The Association of the Potential Risk Factors and Nutrition Elements with Abortion and Calving Rates of Egyptian Buffaloes (Bubalus bubalis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data and Location
2.2. Animals and Management
2.3. Pregnancy Diagnosis
2.4. Clinical Diseases and Serology Tests
2.5. Abortion and Age of Aborted Fetus Traits
2.6. Blood Sampling and Analysis Protocol
2.7. Biochemical Analysis
2.8. Statistical Analyses
3. Results
3.1. Overall Distribution of Pregnancy, Abortion, and Survival Rates
3.2. Potential Risk Factors
3.3. Biochemical Blood Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoud, E.A.; Essawi, W.M.; Neamat-Allah, A.N.F. Influence of uterine torsion in water buffaloes (Bubalus bubalis) with insights into the hematological and biochemical prognostic values regarding to manual correction. Trop. Anim. Health Prod. 2020, 52, 3165–3171. [Google Scholar] [CrossRef]
- El-Bayomi, K.M.; Saleh, A.A.; Awad, A.; El-Tarabany, M.S.; El-Qaliouby, H.S.; Afifi, M.; El-Komy, S.; Essawi, W.M.; Almadaly, E.A.; El-Magd, M.A. Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes. Reprod. Fertil. Dev. 2018, 30, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Kumar, A.; Kumar, S.; Singh, M.; Gokuldas, P.P. Non-Infectious Causes of Bubaline Abortions. In Bubaline Theriogenology; Purohit, G.N., Ed.; International Veterinary Information Service: Ithaca, NY, USA, 2015. [Google Scholar]
- Mohanty, T. Effect of non-genetic factors on reproductive disorders in Murrah buffaloe. Buffalo Bull. 2011, 30, 120–125. [Google Scholar]
- Wilde, D. Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim. Reprod. Sci. 2006, 96, 240–249. [Google Scholar] [CrossRef]
- Segura-Correa, J.C.; Segura-Correa, V.M. Prevalence of abortion and stillbirth in a beef cattle system in Southeastern Mexico. Trop. Anim. Health Prod. 2009, 41, 1773–1778. [Google Scholar] [CrossRef]
- Norman, H.D.; Miller, R.H.; Wright, J.R.; Hutchison, J.L.; Olson, K.M. Factors associated with frequency of abortions recorded through Dairy Herd Improvement test plans. J. Dairy Sci. 2012, 95, 4074–4084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashmi, H.; Tarique, T.M.; Yang, S.; Zubair, M.; Qiu, J.; Chen, A. Factors Affecting Mortality in Buffaloes and Calves. Int. J. Agric. Sci. Vet. Med. 2013, 1, 1–6. [Google Scholar]
- El-Regalaty, H.A.; Aboul-Ela, H.B. Non-genetic factors affecting incidence of abortion, stillbirth and post–natal mortality of egyptian buffaloes. J. Anim. Poult. Prod. 2014, 5, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Sivamurthy, P. Review on Emerging and Reemerging Microbial Causes in Bovine Abortion. Int. J. Nutr. Food Sci. 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Lee, J.I.; Kim, I.H. Pregnancy loss in dairy cows: The contributing factors, the effects on reproductive performance and the economic impact. J. Vet. Sci. 2007, 8, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Thurmond, M.C.; Branscum, A.J.; Johnson, W.O.; Bedrick, E.J.; Hanson, T.E. Predicting the probability of abortion in dairy cows: A hierarchical Bayesian logistic-survival model using sequential pregnancy data. Prev. Vet. Med. 2005, 68, 223–239. [Google Scholar] [CrossRef]
- Djelailia, H.; Bouraoui, R.; Jemmali, B.; Najar, T. Effects of heat stress on reproductive efficiency in Holstein dairy cattle in the North African arid region. Reprod. Domest. Anim. 2020, 55, 1250–1257. [Google Scholar] [CrossRef]
- Graham, T.W.; Thurmond, M.C.; Mohr, F.C.; Holmberg, C.A.; Anderson, M.L.; Keen, C.L. Relationships between maternal and fetal liver copper, iron, manganese, and zinc concentrations and fetal development in California Holstein dairy cows. J. Vet. Diagn. Investig. 1994, 6, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Oetzel, G.R. Monitoring and testing dairy herds for metabolic disease. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 651–674. [Google Scholar] [CrossRef]
- Ashmawy, N. Blood Metabolic Profile and Certain Hormones Concentrations in Egyptian Buffalo During Different Physiological States. Asian J. Anim. Vet. Adv. 2015, 10, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Bazzano, M.; Giudice, E.; Giannetto, C.; Fazio, F.; Scollo, C.; Piccione, G. The peripartum period influenced the serum macromineral profile in mares. Arch. Anim. Breed. 2016, 59, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.F.; Lesch, T.N. A Dairy Cow Body Condition Scoring System and Its Relationship to Selected Production Characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Pexsters, A.; Daemen, A.; Bottomley, C.; Van Schoubroeck, D.; De Catte, L.; De Moor, B.; D’Hooghe, T.; Lees, C.; Timmerman, D.; Bourne, T. New crown-rump length curve based on over 3500 pregnancies. Ultrasound Obstet. Gynecol. 2010, 35, 650–655. [Google Scholar] [CrossRef]
- Neamat-Allah, A.N.F.; Ali, A.A.; Mahmoud, E.A. Jeopardy of Lyssavirus infection in relation to hemato-biochemical parameters and diagnostic markers of cerebrospinal fluid in rabid calves. Comp. Clin. Pathol. 2020, 29, 553–560. [Google Scholar] [CrossRef]
- Neamat-Allah, A.N.F.; Mahmoud, E.A. Assessing the possible causes of hemolytic anemia associated with lumpy skin disease naturally infected buffaloes. Comp. Clin. Pathol. 2019, 28, 747–753. [Google Scholar] [CrossRef]
- Neamat-Allah, A.N.F.; Mahsoub, Y.H.; Mahmoud, E.A. The potential benefits of dietary β-glucan against growth retardation, immunosuppression, oxidative stress and expression of related genes and susceptibility to Aeromonas hydrophila challenge in Oreochromis niloticus induced by herbicide pendimethalin. Aquac. Res. 2020, 52, 518–528. [Google Scholar] [CrossRef]
- Cooper, G.R. Methods for Determining the Amount of Glucose in Blood. CRC Crit. Rev. Clin. Lab. Sci. 1973, 4, 101–145. [Google Scholar] [CrossRef] [PubMed]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Finley, P.R.; Schifman, R.B.; Williams, R.J.; Lichti, D.A. Cholesterol in high-density lipoprotein: Use of Mg2+/dextran sulfate in its enzymic measurement. Clin. Chem. 1978, 24, 931–933. [Google Scholar] [CrossRef]
- McGeorge, W.T. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. Soc. Am. J. 1954, 18, 348. [Google Scholar] [CrossRef]
- King, E.J. The colorimetric determination of phosphorus. Biochem. J. 1932, 26, 292–297. [Google Scholar] [CrossRef]
- IBM. IBM SPSS Statistics for Windows 22; IBM Corp.: Armonk, NY, USA, 2013. [Google Scholar]
- Schwabe, C. The current epidemiological revolution in veterinary medicine. Part, I. Prev. Vet. Med. 1982, 1, 5–15. [Google Scholar] [CrossRef]
- Thompson, S. Sampling, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Aziz, M.; Schoeman, S.; Jordaan, G.; El-Chafie, O.; Mahdy, A. Genetic and phenotypic variation of some reproductive traits in Egyptian buffalo. South Afr. J. Anim. Sci. 2001, 31, 195–199. [Google Scholar] [CrossRef]
- Zaher, K. A Field Contribution on the Relation Between Reproductive Disorders and Bovine Viral Diarrhea Virus Infection in Buffalo-Cows. Am. Eurasian J. Agric. Env. Sci. 2008, 3, 736–742. [Google Scholar]
- Deresa, B.; Tulu, D.; Deressa, F.B. Epidemiological Investigation of Cattle Abortion and Its Association with Brucellosis in Jimma Zone, Ethiopia. Vet. Med. 2020, 11, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, D.; Di Palo, R.; Zicarelli, L.; Grassi, C.; Cammarano, A.; D‘Occhio, M.J.; Campanile, G. Embryonic mortality in buffalo naturally mated. Ital. J. Anim. Sci. 2007, 6, 677–679. [Google Scholar] [CrossRef]
- Mellado, M.; Valdez, R.; Lara, L.M.; García, J.E. Risk factors involved in conception, abortion, and kidding rates of goats under extensive conditions. Small Rumin. Res. 2004, 55, 191–198. [Google Scholar] [CrossRef]
- Waldner, C.L. Cow attributes, herd management, and reproductive history events associated with abortion in cow-calf herds from Western Canada. Theriogenology 2014, 81, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Waldner, C.L. Cow attributes, herd management and environmental factors associated with the risk of calf death at or within 1 h of birth and the risk of dystocia in cow–calf herds in Western Canada. Livest. Sci. 2014, 163, 126–139. [Google Scholar] [CrossRef]
- Lu, C.; Sahlu, T.; Fernandez, J. Assessment of energy and protein requirements for growth and lactation in goats. In Proceeding of the 4th International Conference on Goats, Brasilia, Brazil, 8–13 March 1987; Volume 2, pp. 1229–1248. [Google Scholar]
- Grimard, B.; Freret, S.; Chevallier, A.; Pinto, A.; Ponsart, C.; Humblot, P. Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Anim. Reprod. Sci. 2006, 91, 31–44. [Google Scholar] [CrossRef]
- Al-Samarai, F. The Effect of Some Factors on Stillbirth in Primiparous and Multiparous Holstein Cattle in Iraq. Glob. J. Med. Res. 2012, 12, 23–29. [Google Scholar]
- Bhat, Y.; Sharma, M.; Singh, A. Effect of Parity of Animal, Season and Sex of Fetus on the Rate of Abortion in Dairy Cattle. Adv. Anim. Vet. Sci. 2016, 4, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Butler, W.R. Nutritional interactions with reproductive performance in dairy cattle. Anim. Reprod. Sci. 2000, 60–61, 449–457. [Google Scholar] [CrossRef]
- Roche, J.R.; Lee, J.M.; Berry, D.P. Climatic factors and secondary sex ratio in dairy cows. J. Dairy Sci. 2006, 89, 3221–3227. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.N.; Stabenfeldt, G.H.; Moseley, T.A.; Graham, T.W.; Bruss, M.L.; BonDurant, R.H.; Cullor, J.S.; Osburn, B.I. Role of eicosanoids in abortion and its prevention by treatment with flunixin meglumine in cows during the first trimester of pregnancy. Zent. fur Veterinarmedizin Reihe A 1991, 38, 445–459. [Google Scholar] [CrossRef]
- Jones, S.B.; Romano, F.D. Plasma catecholamines in the conscious rat during endotoxicosis. Circ. Shock. 1984, 14, 189–201. [Google Scholar]
- Padodara, R.; Arya, J. Hematological profile during gestation and triplle cross heifers and cows. Wayamba J. Anim. Sci. 2012, 4, 1–4. [Google Scholar]
- Ahmed, W.M.; Nada, A. Some pathological affections of testis and epididymis of slaughtered camels (Camelus dromedarius). Int. J. Anim. Sci. 1993, 8, 33–36. [Google Scholar]
- Elsify, A.; Abdelrazek, E. Seroprevalence of Abortion Causing Agents in Egyptian Sheep and Goat Breeds and Their Effects on the Animal’s Performance. J. Agric. Sci. 2013, 5, 92–101. [Google Scholar] [CrossRef]
- Yokus, B.; Cakir, U.D. Seasonal and physiological variations in serum chemistry and mineral concentrations in cattle. Biol. Trace Elem. Res. 2006, 109, 255–266. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
- Molefe, K.; Mwanza, M. Serum biochemistry in cows of different breeds presented with reproductive conditions. Onderstepoort J. Vet. Res. 2019, 86, e1–e7. [Google Scholar] [CrossRef] [Green Version]
- Elrod, C.C.; Butler, W.R. Reduction of fertility and alteration of uterine pH in heifers fed excess ruminally degradable protein. J. Anim. Sci. 1993, 71, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, W.R. Review: Effect of Protein Nutrition on Ovarian and Uterine Physiology in Dairy Cattle. J. Dairy Sci. 1998, 81, 2533–2539. [Google Scholar] [CrossRef]
- Blauwiekel, R.; Kincaid, R.L.; Reeves, J.J. Effect of high crude protein on pituitary and ovarian function in Holstein cows. J. Dairy Sci. 1986, 69, 439–446. [Google Scholar] [CrossRef]
- Yokv, B.; Bademkiran, S.; Cal1r, D. Total antioxidant capacity and oxidative stress in dairy cattle and their associations with dystocia. Med. Weter. 2007, 63, 167–170. [Google Scholar]
- Khalaf, B.; Mosa, A.; Mosa, A.; Al-Ameer, S.; Jabbar, S.; Abdulaemma, B.; Attiya, A.; Ameen, H. Uric Acid Level and Correlation with Missed Abortion Biochemical Changes. IJPPR 2019, 14, 120–131. [Google Scholar]
- Sepúlveda-Varas, P.; Weary, D.M.; Noro, M.; von Keyserlingk, M.A.G. Transition diseases in grazing dairy cows are related to serum cholesterol and other analytes. PLoS ONE 2015, 10, e0122317. [Google Scholar] [CrossRef] [Green Version]
- Lanyasunya, T.; Musa, H.; Yang, Z.P.; Mekki, D.; Mukisira, E. Effects of Poor Nutrition on Reproduction of Dairy Stock on Smallholder Farms in the Tropics. Pak. J. Nutr. 2005, 4, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Ekin, S.; Kozat, S.; Gunduz, H.; Mert, N.; Karakaya, C. Levels of some trace elements and rheumatoid factor in sheep with brucellosis. Biol. Trace Elem. Res. 2004, 99, 123–128. [Google Scholar] [CrossRef]
- Aytekin, I.; Aypak, S.U. Levels of selected minerals, nitric oxide, and vitamins in aborted Sakis sheep raised under semitropical conditions. Trop. Anim. Health Prod. 2011, 43, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Barui, A.; Batabyal, S.; Ghosh, S.; Saha, D.; Chattopadhyay, S. Plasma mineral profiles and hormonal activities of normal cycling and repeat breeding crossbred cows: A comparative study. Vet. World 2015, 8, 42–45. [Google Scholar] [CrossRef] [Green Version]
- Regmi, G.; Dhakal, I.P. Systemic levels of iron, phosphorus, and total protein in normocyclic versus repeat breeder Holstein Friesian crossbred cows of Kesharbag, Chitwan, Nepal. Vet. World 2020, 13, 2353–2357. [Google Scholar] [CrossRef] [PubMed]
- Modi, L.; Babulal, S.; Chaudhari, C.; Chaudhari, N.; Nakhashi, H.; Modi, F. Trace minerals profile of blood serum and estrual mucus in repeat breeder Kankrej cows. Vet. World 2013, 6, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Mussalo-Rauhamaa, H.; Lakomaa, E.L.; Kianto, U.; Lehto, J. Element concentrations in serum, erythrocytes, hair and urine of alopecia patients. Acta Derm. Venereol. 1986, 66, 103–109. [Google Scholar]
- Gambling, L.; Dunford, S.; Wallace, D.I.; Zuur, G.; Solanky, N.; Srai, S.K.S.; McArdle, H.J. Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J. Physiol. 2003, 552, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Sudhir, K.; Pandey, A.; Razzaque, W.; Dwivedi, D. Importance of micro minerals in reproductive: Performance of livestock. Vet. World 2011, 4, 230–233. [Google Scholar] [CrossRef]
- Vallee, B.L.; Falchuk, K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118. [Google Scholar] [CrossRef] [PubMed]
- Bedwal, R.S.; Bahuguna, A. Zinc, copper and selenium in reproduction. Experientia 1994, 50, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.M.; Cooke, R.F.; Marques, R.d.S. Supplementing Trace Minerals to Beef Cows during Gestation to Enhance Productive and Health Responses of the Offspring. Animals 2021, 11, 1159. [Google Scholar] [CrossRef]
No. of Confirmed Pregnant Buffaloes | No. of Aborted Fetuses (%) | Gestational Age of Aborted Fetus * | Survival Rate (%) | ||
---|---|---|---|---|---|
First Trimester (%) | Second Trimester (%) | Third Trimester (%) | |||
1154 | 68/1154 (5.89) | (35/1154) 3.03 | (20/1154) 1.73 | (13/1154) 1.13 | 1086/1154 (94.11) |
Items | n | β | S.E.(β) | Abortion Rate | p-Value | |
---|---|---|---|---|---|---|
OR | 95% CI | |||||
Body Condition Score | ||||||
2–2.5 | 425 | 1 | ||||
3–3.5 | 488 | −0.546 | 0.485 | 0.579 | 0.224–1.499 | 0.001 |
4–4.5 | 151 | −1.316 | 0.320 | 0.268 | 0.143–0.503 | 0.001 |
5 | 90 | −1.390 | 0.529 | 0.249 | 0.088–0.702 | 0.001 |
Parity | ||||||
1st | 246 | 1 | ||||
2nd | 240 | −0.188 | 0.330 | 0.828 | 0.433–1.583 | 0.062 |
3rd | 283 | −0.417 | 0.394 | 0.659 | 0.304–1.427 | 0.012 |
4th | 180 | −0.894 | 0.368 | 0.409 | 0.198–0.842 | 0.001 |
5th | 205 | −1.130 | 0.470 | 0.323 | 0.128–0.811 | 0.001 |
Season | ||||||
Spring | 227 | 1 | ||||
Summer | 247 | 0.456 | 0.339 | 1.855 | 0.940–2.663 | 0.006 |
Autumn | 395 | 0.274 | 0.369 | 1.316 | 0.638–2.714 | 0.048 |
Winter | 285 | −0.686 | 0.436 | 0.503 | 0.214–1.185 | 0.002 |
Lactation | ||||||
Lactating | 623 | 1 | ||||
Dry | 531 | −2.140 | 0.240 | 0.118 | 0.073–0.189 | 0.001 |
Aborted fetus sex | ||||||
Male | 603 | 1 | ||||
Female | 551 | 0.099 | 0.136 | 1.105 | 0.846–1.444 | 0.622 |
Aborting year | ||||||
2014 | 140 | 1 | ||||
2015 | 129 | −0.651 | 0.238 | 0.739 | 0.348–1.328 | 0.098 |
2016 | 179 | −0.462 | 0.294 | 0.775 | 0.307–1.576 | 0.180 |
2017 | 173 | −0.683 | 0.363 | 0.692 | 0.231–1.180 | 0.089 |
2018 | 213 | −0.363 | 0.116 | 0.987 | 0.434–2.246 | 0.261 |
2019 | 142 | −0.436 | 0.256 | 0.972 | 0.446–2.120 | 0.236 |
2020 | 178 | −0.534 | 0.317 | 0.754 | 0.324–1.634 | 0.117 |
Items | n | β | S.E.(β) | Calving Rate | p-Value | |
---|---|---|---|---|---|---|
OR | 95% CI | |||||
Body Condition Score | ||||||
2–2.5 | 425 | 1 | ||||
3–3.5 | 488 | 0.631 | 0.286 | 1.728 | 0.667–4.472 | 0.032 |
4–4.5 | 151 | 1.293 | 0.227 | 3.732 | 1.990–4.998 | 0.001 |
5 | 90 | 1.483 | 0.431 | 4.017 | 1.424–7.337 | 0.001 |
Parity | ||||||
1st | 246 | 1 | ||||
2nd | 240 | 0.119 | 0.293 | 1.207 | 0.632–2.307 | 0.096 |
3rd | 283 | 0.439 | 0.263 | 1.517 | 0.701–2.286 | 0.038 |
4th | 180 | 0.778 | 0.332 | 2.447 | 1.188–4.040 | 0.001 |
5th | 205 | 1.155 | 0.424 | 3.098 | 1.233–5.785 | 0.001 |
Season | ||||||
Spring | 227 | 1 | ||||
Summer | 247 | −0.532 | 0.396 | 0.469 | 0.191–1.173 | 0.016 |
Autumn | 395 | −0.223 | 0.411 | 0.760 | 0.368–1.567 | 0.068 |
Winter | 285 | 0.586 | 0.583 | 1.721 | 0.844–3.677 | 0.002 |
Lactation | ||||||
Lactating | 623 | 1 | ||||
Dry | 531 | 1.834 | 0.310 | 6.012 | 5.303–7.632 | 0.001 |
Aborted fetus sex | ||||||
Male | 603 | 1 | ||||
Female | 551 | −0.085 | 0.101 | 0.905 | 0.692–1.183 | 0.364 |
Aborting year | ||||||
2014 | 140 | 1 | ||||
2015 | 129 | 0.416 | 0.203 | 1.339 | 0.751–1.685 | 0.073 |
2016 | 179 | 0.227 | 0.259 | 1.114 | 0.658–1.685 | 0.135 |
2017 | 173 | 0.448 | 0.328 | 1.438 | 0.634–2.260 | 0.064 |
2018 | 213 | 0.128 | 0.081 | 1.013 | 0.445–2.307 | 0.216 |
2019 | 142 | 0.201 | 0.221 | 1.029 | 0.472–2.245 | 0.211 |
2020 | 178 | 0.299 | 0.282 | 1.217 | 0.848–2.136 | 0.082 |
Parameters | Normal Cases | Abortion Cases | p-Value |
---|---|---|---|
Glucose (mg/dL) | 28 ± 3.128 | 61 ± 6.037 | 0.003 |
Urea (mg/dL) | 46.5 ± 1.362 | 34.5 ± 1.119 | 0.035 |
Creatinine (mg/dL) | 1.46 ± 0.214 | 1.64 ± 0.152 | 0.437 |
Uric acid (mg/dL) | 2.4 ± 0.024 | 1.2 ± 0.018 | 0.029 |
Total protein (g/dL) | 8.4 ± 0.027 | 6.8 ± 0.012 | 0.041 |
Total cholesterol (mg/dL) | 98 ± 3.634 | 58 ± 2.934 | 0.016 |
Phosphorus (mg/dL) | 3.16 ± 0.017 | 2.64 ± 0.006 | 0.011 |
Magnesium (mg/dL) | 3.72 ± 0.027 | 2.91 ± 0.017 | 0.037 |
Iron (mg/dL) | 17.2 ± 1.224 | 6.3 ± 0.367 | 0.005 |
Copper (mg/dL) | 57.1 ± 1.342 | 85.3 ± 2.012 | 0.043 |
Zinc (mg/dL) | 69 ± 2.114 | 72 ± 2.625 | 0.421 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essawi, W.M.; El-Raghi, A.A.; Ali, F.; Nassan, M.A.; Neamat-Allah, A.N.F.; Hassan, M.A.E. The Association of the Potential Risk Factors and Nutrition Elements with Abortion and Calving Rates of Egyptian Buffaloes (Bubalus bubalis). Animals 2021, 11, 2043. https://doi.org/10.3390/ani11072043
Essawi WM, El-Raghi AA, Ali F, Nassan MA, Neamat-Allah ANF, Hassan MAE. The Association of the Potential Risk Factors and Nutrition Elements with Abortion and Calving Rates of Egyptian Buffaloes (Bubalus bubalis). Animals. 2021; 11(7):2043. https://doi.org/10.3390/ani11072043
Chicago/Turabian StyleEssawi, Walaa M., Ali Ali El-Raghi, Fatma Ali, Mohamed A. Nassan, Ahmed N. F. Neamat-Allah, and Mahmoud A. E. Hassan. 2021. "The Association of the Potential Risk Factors and Nutrition Elements with Abortion and Calving Rates of Egyptian Buffaloes (Bubalus bubalis)" Animals 11, no. 7: 2043. https://doi.org/10.3390/ani11072043
APA StyleEssawi, W. M., El-Raghi, A. A., Ali, F., Nassan, M. A., Neamat-Allah, A. N. F., & Hassan, M. A. E. (2021). The Association of the Potential Risk Factors and Nutrition Elements with Abortion and Calving Rates of Egyptian Buffaloes (Bubalus bubalis). Animals, 11(7), 2043. https://doi.org/10.3390/ani11072043