The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Shammari, K.I.A.; Batkowska, J.; Zamil, S.J. Role of pomegranate peels and black pepper powder and their mixture in alleviating the oxidative stress in broiler chickens. Int. J. Poult. Sci. 2019, 18, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Al-Shammari, K.I.A.; Zamil, S.J.; Mohammed, E.M. Influence of dietary epigallocatechin-3 gallate and l-arginine and its combination on early laying performance and status of stressed Japanese quails. J. Phys. Conf. Ser. 2019, 1294, 092014. [Google Scholar] [CrossRef] [Green Version]
- Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Sci. 2016, 1, 8. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Munawar, S.H.; Manzoor, Z.; Iqbal, Z.; Khan, M.N.; Saleemi, M.K.; Zia, M.A.; Yousaf, A. Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. Pesqui. Vet. Bras. 2011, 31, 99–103. [Google Scholar] [CrossRef]
- Saleem, G.; Ramzaan, R.; Khattak, F.M.; Akhtar, R. Effects of acetic acid supplementation in broiler chickens orally challenged with Salmonella pullorum. Turk. J. Vet. Anim. Sci. 2016, 40, 434–443. [Google Scholar] [CrossRef]
- Rehman, Z.; Haq, A.; Naasra, A.; El-Hack, M.E.A.; Saeed, M.; Rehman, S.; Meng, C.; Alagawany, M.; Maryam, S.; Dhama, K.; et al. Growth performance, intestinal histomorphology, blood hematology and serum metabolites of broilers chickens fed diet supplemented with graded levels of acetic acid. Int. J. Pharmacol. 2016, 12, 874–883. [Google Scholar] [CrossRef]
- Fouad, W.; Farag, M.E.; Abou-Shehema, B.M.; Abd El-Halim, H.A.H. Effect of acetic acid and date residues on some physiological characteristics, productive and reproductive parameters of quail during summer season. Egypt. J. Nutr. Feed. 2018, 21, 793–805. [Google Scholar] [CrossRef] [Green Version]
- Zarghi, H. Use of natural organic acid “Apple Vinegar” as a method of biological health control. J. Food Drug. Res. 2018, 1, 19–20. [Google Scholar]
- Kim, J.W.; Kim, J.H.; Kil, D.Y. Dietary organic acids for broiler chickens: A review. Rev. Colomb. Cienc. Pecu. 2015, 28, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Ndelekwute, E.K.; Unah, U.L.; Udoh, U.H. Effect of dietary organic acids on nutrient digestibility, faecal moisture, digesta pH and viscosity of broiler chickens. MOJ Anat. Physiol. 2019, 6, 40–43. [Google Scholar] [CrossRef]
- Watarai, S.; Tana, S. Eliminating the carriage of Salmonella enterica serovar Enteritidis in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-rich). Poult. Sci. 2005, 84, 515–521. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Ishii, G. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Erucasativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutr. 2006, 52, 394–400. [Google Scholar] [CrossRef]
- Tassi, É.M.M.; Duarte, R.M.T.; Amaya-Farfan, J. Partial nutrient characterization of arugula (rocket-Eruca sativa L.) and the effect of heat treatment on its lipoxidase activity. Braz. J. Food Technol. 2018, 21, e2017024. [Google Scholar] [CrossRef]
- Ashraf, M.; Noor, R. Growth and pattern of ion uptake in Eruca sativa Mill. under salt stress. Angew. Bot. 1992, 67, 17–21. [Google Scholar]
- Villamil, J.M.P.; Perez-Garcia, F.; Martinez-Laborde, J.B. Time of seed collection and germination in rocket, Eruca vesicaria (L.) Cav. (Brassicaceae). Genet. Resour. Crop Evol. 2002, 49, 47–51. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; López-Pérez, L.; Hernández, M.; López-Berenguer, C.; Fernández-García, N.; Carvajal, M. Agricultural practices for enhanced human health. Phytochem. Rev. 2008, 7, 251–260. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry: 1994, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Mehrotra, V.; Saxena, V.L.; Saxena, A.K. Impact of different doses of lead on internal organs of quails. J. Environ. Biol. 2008, 29, 147–149. [Google Scholar]
- Al-Shammari, K.I.A. Efficiency of dietary zinc and lycopene to counteract oxidative stress of Japanese quail. Iraqi Poult. Sci. J. 2017, 11, 44–58. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Zare, K.; Nazemyeh, H.; Lotfipour, F.; Farabi, S.; Ghiamirad, M.; Barzegari, A. Antibacterial activity and total phenolic content of the Onopordon acanthium L. seeds. Pharm. Sci. 2014, 20, 6–11. [Google Scholar]
- Babaa, S.A.; Malikba, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anhawange, A.A.; Ajibola, V.O.; Oniye, S.J. Chemical studies of the seeds Moringa oleifera (Lam) Detarium mirocarpum (Guill. and Perr.). J. Biol. Sci. 2004, 4, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, M.; Ahcen, B.; Rachid, D.; Hakim, H. Phytochemical study and biological activity of sage (Salvia officinalis L.). Int. J. Bioeng. Life Sci. 2014, 8, 1253–1257. [Google Scholar]
- Ajanal, M.; Gundkalle, M.B.; Nayak, S.U. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc. Sci. Life 2012, 31, 198–201. [Google Scholar] [CrossRef]
- Lemme, A.; Frackenpohl, U.; Petri, A.; Meyer, H. Response of male BUT big 6 turkeys to varying amino acid feeding programs. Poult. Sci. 2006, 85, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.A.; Ruiz, R.; Peinado, M.J.; Echavárri, A. Morphology and enzymatic activity of the small intestinal mucosa of Iberian pigs as compared with a lean pig strain. J. Anim. Sci. 2010, 88, 3590–3597. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Södergren, E.; Nourooz-Zadeh, J.; Berglund, L.; Vessby, B. Re-evaluation of the ferrous oxidation in xylenol orange assay for the measurement of plasma lipid hydroperoxides. J. Biochem. Biophys. Methods 1998, 37, 137–146. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, D.B. Multiple range test and multiple F. test. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). User’s Guide. Statistical, version 9.1; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Rattanawut, J. Effects of dietary bamboo charcoal powder including bamboo vinegar liquid supplementation on growth performance, fecal microflora population and intestinal morphology in betong chickens. J. Poult. Sci. 2014, 51, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Hayajneh, F.M.F. Natural feed additives for broiler chickens. S. Afr. J. Anim. Sci. 2019, 49, 867–873. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Amber, K.H.; Mahmoud, M.A. Response of broiler chicks performance to partial dietary inclusion of radish, rocket and parsley cakes. Egypt. Poult. Sci. J. 2004, 24, 429–446. [Google Scholar]
- Kim, S.J.; Jin, S.; Ishii, G. Isolation and structural elucidation of 4-(β-D-Glucopyranosyldisulfanyl) butylglucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Biosci. Biotechnol. Biochem. 2004, 68, 2444–2450. [Google Scholar] [CrossRef] [Green Version]
- Abdullach, F.A.; Abdul-Majeed, A.F.; Taha, S.H. Effect of crushed Eruca sativa seeds supplementation to quail ration on lipid profile before and after sexual maturity. Mesop. J. Agric. 2019, 47, 25–35. [Google Scholar]
- Razooqi, R.H.; Shkeer, H.K.; Alwan, Y.O.; Hayder, M.I. Effect of Eruca sativa oil (ESO) on broiler performance and some blood traits. Int. J. Adv. Biol. Res. 2014, 4, 479–482. [Google Scholar]
- Shani, E.H.; Al-Bazi, W.; Kadhim, K.S. Effects of Eruca sativa seeds powder on performance and immunity of broilers. Indian J. Public Health Res. Dev. 2019, 10, 909–913. [Google Scholar] [CrossRef]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2015, 44, 359–369. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Diógenes, G.V.; Teixeira, E.N.M.; Pimenta, A.S.; Souza, J.G.; Moreira, J.A.; Marinho, A.L.; Veras, A.; Chemane, I.A. Wood vinegar from eucalyptus as an additive in broiler quail feed. Int. J. Plant Anim. Environ. Sci. 2019, 9, 164–181. [Google Scholar] [CrossRef]
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2018, 17, 386–395. [Google Scholar] [CrossRef] [Green Version]
- El-Badawy, M.; Youssef, H.; Hafez, Y.; El-Sanafawy, H.; El-Maghraby, M. Effect of rocket oil addition on productive and reproductive performance of growing ram lambs under hot climate condition. J. Anim. Poult. Prod. 2018, 9, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.E.; El-Houseinya, W.; Behairyb, A.; Abo-Elmaatyc, A.; Al-Sagheerd, A.A. The palliative role of Eruca sativa leaves dietary supplementation against oxidative stress, immunosuppression, and growth retardation in temperature-stressed Oreochromis niloticus. J. Therm. Biol. 2019, 84, 26–35. [Google Scholar] [CrossRef] [PubMed]
- El-Missiry, M.A.; El Gindy, A.M. Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann. Nutr. Metab. 2000, 44, 97–100. [Google Scholar] [CrossRef]
- ELSadek, M.F. Chemical constituents of Eruca sativa and treatment activity against paracetamol inducing hepatic injury in experimental rats. Egypt. J. Nutr. Health 2014, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
Feed Stuffs | Starter (1 Day–3 Weeks) | Finisher (4 Weeks–6 Weeks) |
---|---|---|
Yellow corn | 43.5 | 44.3 |
Wheat | 18.0 | 18.0 |
Soybean | 25.8 | 23.6 |
Protein concentrate | 10.0 | 10.0 |
Salt | 0.30 | 0.30 |
Limestone | 0.40 | 0.40 |
Vegetable oil | 2.00 | 3.40 |
Total | 100 | 100 |
Calculated chemical composition | ||
Crude protein | 22.11 | 21.20 |
Metabolizable energy (kcal/kg) | 3105.6 | 3005.5 |
Calcium (%) | 146.5 | 136.0 |
Lysine (%) | 1.13 | 1.02 |
Methionine + Cystein (%) | 0.79 | 0.65 |
Available phosphorus (%) | 1.01 | 1.03 |
Crude fiber (%) | 0.42 | 0.47 |
Ether extract (%) | 3.461 | 3.600 |
Component | (%) |
---|---|
Dry matter | 95.22 |
Crude protein | 28.21 |
Crude fiber | 15.73 |
Ether extract | 30.10 |
Nitrogen ether extract | 17.24 |
Crude ash | 7.91 |
Bioactive Compound | (%) |
---|---|
Total phenols | 26.97 |
Flavonoids | 24.43 |
Glycosides | 2.76 |
Saponins | 6.20 |
Tannins | 4.15 |
Alkaloids | 11.27 |
Variables | Age of Birds (Weeks) | Groups | SEM | p-Value (F Test) | |||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
body weight (g) | 1–3 | 813.5 | 699.5 | 732.5 | 818.00 | 775.01 | 807.5 ± 0 | 9.217 | 0.068 |
1–6 | 2675.5 b | 1774.5 c | 2738 ab | 2830.5 a | 2819.5 a | 2749 a | 14.478 | 0.036 | |
total weight gain (g) | 1–3 | 771.15 a | 657.45 b | 690.17 b | 775.96 a | 731.87 ab | 766.59 a | 11.136 | 0.012 |
1–6 | 2633.42 ab | 1732.45 c | 2696.67 ab | 2788.46 a | 2776.37 | 2707.09 a | 17.640 | 0.011 | |
feed intake (g/day) | 1–3 | 931.0 | 894.5 | 851.5 | 883.0 | 894.5 | 861.0 | 14.729 | 0.071 |
1–6 | 3908.5 a | 3000.5 b | 3999.0 a | 3957.0 a | 3779.5 a | 3911 a | 18.262 | 0.041 | |
feed conversion ratio (kg/kg of body weight gain) | 1–3 | 1.20 b | 1.36 a | 1.23 b | 1.13 c | 1.22 b | 1.12 c | 0.027 | |
1–6 | 1.55 b | 1.75 a | 1.48 c | 1.41 c | 1.36 c | 1.44 c | 0.028 | 0.000 | |
water intake (mL/day) | 1–3 | 612.0 | 450 | 540.5 | 527.0 | 558.0 | 526.5 | 13.479 | 0.061 |
1–6 | 1210.0 a | 990 b | 1242.5 a | 1253.5 a | 1305.5a | 1234.5 a | 22.134 | 0.058 | |
survivability (%) | 1–6 | 100.0 a | 87.5 c | 97.5 b | 97.5 b | 100.0 a | 100.0 a | 4.079 | 0.043 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
PEF | 410.97 a | 210.80 b | 427.95 a | 462.90 a | 490.67 a | 452.16 a | 18.58 | 0.000 | |
carcass yield (%) | 75.87 a | 72.17 b | 76.34 a | 75.65 a | 73.32 b | 74.76 a | 4.08 | 0.039 | |
carcass cuts (%) | breast muscles | 27.25 a | 24.55 b | 28.63 a | 27.35 a | 27.25 a | 27.64 a | 0.82 | 0.014 |
thighs | 18.76 ab | 17.66 b | 19.54 a | 19.84 a | 19.76 a | 18.86 ab | 0.85 | 0.043 | |
drumsticks | 16.87 ab | 15.87 b | 17.26 a | 17.58 a | 16.77 a | 16.86 a | 1.87 | 0.036 | |
wings | 11.76 b | 13.76 a | 11.52 b | 11.46 b | 11.72 b | 11.96 b | 1.69 | 0.012 | |
back | 17.87 b | 19.67 a | 17.23 b | 17.47 b | 17.82 b | 17.73 b | 0.84 | 0.041 | |
neck | 6.98 b | 7.98 a | 6.42 b | 6.29 b | 6.78 b | 6.93 b | 0.62 | 0.017 | |
abdominal fat (%) | 0.34 b | 1.85 a | 0.12 b | 0.48 b | 0.39 b | 0.43 b | 0.01 | 0.000 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
small intestine | Length (%) | 8.01 a | 6.01 b | 8.11 a | 8.35 a | 8.25 a | 8.87 a | 0.674 | 0.003 |
weight (%) | 5.18 a | 3.15 b | 4.26 ab | 5.53 a | 5.84 a | 5.42 a | 0.330 | 0.016 | |
large intestine | length (%) | 2.26 a | 1.06 b | 2.35 a | 2.42 a | 2.18 a | 2.58 a | 0.140 | 0.001 |
weight (%) | 0.84 | 0.73 | 0.79 | 0.81 | 0.80 | 0.89 | 0.003 | 0.074 | |
whole gut weight (%) | 9.27 ab | 8.13 b | 9.38 ab | 9.19 ab | 9.32 ab | 9.52 a | 0.385 | 0.045 | |
giblets weight | liver (%) | 2.89 a | 1.98 b | 2.98 a | 2.83 a | 2.76 a | 2.99 a | 0.053 | 0.021 |
gizzard (%) | 2.43 a | 1.65 b | 2.15 a | 2.23 a | 2.18 a | 2.12 a | 0.089 | 0.017 | |
heart (%) | 1.18 | 1.02 | 1.36 | 1.19 | 1.18 | 1.29 | 0.095 | 0.800 | |
lungs weight (%) | 0.74 | 0.61 | 0.72 | 0.77 | 0.75 | 0.66 | 0.008 | 0.680 | |
kidneys weight (%) | 0.51 | 0.47 | 0.53 | 0.49 | 0.48 | 0.54 | 0.008 | 0.712 | |
adrenals weight (%) | 0.02 | 0.01 | 0.03 | 0.02 | 0.03 | 0.03 | 0.001 | 0.590 | |
pancreas weight (%) | 0.23 | 0.20 | 0.24 | 0.22 | 0.25 | 0.26 | 0.003 | 0.808 | |
spleen weight (%) | 0.21 | 0.19 | 0.22 | 0.22 | 0.23 | 0.21 | 0.003 | 0.921 | |
bursa of Fabricius weight (%) | 0.16 | 0.13 | 0.15 | 0.16 | 0.15 | 0.14 | 0.005 | 0.195 | |
thymus gland weight (%) | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | 0.11 | 0.000 | 0.950 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
villus | height (μm) | 1320.0 a | 920.0 c | 1110.0 bc | 1365.0 a | 1254.0 ab | 1325.0 a | 43.61 | 0.000 |
width (μm) | 184.0 a | 128.0 b | 178.0 a | 182.0 a | 177.0 a | 183.0 a | 11.68 | 0.001 | |
surface area (×103 μm2) | 762.13 a | 368.75 c | 621.61 ab | 781.66 a | 695.40 ab | 761.14 a | 21.36 | 0.000 | |
crypt depth (μm) | 183.11 | 170.14 | 177.31 | 176.25 | 189.21 | 186.42 | 18.03 | 0.874 | |
villus height/crypt depth | 7.31 a | 5.31 b | 6.47 ab | 7.85 a | 6.73 a | 7.42 a | 0.89 | 0.011 | |
muscular layer thickness (μm) | 276.12 a | 199.23 b | 269.43 a | 279.52 a | 253.32 a | 265.32 a | 15.57 | 0.007 |
Variables | Groups | SEM | p-Value (F Test) | |||||
---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | |||
hydroperoxide (LOOH, μmol/L) | 12.53 c | 18.42 a | 15.97 b | 12.31 c | 13.23 c | 12.52 c | 1.54 | 0.011 |
malondialdehyde (MDA, μmol/L) | 10.31 c | 17.27 a | 11.32 c | 13.32 b | 10.35 c | 11.35 c | 1.78 | 0.000 |
superoxide dismutase (SOD, U/mL) | 123.9 a | 95.34 c | 109.8 b | 124.9 a | 116.9 b | 124.3 a | 7.36 | 0.000 |
catalase (CAT, U/mL) | 6.41 a | 4.63 b | 6.45 a | 7.44 a | 6.71 a | 5.67 ab | 0.72 | 0.003 |
glutathione peroxidase (GPx, U/L) | 1.82 a | 1.23 b | 1.68 a | 1.92 a | 1.81 a | 1.76 a | 0.10 | 0.023 |
ferric-reducing ability of plasma (FRAP, μmol/L) | 725.2 ab | 659.3 c | 852.2 a | 732.7 ab | 802.1 a | 721.2 ab | 12.19 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shammari, K.I.A.; Batkowska, J. The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals 2021, 11, 2277. https://doi.org/10.3390/ani11082277
Al-Shammari KIA, Batkowska J. The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals. 2021; 11(8):2277. https://doi.org/10.3390/ani11082277
Chicago/Turabian StyleAl-Shammari, Karrar Imad Abdulsahib, and Justyna Batkowska. 2021. "The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens" Animals 11, no. 8: 2277. https://doi.org/10.3390/ani11082277
APA StyleAl-Shammari, K. I. A., & Batkowska, J. (2021). The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals, 11(8), 2277. https://doi.org/10.3390/ani11082277