Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Basic Spectral Subtraction
2.2. Improved Spectral Subtraction
2.3. Wiener Filtering
2.4. Sparse Decomposition
3. Verification and Analysis
3.1. Multiple Perspective Evaluation Indicators
3.2. Signal Angle
3.3. Recognition Angle
3.4. Comprehensive Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, T.J.; Weary, D.M.; Appleby, M.C. Newborn and 5-week-old calves vocalize in response to milk deprivation. Appl. Anim. Behav. Sci. 2001, 74, 165–173. [Google Scholar] [CrossRef]
- Zimmerman, P.H.; Koene, P.; van Hooff, J.A.R.A.M. Thwarting of behaviour in different contexts and the gakel-call in the laying hen. Appl. Anim. Behav. Sci. 2000, 69, 255–264. [Google Scholar] [CrossRef]
- Weary, D.M.; Braithwaite, L.A.; Fraser, D. Vocal response to pain in piglets. Appl. Anim. Behav. Sci. 1998, 56, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Marchant-Forde, J.N.; Marchant-Forde, R.M.; Weary, D.M. Responses of dairy cows and calves to each other’s vocalisations after early separation. Appl. Anim. Behav. Sci. 2002, 78, 19–28. [Google Scholar] [CrossRef]
- Manteuffel, G.; Puppe, B.; Schon, P.C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004, 88, 163–182. [Google Scholar] [CrossRef]
- de Moura, D.J.; de Alencar Nääs, I.; de Souza Alves, E.C.; de Carvalho, T.M.R.; do Vale, M.M.; de Lima, K.A.O. Noise analysis to evaluate chick thermal comfort. Sci. Agric. 2008, 65, 438–443. [Google Scholar] [CrossRef]
- Taylor, A.A.; Weary, D.M.; Lessard, M.; Braithwaite, L. Behavioural responses of piglets to castration: The effect of piglet age. Appl. Anim. Behav. Sci. 2001, 73, 35–43. [Google Scholar] [CrossRef]
- Marx, G.; Leppelt, J.; Ellendorff, F. Vocalisation in chicks (Gallus gallus dom.) during stepwise social isolation. Appl. Anim. Behav. Sci. 2001, 75, 61–74. [Google Scholar] [CrossRef]
- Aydin, A.; Berckmans, D. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens. Comput. Electron. Agric. 2016, 121, 25–31. [Google Scholar] [CrossRef]
- Carpentier, L.; Vranken, E.; Berckmans, D.; Paeshuyse, J.; Norton, T.J. Development of sound-based poultry health monitoring tool for automated sneeze detection. Comput. Electron. Agric. 2019, 162, 573–581. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, Y.; Qi, H.; Tabler, G.T. Characterizing Sounds of Different Sources in a Commercial Broiler House. Animals 2021, 11, 916. [Google Scholar] [CrossRef]
- Du, X.; Lao, F.; Teng, G. A Sound Source Localisation Analytical Method for Monitoring the Abnormal Night Vocalisations of Poultry. Sensors 2018, 18, 2906. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, W.; Zhang, T. Method for detecting avian influenza disease of chickens based on sound analysis. Biosyst. Eng. 2019, 180, 16–24. [Google Scholar] [CrossRef]
- Cheng, B.J.; Zhong, S.P. A novel chicken voice recognition method using the orthogonal matching pursuit algorithm. Int. Congr. Image Signal Process. 2016, 2, 1266–1271. [Google Scholar]
- Yu, L.G.; Teng, G.H.; Li, B.M.; Lao, F.D.; Cao, Y.F. Classification Methods of Vocalization for Laying Hens in Perch System. Trans. Chin. Soc. Agric. Mach. 2013, 44, 236–242. [Google Scholar]
- Wang, G.T.; Liang, X.W.; Xue, Y.Y.; Li, C.; Ding, Q. Algorithm Used to Detect Weak Signals Covered by Noise in PIND. Int. J. Aerosp. Eng. 2019, 2019, 1637953. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.W.; Jiang, A.P.; Li, T.; Xue, Y.Y.; Wang, G.T. LR-SMOTE—An improved unbalanced data set oversampling based on K-means and SVM. Knowl. Based Syst. 2020, 196, 105845. [Google Scholar] [CrossRef]
- Li, S.; Wang, G.T.; Li, C.R.; Chen, R.; Gao, M.M. Detection technology of remnant material in space equipment based on multisensor data fusion. J. Electron. Meas. Instrum. 2020, 34, 124–131. [Google Scholar]
- Li, X.; Jiang, A.P.; Yang, S.H.; Xue, Y.Y.; Wang, G.T. Identification of Sealed Relay PIND Signal Based on Multilayer Perceptron. J. Astronaut. Metrol. Meas. 2020, 40, 30–35. [Google Scholar]
- Xue, Y.Y.; Wang, G.T.; Lou, Y.H.; Li, C.; Bai, X.K. Robust Design of Sound Conditioning Circuit for Automatic Detection System of Remainders. Electr. Energy Manag. Technol. 2019, 24, 22–26. [Google Scholar]
- Sun, Z.G.; Wang, G.T.; Gao, M.M.; Gao, L.Z.; Jiang, A.P. Research on Localization Method of Loose Particles Inside Sealed Electronic Equipment Based on Parameter-Optimized Support Vector Machine. J. Astronaut. Metrol. Meas. 2021, 35, 94–104. [Google Scholar]
- Sun, J.S.; Tian, L. An improved spectral subtraction algorithm applied to speech enhancement in the cochlear implant. J. Biomed. Eng. 2010, 27, 188–192. [Google Scholar]
- Udrea, R.M.; Vizireanu, N.D.; Ciochina, S. An improved spectral subtraction method for speech enhancement using a perceptual weighting filter. Digit. Signal Process. 2008, 18, 581–587. [Google Scholar] [CrossRef]
- Patel, S.; Dhuli, R.; Lall, B. Design and analysis of matrix Wiener synthesis filter for multirate filter bank. Signal Process. 2014, 102, 256–264. [Google Scholar] [CrossRef]
- Xie, Z.B.; Feng, J.C. Filtering noisy chaotic signal via sparse representation based on random frame dictionary. Chin. Phys. B 2010, 19, 137–140. [Google Scholar]
- Wohlberg, B. Efficient Algorithms for Convolutional Sparse Representations. IEEE Trans. Image Process. 2015, 25, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; Liu, M.J.; Zhang, X.B.; Wang, C. Speech Endpoint Detection Based on EMD-Teager and Subband Spectral Entropy Method. Ind. Control. Comput. 2017, 30, 26–27. [Google Scholar]
- Hu, Y.; Loizou, P.C. Speech enhancement based on wavelet thresholding the multitaper spectrum. IEEE Trans. Speech Audio Process. 2004, 12, 59–67. [Google Scholar] [CrossRef]
- Zhang, L.; Li, W.J.; Yue, K.Q. Improvement of Multi-Window Spectral Subtraction Algorithm Based on Adaptive Parameters. Softw. Guide 2020, 19, 74–77. [Google Scholar]
- Wu, P.P.; Zhao, G.; Zou, M. An Improved Spectral Subtraction Method Based on Multitaper Estimation. Mod. Electron. Tech. 2008, 12, 150–152. [Google Scholar]
- Raghad, Y.L.; Zhu, Y.; Wu, X.J. Improving Speech Quality for Hearing Aid Applications Based on Wiener Filter and Composite of Deep Denoising Autoencoders. Signals 2020, 1, 138–156. [Google Scholar]
- Manju, B.R.; Sneha, M.R. ECG Denoising Using Wiener Filter and Kalman Filter. Procedia Comput. Sci. 2020, 171, 273–281. [Google Scholar]
- Xu, S.; Zhang, J.; Bo, L.; Li, H.; Zhang, H.; Zhong, Z.; Yuan, D. Singular vector sparse reconstruction for image compression. Comput. Electr. Eng. 2021, 91, 107069. [Google Scholar] [CrossRef]
- Wan, Y.; Meng, X.J.; Wang, Y.F.; Qiang, H.P. Dynamic time warping similarity measurement based on low-rank sparse representation. Vis. Comput. 2021, 1–10. [Google Scholar] [CrossRef]
- Yu, L.G.; Teng, G.H.; Li, B.M.; Lao, F.D.; Xing, Y.Z. Development and application of audio database for laying hens. Trans. Chin. Soc. Agric. Eng. 2012, 24, 150–156. [Google Scholar]
- Yalamanchili Arpitha, G.L.; Madhumathi, N.B. Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique. J. Ambient. Intell. Humaniz. Comput. 2021, 19, 1–10. [Google Scholar]
- Fahad, M.; Shah, D.A.; Pradhan, G.; Yadav, J. DNN-HMM-Based Speaker-Adaptive Emotion Recognition Using MFCC and Epoch-Based Features. Circuits Syst. Signal Process. 2020, 40, 466–489. [Google Scholar] [CrossRef]
- Rangel, O.B.; Rosas, R.R. Detection and classification of burnt skin via sparse representation of signals by over-redundant dictionaries. Comput. Biol. Med. 2020, 132, 104310. [Google Scholar] [CrossRef]
- Coifman, R.R.; Wickerhauser, M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 1992, 38, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.X.; Yin, Z.K.; Wang, J.Y. Fast algorithm for MP sparse decomposition and its application in speech recognition. Comput. Eng. Appl. 2020, 46, 122–128. [Google Scholar]
- Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 1–3 November 1993; IEEE: New York, NY, USA, 2002; Volume 1, pp. 40–44. [Google Scholar] [CrossRef] [Green Version]
Signal Number | BSS | ISS | WF | SD/Thirty Atoms | SD/Fifty Atoms | |||||
---|---|---|---|---|---|---|---|---|---|---|
SNR | RMSE | SNR | RMSE | SNR | RMSE | SNR | RMSE | SNR | RMSE | |
1 | 1.7691 | 0.1201 | 3.5719 | 0.0976 | 1.4732 | 0.1243 | −0.7658 | 0.1513 | −0.1859 | 0.0415 |
2 | 3.8273 | 0.0435 | 5.8593 | 0.0344 | 1.8472 | 0.0546 | −1.6833 | 0.0768 | −0.1243 | 0.0639 |
3 | 2.1030 | 0.0534 | 3.7349 | 0.0442 | 0.9655 | 0.0608 | 3.1437 | 0.0482 | 3.3780 | 0.0469 |
4 | 2.6685 | 0.1023 | 3.8642 | 0.0901 | 2.4198 | 0.1064 | 2.3336 | 0.1168 | 2.8879 | 0.1095 |
5 | 1.7754 | 0.0570 | 3.5703 | 0.0464 | 0.9126 | 0.0629 | 2.6798 | 0.0522 | 4.1521 | 0.0441 |
6 | 2.5100 | 0.0333 | 3.7005 | 0.0291 | 1.6632 | 0.0367 | 1.1763 | 0.0374 | 3.6884 | 0.0280 |
7 | 5.0925 | 0.0312 | 9.1441 | 0.0196 | 4.0548 | 0.0359 | −1.2686 | 0.0529 | −0.2485 | 0.0466 |
8 | 3.4524 | 0.0939 | 5.4609 | 0.0745 | 3.0098 | 0.0988 | 1.9618 | 0.0210 | 2.8147 | 0.1096 |
9 | 6.1313 | 0.0308 | 8.6555 | 0.0230 | 4.8939 | 0.0355 | 0.2187 | 0.0586 | 0.5416 | 0.0564 |
10 | 4.3272 | 0.0720 | 7.5838 | 0.0495 | 5.9567 | 0.0597 | 1.1845 | 0.1085 | 1.7164 | 0.1021 |
Mean value | 3.3657 | 0.0638 | 5.5145 | 0.0508 | 2.7197 | 0.0676 | 0.8981 | 0.0724 | 1.8620 | 0.0649 |
Label | Crow | Cough | Purr | Flapping Wing | Total Numbers | |
---|---|---|---|---|---|---|
Method | ||||||
BSS | 3182 | 683 | 6513 | 3736 | 14,014 | |
ISS | 2308 | 717 | 6863 | 3147 | 13,125 | |
WF | 3004 | 735 | 5194 | 3813 | 12,746 | |
SD/Thirty atoms | 2666 | 1160 | 10,715 | 2435 | 16,976 | |
SD/Fifty atoms | 2466 | 799 | 9567 | 2424 | 15,256 |
Test Times | BSS | ISS | WF | SD/Thirty Atoms | SD/Fifty Atoms | |||||
---|---|---|---|---|---|---|---|---|---|---|
kNN | RF | kNN | RF | kNN | RF | kNN | RF | kNN | RF | |
1 | 78.77 | 77.81 | 77.81 | 80.57 | 89.66 | 88.25 | 69.68 | 75.77 | 67.99 | 75.73 |
2 | 77.40 | 78.93 | 79.74 | 79.96 | 89.01 | 89.37 | 70.04 | 74.75 | 69.96 | 75.70 |
3 | 78.09 | 78.17 | 78.62 | 78.06 | 89.45 | 88.22 | 68.68 | 75.87 | 69.96 | 76.45 |
4 | 76.74 | 78.62 | 77.88 | 79.25 | 88.51 | 88.14 | 68.35 | 75.97 | 70.02 | 76.14 |
5 | 77.93 | 77.98 | 79.52 | 79.99 | 89.19 | 87.99 | 69.35 | 76.22 | 68.84 | 75.70 |
6 | 77.55 | 77.10 | 76.84 | 79.86 | 88.51 | 89.43 | 68.66 | 75.79 | 69.85 | 75.75 |
7 | 78.54 | 77.53 | 77.31 | 79.89 | 88.54 | 88.62 | 70.02 | 76.18 | 69.39 | 75.16 |
8 | 78.69 | 77.93 | 79.17 | 78.16 | 88.51 | 89.35 | 69.49 | 75.63 | 69.83 | 75.75 |
9 | 77.20 | 78.31 | 78.93 | 79.10 | 87.88 | 88.90 | 70.02 | 76.61 | 69.89 | 76.69 |
10 | 78.26 | 77.93 | 79.02 | 78.77 | 89.01 | 88.59 | 69.74 | 77.03 | 69.78 | 75.20 |
Mean value | 77.92 | 78.03 | 78.48 | 79.36 | 88.83 | 88.69 | 69.40 | 75.98 | 69.55 | 75.83 |
Predictions | Total Number of Data | Number of Data Predicted Correct | Number of Data Predicted Incorrect | Predict Accuracy/% | |
---|---|---|---|---|---|
Method | |||||
BSS | 14,014 | 10,920 | 3094 | 77.92 | |
ISS | 13,125 | 10,301 | 2824 | 78.48 | |
WF | 12,746 | 11,322 | 1424 | 88.83 | |
SD/Thirty atoms | 16,976 | 11,781 | 5195 | 69.40 | |
SD/Fifty atoms | 15,256 | 10,611 | 4645 | 69.55 |
Predictions | Total Number of Data | Number of Data Predicted Correct | Number of Data Predicted Incorrect | Predict Accuracy/% | |
---|---|---|---|---|---|
Method | |||||
BSS | 14,014 | 10,935 | 3079 | 78.03 | |
ISS | 13,125 | 10,416 | 2709 | 79.36 | |
WF | 12,746 | 11,304 | 1442 | 88.69 | |
SD/Thirty atoms | 16,976 | 12,898 | 4078 | 75.98 | |
SD/Fifty atoms | 15,256 | 11,569 | 3687 | 75.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Gao, M.; Wang, G.; Lv, B.; He, C.; Teng, Y. Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives. Animals 2021, 11, 2238. https://doi.org/10.3390/ani11082238
Sun Z, Gao M, Wang G, Lv B, He C, Teng Y. Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives. Animals. 2021; 11(8):2238. https://doi.org/10.3390/ani11082238
Chicago/Turabian StyleSun, Zhigang, Mengmeng Gao, Guotao Wang, Bingze Lv, Cailing He, and Yuru Teng. 2021. "Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives" Animals 11, no. 8: 2238. https://doi.org/10.3390/ani11082238
APA StyleSun, Z., Gao, M., Wang, G., Lv, B., He, C., & Teng, Y. (2021). Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives. Animals, 11(8), 2238. https://doi.org/10.3390/ani11082238