Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Characterization of Milk sEVs
2.2.1. Isolation of Milk sEVs
2.2.2. Characterization of Milk sEVs
2.3. Proteomic Analysis
2.3.1. Milk sEVs Protein Treatment
2.3.2. NanoLC-MS/MS Analysis
2.3.3. Scaffold DIA Analysis
2.4. Comparative Data Analysis
2.5. Bioinformatic Analysis
3. Results
3.1. Isolation and Characterization of Milk sEVs
3.2. Proteomic Analysis
3.3. Bioinformatic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haug, A.; Hostmark, A.T.; Harstad, O.M. Bovine milk in human nutrition. A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnik, B.C.; Kakulas, F. Milk exosomes and microRNAs: Potential epigenetic regulators. In Handbook of Nutrition, Diet, and Epigenetics; Springer International Publishing: Cham, Switzerland, 2019; pp. 1467–1494. [Google Scholar]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, S.J.; Raposo, G. As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2013, 2, 20389. [Google Scholar] [CrossRef]
- Benmoussaa, A.; Gottib, C.; Bourassab, S.; Gilbert, C.; Provost, P. Identification of protein markers for extracellular vesicle (EV) subsets in cow’s milk. J. Proteom 2019, 192, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Hadi, V.; Karin, E.; Apostolos, B.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar]
- Admyre, C.; Johansson, S.M.; Qazi, K.R.; Filén, J.J.; Lahesmaa, R.; Norman, M.; Neve, E.P.; Scheynius, A.; Gabrielsson, S. Exosomes with immune modulatory features are present in human breast milk. J. Immunol Res. 2007, 179, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Somiya, M.; Yoshioka, Y.; Ochiya, T. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J. Extracell. Vesicles 2018, 7, 1440132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munagala, R.; Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett. 2017, 393, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Janjanam, J.; Singh, S.; Jena, M.K.; Varshney, N.; Kola, S.; Kumar, S.; Kaushik, J.K.; Grover, S.; Dang, A.; Mukesh, M.; et al. Comparative 2D-DIGE Proteomic Analysis of Bovine Mammary Epithelial Cells during Lactation Reveals Protein Signatures for Lactation Persistency and Milk Yield. PLoS ONE 2014, 9, e102515. [Google Scholar] [CrossRef] [Green Version]
- Neville, M.C.; Allen, J.C.; Archer, P.C.; Casey, C.E.; Seacat, J.; Keller, R.P.; Lutes, V.; Rasbach, J.; Neifert, M. Studies in human lactation: Milk volume and nutrient composition during weaning and lactogenesis. Am. J. Clin. Nutr. 1991, 54, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.; Chisanga, D.; Liem, M.; Keerthikumar, S.; Anand, S.; Ang, C.-S.; Adda, C.; Versteegen, E.; Jois, M.; Mathivanan, S. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci. Rep. 2017, 7, 5933. [Google Scholar] [CrossRef]
- Yang, M.; Song, D.; Cao, X.; Wu, R.; Liu, B.; Ye, W.; Wu, J.; Yue, X. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Res. Int. 2017, 92, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Delosière, M.; Pires, J.A.; Bernard, L.; Cassar-Malek, I.; Bonnet, M. Dataset reporting 4654 cow milk proteins listed according to lactation stages and milk fractions. Data Brief. 2020, 29, 105105. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Badr, Y.; Kitamura, Y.; Shimizu, K.; Okada, A.; Inoshima, Y. Proteomic profiling of milk small extracellular vesicles from bovine leukemia virus-infected cattle. Sci. Rep. 2021, 11, 2951. [Google Scholar] [CrossRef]
- Ishikawa, H.; Rahman, M.; Yamauchi, M.; Takashima, S.; Wakihara, Y.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. mRNA Profile in Milk Extracellular Vesicles from Bovine Leukemia Virus-Infected Cattle. Viruses 2020, 12, 669. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Fonseka, P.; Pathan, M.; Chitti, S.V.; Kang, T.; Mathivanan, S. FunRich enables enrichment analysis of OMICs datasets. J. Mol. Biol. 2021, 433, 166747. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, T.A.; Lippolis, J.; Nonnecke, B.J.; Sacco, R.E. Bovine milk exosome proteome. J. Proteom. 2012, 75, 1486–1492. [Google Scholar] [CrossRef]
- van Herwijnen, M.; Zonneveld, M.; Goerdayal, S.; Hoen, E.N.N.T.; Garssen, J.; Stahl, B.; Altelaar, A.M.; Redegeld, F.A.; Wauben, M.H. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Mol. Cell. Proteom. 2016, 15, 3412–3423. [Google Scholar] [CrossRef] [Green Version]
- Polychroniadou, A. Handbook of Milk of Non-Bovine Mammals; Park, Y., Haenlein, G.F.W., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007. [Google Scholar]
- Lönnerdal, B. Human Milk: Bioactive Proteins/Peptides and Functional Properties; Bhatia, J., Shamir, R., Vandenplas, Y., Eds.; Protein in Neonatal and Infant Nutrition: Recent Updates; Nestlé Nutr Inst Workshop Ser. Nestec Ltd.: Basel, Switzerland, 2016; Volume 86, pp. 97–107. [Google Scholar]
- Yang, Y.; Zheng, N.; Zhao, X.; Yang, J.; Zhang, Y.; Han, R.; Zhao, S.; Li, S.; Wen, F.; Wang, J. Changes in whey proteome with lactation stage and parity in dairy cows using a label-free proteomics approach. Food Res. Int. 2020, 128, 108760. [Google Scholar] [CrossRef]
- Nguyen, E.; Centenera, M.; Moldovan, M.; Das, R.; Irani, S.; Vincent, A.D.; Chan, H.; Horvath, L.; Lynn, D.; Daly, R.J.; et al. Identification of Novel Response and Predictive Biomarkers to Hsp90 Inhibitors Through Proteomic Profiling of Patient-derived Prostate Tumor Explants. Mol. Cell. Proteom. 2018, 17, 1470–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrix, A.; Hume, A.N. Exosome signaling in mammary gland development and cancer. Int. J. Dev. Biol. 2011, 55, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.; Guo, H.; Zhang, H.; Xie, X.; Wen, P.; Ren, F. Yak-milk-derived exosomes promote proliferation of intestinal epithelial cells in an hypoxic environment. J. Dairy Sci. 2019, 102, 985–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zempleni, J.; Sukreet, S.; Zhou, F.; Wu, D.; Mutai, E. Milk-Derived Exosomes and Metabolic Regulation. Annu. Rev. Anim. Biosci. 2019, 7, 245–262. [Google Scholar] [CrossRef] [PubMed]
Cow | Age (Month) | Number of Parities | Gestation (Week) | Days in Milk | Status |
---|---|---|---|---|---|
1 | 111 | 6 | 6 | 310 | Healthy |
2 | 89 | 5 | 24 | 256 | Healthy |
3 | 54 | 2 | 11 | 302 | Healthy |
Protein Name | Gene Name | Quantitative Value | |||
---|---|---|---|---|---|
Cow 1 | Cow 2 | Cow 3 | Average | ||
Serum albumin | ALB | 3.3 × 109 | 3.7 × 109 | 1.5 × 109 | 2.9 × 109 |
Kappa-casein | CSN3 | 1.5 × 109 | 1.3 × 109 | 7.6 × 109 | 1.2 × 109 |
Aldehyde oxidase 3L1 | AOX2 | 4.3 × 107 | 3.9 × 107 | 2.7 × 108 | 9.2 × 108 |
Alpha-S2-casein | CSN1S2 | 3.9 × 108 | 7.0 × 108 | 6.1 × 108 | 5.7 × 108 |
Heat shock 70 kDa protein 1B | HSPA1B | 1.6 × 108 | 1.7 × 108 | 2.1 × 108 | 1.8 × 108 |
Protocadherin gamma subfamily A, 3 | PCDHGA3 | 7.2 × 107 | 1.6 × 108 | 2.1 × 108 | 1.5 × 108 |
Prostaglandin F synthase | PRXL2B | 4.6 × 107 | 3.1 × 107 | 9.6 × 107 | 5.8 × 107 |
Nucleobindin 2 | NUCB2 | 7.2 × 107 | 5.8 × 107 | 3.1 × 107 | 5.3 × 107 |
Ras-related protein Rab-27B | RAB27B | 4.1 × 107 | 6.0 × 107 | 5.3 × 107 | 5.1 × 107 |
Immunoglobulin J chain | JCHAIN | 4.8 × 107 | 5.8 × 107 | 3.7 × 107 | 4.7 × 107 |
Collectin-12 | COLEC12 | 4.5 × 107 | 1.5 × 107 | 6.1 × 107 | 4.0 × 107 |
Pyrroline-5-carboxylate reductase 3 | PYCR3 | 2.7 × 107 | 4.8 × 107 | 3.9 × 107 | 3.8 × 107 |
Adhesion G protein-coupled receptor F1 | ADGRF1 | 1.4 × 107 | 3.7 × 107 | 3.7 × 107 | 2.9 × 107 |
NADH-cytochrome b5 reductase 1 | CYB5R1 | 3.0 × 107 | 1.7 × 107 | 3.2 × 107 | 2.7 × 107 |
Glycerol-3-phosphate acyltransferase 4 | GPAT4 | 8.2 × 106 | 1.4 × 107 | 3.7 × 107 | 2.0 × 107 |
Selenoprotein F | SELENOF | 1.4 × 107 | 1.4 × 107 | 2.1 × 107 | 1.6 × 107 |
Phospholipid-transporting ATPase | ATP9A | 1.2 × 107 | 7.9 × 106 | 2.4 × 107 | 1.5 × 107 |
Ubiquitin carboxyl-terminal hydrolase MINDY-1 | MINDY1 | 1.6 × 107 | 1.2 × 107 | 5.4 × 106 | 1.1 × 107 |
ATP-dependent (S)-NAD(P)H-hydrate dehydratase | NAXD | 6.2 × 106 | 1.9 × 107 | 7.0 × 106 | 1.1 × 107 |
Inter-alpha-trypsin inhibitor heavy chain H2 | ITIH2 | 4.0 × 106 | 2.0 × 107 | 3.6 × 106 | 9.2 × 106 |
Pyridoxal phosphate homeostasis protein | PLPBP | 1.0 × 107 | 5.1 × 106 | 1.1 × 107 | 8.6 × 106 |
Prosaposin | PSAP | 4.3 × 106 | 7.3 × 106 | 7.6 × 106 | 6.4 × 106 |
Apolipoprotein D | APOD | 6.7 × 105 | 1.2 × 107 | 5.0 × 106 | 5.9 × 106 |
Tetraspanin-6 | TSPAN6 | 7.5 × 106 | 1.5 × 106 | 2.5 × 106 | 3.8 × 106 |
Tubulin-folding cofactor B | TBCB | 1.5 × 106 | 4.6 × 106 | 4.8 × 106 | 3.6 × 106 |
Heme binding protein 2 | HEBP2 | 2.5 × 106 | 6.1 × 105 | 2.6 × 106 | 1.9 × 106 |
Prefoldin subunit 5 | PFDN5 | 3.3 × 105 | 9.9 × 105 | 4.2 × 106 | 1.8 × 106 |
RAB3 GTPase activating protein catalytic subunit 1 | RAB3GAP1 | 2.5 × 105 | 2.3 × 106 | 2.4 × 106 | 1.6 × 106 |
Solute carrier family 7 member 5 | SLC7A5 | 3.5 × 105 | 3.4 × 106 | 6.9 × 105 | 1.5 × 106 |
Integrin beta-1-binding protein 1 | ITGB1BP1 | 3.3 × 105 | 2.0 × 106 | 1.9 × 106 | 1.4 × 106 |
Density-regulated protein | DENR | 1.1 × 106 | 2.0 × 106 | 6.0 × 105 | 1.2 × 106 |
Sequestosome 1 | SQSTM1 | 6.5 × 105 | 1.3 × 106 | 1.2 × 106 | 1.1 × 106 |
Ubiquitin conjugation factor E4 A | UBE4A | 7.1 × 105 | 1.7 × 106 | 7.8 × 105 | 1.0 × 106 |
Phospholipid phosphatase 1 | PLPP1 | 1.5 × 105 | 3.1 × 105 | 2.3 × 106 | 9.4 × 105 |
Tandem C2 domains, nuclear | TC2N | 1.4 × 105 | 2.1 × 106 | 5.7 × 105 | 9.3 × 105 |
Interferon gamma receptor 2 | IFNGR2 | 1.0 × 105 | 1.4 × 106 | 2.9 × 105 | 9.2 × 105 |
CD320 antigen | CD320 | 3.1 × 105 | 1.4 × 106 | 8.3 × 105 | 8.4 × 105 |
Calcineurin subunit B type 1 | PPP3R1 | 4.4 × 105 | 9.1 × 105 | 1.0 × 106 | 8.0 × 105 |
Phosphomevalonate kinase | PMVK | 1.5 × 105 | 5.2 × 105 | 1.3 × 105 | 7.2 × 105 |
Glutathione S-transferase Mu 1 | GSTM4 | 4.2 × 105 | 1.3 × 106 | 4.1 × 105 | 7.2 × 105 |
D-aminoacyl-tRNA deacylase 1 | DTD1 | 9.1 × 105 | 7.7 × 105 | 4.3 × 105 | 7.0 × 105 |
TRIO and F-actin binding protein | TRIOBP | 2.3 × 105 | 1.2 × 106 | 6.2 × 105 | 6.8 × 105 |
Deoxyhypusine hydroxylase | DOHH | 5.4 × 105 | 7.5 × 105 | 6.6 × 105 | 6.5 × 105 |
Pecanex 1 | PCNX1 | 8.0 × 105 | 2.1 × 105 | 3.8 × 105 | 4.6 × 105 |
Phosphoinositide-3-kinase adaptor protein 1 | PIK3AP1 | 1.5 × 105 | 9.7 × 105 | 2.6 × 105 | 4.6 × 105 |
Interferon regulatory factor 3 | IRF3 | 2.5 × 105 | 4.8 × 105 | 6.4 × 105 | 4.6 × 105 |
Diacylglycerol kinase | DGKD | 1.9 × 105 | 5.3 × 105 | 3.8 × 105 | 3.7 × 105 |
Endoribonuclease LACTB2 | LACTB2 | 2.6 × 105 | 5.8 × 105 | 2.6 × 105 | 3.7 × 105 |
Ubiquitin like modifier activating enzyme 6 | UBA6 | 2.8 × 105 | 6.9 × 104 | 4.9 × 105 | 2.8 × 105 |
Nectin-4 | NECTIN4 | 1.8 × 105 | 2.1 × 105 | 2.7 × 105 | 2.2 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Takashima, S.; Kamatari, Y.O.; Shimizu, K.; Okada, A.; Inoshima, Y. Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals 2021, 11, 2506. https://doi.org/10.3390/ani11092506
Rahman MM, Takashima S, Kamatari YO, Shimizu K, Okada A, Inoshima Y. Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals. 2021; 11(9):2506. https://doi.org/10.3390/ani11092506
Chicago/Turabian StyleRahman, Md. Matiur, Shigeo Takashima, Yuji O. Kamatari, Kaori Shimizu, Ayaka Okada, and Yasuo Inoshima. 2021. "Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows" Animals 11, no. 9: 2506. https://doi.org/10.3390/ani11092506
APA StyleRahman, M. M., Takashima, S., Kamatari, Y. O., Shimizu, K., Okada, A., & Inoshima, Y. (2021). Comprehensive Proteomic Analysis Revealed a Large Number of Newly Identified Proteins in the Small Extracellular Vesicles of Milk from Late-Stage Lactating Cows. Animals, 11(9), 2506. https://doi.org/10.3390/ani11092506