [PubMed]
- Fox, P.L.; Mukhopadhyay, C.; Ehrenwald, E. Structure, oxidant activity, and cardiovascular mechanisms of human ceruloplasmin. Life Sci. 1995, 56, 1749–1758. [Google Scholar] [CrossRef]
- Gitlin, J.D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 1988, 263, 6281–6287. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, K.S.; Choi, S.Y.; Kwon, H.Y.; Won, M.H. Oxidative modification of human ceruloplasmin by peroxyl radicals. Biochim. Et Biophys. Acta 2001, 1568, 30–36. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, H.; Shi, F.; Li, M.; Liu, X.; Ji, C.; Han, Y. Serum Ceruloplasmin Is the Candidate Predictive Biomarker for Acute Aortic Dissection and Is Related to Thrombosed False Lumen: A Propensity Score-Matched Observational Case-Control Study. Biol. Trace Elem. Res. 2021, 199, 895–911. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurhaluk, N.; Tkachenko, H.; Czopowicz, M.; Sikora, J.; Urbańska, D.M.; Kawęcka, A.; Kaba, J.; Bagnicka, E. A Comparison of Oxidative Stress Biomarkers in the Serum of Healthy Polish Dairy Goats with Those Naturally Infected with Small Ruminant Lentivirus in the Course of Lactation. Animals 2021, 11, 1945. https://doi.org/10.3390/ani11071945
Kurhaluk N, Tkachenko H, Czopowicz M, Sikora J, Urbańska DM, Kawęcka A, Kaba J, Bagnicka E. A Comparison of Oxidative Stress Biomarkers in the Serum of Healthy Polish Dairy Goats with Those Naturally Infected with Small Ruminant Lentivirus in the Course of Lactation. Animals. 2021; 11(7):1945. https://doi.org/10.3390/ani11071945
Chicago/Turabian StyleKurhaluk, Natalia, Halyna Tkachenko, Michał Czopowicz, Jacek Sikora, Daria M. Urbańska, Aldona Kawęcka, Jarosław Kaba, and Emilia Bagnicka. 2021. "A Comparison of Oxidative Stress Biomarkers in the Serum of Healthy Polish Dairy Goats with Those Naturally Infected with Small Ruminant Lentivirus in the Course of Lactation" Animals 11, no. 7: 1945. https://doi.org/10.3390/ani11071945
APA StyleKurhaluk, N., Tkachenko, H., Czopowicz, M., Sikora, J., Urbańska, D. M., Kawęcka, A., Kaba, J., & Bagnicka, E. (2021). A Comparison of Oxidative Stress Biomarkers in the Serum of Healthy Polish Dairy Goats with Those Naturally Infected with Small Ruminant Lentivirus in the Course of Lactation. Animals, 11(7), 1945. https://doi.org/10.3390/ani11071945