Novel Genes Associated with Dairy Traits in Sarda Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms, Animals, and Samples
2.2. DNA Extracton and Genotyping
2.3. Milk Analysis
2.4. Statistical Analysis
3. Results
3.1. Allele Frequencies and Linkage Disequilibrium
3.2. Association Analysis
4. Discussion
4.1. Genes Related to Sheep Metabolism
4.2. Genes Related to Innate Immunity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos, M.; Juarez, M. Sheep Milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 494–502. [Google Scholar]
- Statistics Division of the Food and Agriculture Organization of the United FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 6 June 2018).
- Boyazoglu, J.; Morand-Fehr, P. Mediterranean dairy sheep and goat products and their quality: A critical review. Small Rumin. Res. 2001, 40, 1–11. [Google Scholar] [CrossRef]
- McMahon, D.J.; Brown, R.J. Evaluation of Formagraph for Comparing Rennet Solutions. J. Dairy Sci. 1982, 65, 1639–1642. [Google Scholar] [CrossRef]
- Pazzola, M.; Dettori, M.L.; Cipolat-Gotet, C.; Cecchinato, A.; Bittante, G.; Vacca, G.M. Phenotypic factors affecting coagulation properties of milk from Sarda ewes. J. Dairy Sci. 2014, 97, 7247–7257. [Google Scholar] [CrossRef]
- Vacca, G.M.; Pazzola, M.; Dettori, M.L.; Pira, E.; Malchiodi, F.; Cipolat-Gotet, C.; Cecchinato, A.; Bittante, G. Modeling of coagulation, curd firming and syneresis of milk from Sarda. J. Dairy Sci. 2015, 98, 2245–2259. [Google Scholar] [CrossRef] [Green Version]
- Bittante, G.; Pellattiero, E.; Malchiodi, F.; Cipolat-Gotet, C.; Pazzola, M.; Vacca, G.M.; Schiavon, S.; Cecchinato, A. Quality traits and modelling of coagulation, curd firming and syneresis of sheep milk of Alpine breeds fed diets supplemented with rumen-protected conjugated fatty acid. J. Dairy Sci. 2014, 97, 4018–4028. [Google Scholar] [CrossRef]
- Davis, G.H. Major genes affecting ovulation rate in sheep. Genet. Sel. Evol. 2005, 37, S11–S23. [Google Scholar] [CrossRef] [Green Version]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.-M.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Kemper, K.E.; Daetwyler, H.D.; Visscher, P.; Goddard, M. Comparing linkage and association analyses in sheep points to a better way of doing GWAS. Genet. Res. 2012, 94, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.; Hansoul, S.; Nicolae, D.; Cho, J.H.; Duerr, R.; Rioux, J.D.; Brant, S.R.; Silverberg, M.S.; Taylor, K.D.; Barmada, M.M.; et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 2008, 40, 955–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebreselassie, G.; Berihulay, H.; Jiang, L.; Ma, Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries). Animals 2019, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Noce, A.; Pazzola, M.L.M.; Dettori, M.; Amills, A.; Castelló, A.; Cecchinato, G.; Bittante, G.; Vacca, G.M. Variations at regu-latory regions of the milk protein genes are associated with milk traits and coagulation properties in the Sarda sheep. Anim. Genet. 2016, 47, 717–726. [Google Scholar] [CrossRef]
- Usai, M.G.; Casu, S.; Sechi, T.; Salaris, S.L.; Miari, S.; Sechi, S.; Carta, P.; Carta, A. Mapping genomic regions affecting milk traits in Sarda sheep by using the OvineSNP50 Beadchip and principal components to perform combined linkage and linkage dis-equilibrium analysis. Genet. Sel. Evol. 2019, 51, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bittante, G.; Cipolat-Gotet, C.; Pazzola, M.; Dettori, M.L.; Vacca, G.M.; Cecchinato, A. Genetic analysis of coagulation proper-ties, curd firming modeling, milk yield, composition and acidity in Sarda dairy sheep. J. Dairy Sci. 2017, 100, 385–394. [Google Scholar] [CrossRef]
- The Human Gene Database Website. Genecards 2021. Available online: https://www.genecards.org (accessed on 18 March 2021).
- Khan, M.; Hosseini, A.; Burrell, S.; Rocco, S.; McNamara, J.; Loor, J. Change in subcutaneous adipose tissue metabolism and gene network expression during the transition period in dairy cows, including differences due to sire genetic merit. J. Dairy Sci. 2013, 96, 2171–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Osorio, J.; Yang, Y.; Liu, D.; Jiang, M.F. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. J. Dairy Sci. 2018, 101, 11150–11158. [Google Scholar] [CrossRef] [PubMed]
- Winder, W.W.; Holmes, B.F.; Rubink, D.S.; Jensen, E.B.; Chen, M.; Holloszy, J.O. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. J. Appl. Physiol. 2000, 88, 2219–2226. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Kim, J.; Chung, H.; Jung, K.; Lee, Y.; Yoon, D.; Lee, S.; Choi, I.; Bottema, C.; Sang, B.; et al. Molecular cloning and characterization of bovine PRKAG3 gene: Structure, expression and single nucleotide polymorphism detection. J. Anim. Breed. Genet. 2005, 122, 294–301. [Google Scholar] [CrossRef]
- Bongiorni, S.; Gruber, C.E.M.; Bueno, S.; Chillemi, G.; Ferre’, F.; Failla, S.; Moioli, B.; Valentini, A. Transcriptomic investigation of meat tenderness in two Italian cattle breeds. Anim. Genet. 2016, 47, 273–287. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Scotti, E.; Costa, L.N.; Fontanesi, L. Effects of single nucleotide polymorphisms and haplotypes of the proteinkinase AMP-activated non-catalytic subunit gamma 3 (PRKAG3) gene onproduction, meat quality and carcass traits in Italian Large White pigs. Meat Sci. 2018, 136, 44–49. [Google Scholar] [CrossRef]
- Bergan-Roller, H.E.; Sheridan, M.A. The growth hormone signaling system: Insights into coordinating the anabolic and cata-bolic actions of growth hormone. Gen. Comp. Endocrinol. 2018, 258, 119–133. [Google Scholar] [CrossRef]
- Osorio, J.S.; Lohakare, J.; Bionaz, M. Biosynthesis of milk fat, protein, and lactose: Roles of transcriptional and posttranscrip-tional regulation. Physiol. Genom. 2016, 48, 231–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, I.; Sarkadi, B.; Váradi, A. An inventory of the human ABC proteins. Biochim. Biophys. Acta (BBA) Biomembr. 1999, 1461, 237–262. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, L.; Halwachs, S.; Baumann, D.; Schaefer, I.; Seibel, P.; Honscha, W. Assessment of ABCG2-mediated transport of xenobiotics across the blood–milk barrier of dairy animals using a new MDCKII in vitro model. Arch. Toxicol. 2013, 87, 1671–1682. [Google Scholar] [CrossRef]
- Fleminger, G.; Heftsi, R.; Uzi, M.; Nissim, S.; Gabriel, L. Chemical and structural characterization of bacterially-derived casein peptides that impair milk clotting. Int. Dairy J. 2011, 21, 914–920. [Google Scholar] [CrossRef]
- Jhamandas, J.H.; Goncharuk, V. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front. Endocrinol. 2013, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Sahana, G.; Guldbrandtsen, B.; Thomsen, B.; Holm, L.-E.; Panitz, F.; Brøndum, R.; Bendixen, C.; Lund, M. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J. Dairy Sci. 2014, 97, 7258–7275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, J.M.; Letko, A.A.; Häfliger, I.M.; Ammann, P.; Flury, C.; Drögemüller, C. Identification of two TYRP1 loss-of-function alleles in Valais Redsheep. Anim. Genet. 2019, 50, 778–782. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Dettori, M.L.; Pazzola, M.; Petretto, E.; Vacca, G.M. Association Analysis between SPP1, POFUT1 and PRLR Gene Variation and Milk Yield, Composition and Coagulation Traits in Sarda Sheep. Animals 2020, 10, 1216. [Google Scholar] [CrossRef] [PubMed]
- ISO (International Organization for Standardization); IDF (International Dairy Federation). Milk and Liquid Milk Products: Determination of Fat, Protein, Casein, Lactose and pH Content; International Standard ISO 9622; IDF 141:2013; ISO: Geneva, Switzerland; IDF: Brussels, Belgium, 2013; Available online: https://www.iso.org (accessed on 5 April 2020).
- ISO (International Organization for Standardization); IDF (International Dairy Federation). Milk: Quantitative Determination of Bacteriological Quality—Guidance for Establishing and Verifying a Conversion Relationship between Routine Method Results and Anchor Method Results; International Standard ISO 21187; IDF 196:2004; ISO: Geneva, Switzerland; IDF: Brussels, Belgium, 2004; Available online: https://www.iso.org (accessed on 5 April 2020).
- ISO (International Organization for Standardization); IDF (International Dairy Federation). Milk: Enumeration of Somatic Cells—Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters; International Standard ISO 13366-2; IDF IDF 148-2:2006; ISO: Geneva, Switzerland; IDF: Brussels, Belgium, 2006; Available online: https://www.iso.org (accessed on 5 April 2020).
- ISO (International Organization for Standardization); IDF (International Dairy Federation). Milk: Bacterial Count—Protocol for the Evaluation of Alternative; International Standard ISO 16297:2013; IDF 161:2013; ISO: Geneva, Switzerland; IDF: Brussels, Belgium, 2013; Available online: https://www.iso.org (accessed on 5 April 2020).
- Shook, G.E. Genetic Improvement of Mastitis Through Selection on Somatic Cell Count. Vet. Clin. N. Am. Food Anim. Pract. 1993, 9, 563–577. [Google Scholar] [CrossRef]
- Baumgard, L.; Collier, R.; Bauman, D. A 100-Year Review: Regulation of nutrient partitioning to support lactation. J. Dairy Sci. 2017, 100, 10353–10366. [Google Scholar] [CrossRef]
- Suter, M.; Riek, U.; Tuerk, R.; Schlattner, U.; Wallimann, T.; Neumann, D. Dissecting the role of 5’AMP for allosteric stimu-lation, activation, and deactivation of AMP-activated protein kinase. J. Biol. Chem. 2006, 281, 32207–32216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Guesthier, M.-A.; Burgos, S. AMP-activated protein kinase controls lipid and lactose synthesis in bovine mammary epithelial cells. J. Dairy Sci. 2020, 103, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Lin, S.-C. AMP-activated protein kinase—Not just an energy sensor. F1000Research 2017, 6, 1724. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, H.; Hickford, J.G.; Gong, H.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Luo, Y. Transcriptome Profile Analysis of Mammary Gland Tissue from Two Breeds of Lactating Sheep. Genes 2019, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform. Biol. Insights 2011, 5, 83–98. [Google Scholar] [CrossRef]
- Crisà, A.; Marchitelli, C.; Pariset, L.; Contarini, G.; Signorelli, F.; Napolitano, F.; Catillo, G.; Valentini, A.; Moioli, B. Exploring polymorphisms and effects of candidate genes on milk fat quality in dairy sheep. J. Dairy Sci. 2010, 93, 3834–3845. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.G. AMPK: A key regulator of energy balance in the single cell and the whole organism. Int. J. Obes. 2008, 32, S7–S12. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.M.D. Role of AMPK in mammals reproduction: Specific controls and whole-body energy sensing. Comptes Rendus Biol. 2019, 342, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhou, H.; Wang, R.; Hickford, J. Variation in the ovine PRKAG3 gene. Gene 2015, 567, 251–254. [Google Scholar] [CrossRef]
- Noce, A.; Cardoso, T.F.; Manunza, A.; Martinez, A.; Cánovas, A.; Pons, A.; Bermejo, L.A.; Landi, V.; Sànchez, A.; Jordana, J.; et al. Expression patterns and genetic variation of the ovine skeletal muscle transcriptome of sheep from five Spanish meat breeds. Sci. Rep. 2018, 8, 10486. [Google Scholar] [CrossRef]
- Dettori, M.L.; Pazzola, M.; Paschino, P.; Amills, M.; Vacca, G.M. Association between the GHR, GHRHR and IGF1 gene pol-ymorphisms and milk yield and quality traits in Sarda sheep. J. Dairy Sci. 2018, 101, 9978–9986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettori, M.L.; Pazzola, M.; Pira, E.; Stocco, G.; Vacca, G.M. Association between the GHR, GHRHR and IGF1 gene polymor-phisms and milk coagulation properties in Sarda sheep. J. Dairy Res. 2019, 86, 331–336. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Vignesh, A.R.; Raj, G.D.; Reddy, Y.K.M.; Raja, A.; Tirumurugaan, K.G. Comparative analysis of innate immune response following in vitro stimulation of sheep and goat peripheral blood mononuclear cells with bluetongue virus—serotype 23. Vet. Res. Commun. 2013, 37, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Chen, F.; Wang, H.; Chen, J.; Wang, Z.; Huo, J.; Cai, Y. SNPs of CD14 change the mastitis morbidity of Chinese Holstein. Mol. Med. Rep. 2017, 16, 9102–9110. [Google Scholar] [CrossRef]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
- Viale, E.; Tiezzi, F.; Maretto, F.; De Marchi, M.; Penasa, M.; Cassandro, M. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J. Dairy Sci. 2017, 100, 7271–7281. [Google Scholar] [CrossRef]
- Cecchinato, A.; Chessa, S.; Ribeca, C.; Cipolat-Gotet, C.; Bobbo, T.; Casellas, J.; Bittante, G. Genetic variation and effects of candidate-gene polymorphisms on coagulation properties, curd firmness modeling and acidity in milk from Brown Swiss cows. Animal 2015, 9, 1104–1112. [Google Scholar] [CrossRef] [Green Version]
Gene SNP ID | ObsH | PredH | HWpv | %Gen | MAF | Alleles |
---|---|---|---|---|---|---|
PRKAA2: Protein Kinase AMP-Activated Catalytic Subunit Alpha2 | ||||||
rs119102735 | 0.319 | 0.316 | 0.91 | 96.6 | 0.197 | C:(T) |
rs159701443 | 0.004 | 0.004 | 1.00 | 97.8 | 0.002 | G:(A) |
rs159701441 | 0.161 | 0.157 | 0.57 | 86.2 | 0.086 | T:(C) |
rs159701440 | 0.011 | 0.019 | 0.01 | 91.8 | 0.009 | G:(A) |
PRKAG3: Protein Kinase AMP-Activated Non-Catalytic Subunit Gamma3 | ||||||
rs159573140 | 0.000 | 0.000 | 1.00 | 100 | 0.000 | G:G |
rs159573109 | 0.001 | 0.001 | 1.00 | 99.0 | 0.000 | T:T |
rs159573167 | 0.008 | 0.435 | 0.01 | 96.8 | 0.320 | G:(A) |
B4GALT1: Beta-1,4-Galactosyltransferase 1 | ||||||
rs160176029 | 0.013 | 0.018 | 0.96 | 98.6 | 0.009 | G:(A) |
rs160176020 | 0.000 | 0.000 | 1.00 | 99.9 | 0.000 | A:A |
rs160175821 | 0.000 | 0.000 | 1.00 | 100 | 0.000 | A:A |
rs160175809 | 0.419 | 0.415 | 0.85 | 79.5 | 0.294 | C:(T) |
TLR4: Toll Like Receptor 4 | ||||||
rs160202330 | 0.000 | 0.000 | 1.00 | 99.3 | 0.000 | A:A |
rs160202321 | 0.005 | 0.005 | 1.00 | 99.5 | 0.003 | A:(C) |
rs160202315 | 0.053 | 0.407 | 0.01 | 97.5 | 0.284 | T:(C) |
TYRP1: Tyrosinase Related Protein 1 | ||||||
rs416417209 | 0.323 | 0.335 | 0.31 | 96.6 | 0.212 | T:(C) |
IGF1: Insulin Like Growth Factor 1 | ||||||
rs159876390 | 0.339 | 0.459 | 0.01 | 86.7 | 0.356 | G:(A) |
rs159876394 | 0.002 | 0.002 | 1.00 | 99.5 | 0.001 | C:(G) |
rs401028781 | 0.000 | 0.000 | 1.00 | 98.8 | 0.000 | G:G |
GHRHR: Growth Hormone Releasing Hormone Receptor | ||||||
rs409504706 | 0.314 | 0.343 | 0.01 | 95.5 | 0.220 | T:(G) |
rs161797246 | 0.004 | 0.004 | 1.00 | 94.5 | 0.002 | C:(T) |
CD14: Cluster of Differentiation 14 Molecule | ||||||
rs160087365 | 0.001 | 0.001 | 1.00 | 98.3 | 0.000 | C:C |
rs160087371 | 0.001 | 0.008 | 0.01 | 99.2 | 0.004 | G:(C) |
rs160087378 | 0.000 | 0.000 | 1.00 | 99.0 | 0.000 | C:C |
rs160087383 | 0.003 | 0.121 | 0.01 | 99.4 | 0.064 | T:(C) |
ABCG2: ATP Binding Cassette Subfamily G Member 2 | ||||||
rs159956845 | 0.000 | 0.0 | 1.00 | 99.3 | 0.000 | T:T |
rs159956885 | 0.004 | 0.005 | 0.01 | 98.9 | 0.003 | A:(G) |
rs159956974 | 0.002 | 0.023 | 0.01 | 87.4 | 0.011 | T:(G) |
NPFFR2: Neuropeptide FF Receptor 2 | ||||||
rs159980590 | 0.034 | 0.033 | 1.00 | 91.5 | 0.017 | A:(C) |
rs159980593 | 0.013 | 0.015 | 0.11 | 96.9 | 0.007 | T:(A) |
CSNK1G1: Casein Kinase 1 Gamma 1 | ||||||
rs160322386 | 0.000 | 0.000 | 1.00 | 100 | 0.000 | G:G |
GHR: Growth Hormone Receptor | ||||||
rs408890407 | 0.326 | 0.354 | 0.01 | 96.3 | 0.230 | C:(T) |
rs161146164 | 0.012 | 0.012 | 1.00 | 98.7 | 0.006 | T:(G) |
rs55631463 | 0.395 | 0.399 | 0.79 | 96.7 | 0.276 | T:(C) |
rs413776054 | 0.010 | 0.010 | 1.00 | 99.5 | 0.005 | G:(A) |
rs404237321 | 0.012 | 0.012 | 1.00 | 99.5 | 0.006 | C:(T) |
rs428862267 | 0.448 | 0.490 | 0.01 | 94.4 | 0.430 | G:(A) |
rs425834583 | 0.000 | 0.000 | 1.00 | 100 | 0.000 | A:A |
TRL2: Toll Like Receptor 2 | ||||||
rs162073318 | 0.001 | 0.001 | 1.00 | 99.5 | 0.000 | C:C |
PI: Serpin Peptidase Inhibitor | ||||||
rs397514170 | 0.000 | 0.000 | 1.00 | 100 | 0.000 | A:A |
rs397514169 | 0.001 | 0.001 | 1.00 | 99.5 | 0.000 | G:G |
rs397514168 | 0.000 | 0.000 | 1.00 | 99.7 | 0.000 | T:T |
rs397514150 | 0.002 | 0.002 | 1.00 | 98.9 | 0.001 | T:(C) |
PLCE1: Phospholipase C Epsilon | ||||||
rs161473124 | 0.061 | 0.059 | 0.73 | 99.0 | 0.030 | C:(T) |
rs161473126 | 0.001 | 0.003 | 0.01 | 99.0 | 0.001 | T:(C) |
rs161473140 | 0.006 | 0.006 | 1.00 | 90.9 | 0.003 | G:(A) |
Milk Traits | Mean | SD | Min | Max |
---|---|---|---|---|
Milk yield and composition | ||||
dMY (g/day) | 1597 | 842 | 181 | 5760 |
Fat (g/100 mL) | 6.44 | 1.19 | 1.93 | 12.52 |
Protein (g/100 mL) | 5.41 | 0.65 | 3.52 | 8.24 |
Casein (g/100 mL) | 4.21 | 0.54 | 2.45 | 6.67 |
Lactose (g/100 mL) | 4.81 | 0.31 | 2.40 | 5.59 |
pH | 6.67 | 0.09 | 6.45 | 7.14 |
SCC (n × 1000/mL) | 1253 | 2993 | 5 | 20,612 |
TBC (n × 1000/mL) | 2522 | 4872 | 1 | 17,000 |
MCP | ||||
RCT (min) | 8.94 | 4.92 | 1.30 | 52.30 |
k20 (min) | 1.98 | 0.79 | 1.30 | 11.30 |
a30 (mm) | 49.48 | 12.99 | 0 | 70.00 |
a45 (mm) | 45.46 | 15.17 | 0 | 73.88 |
a60 (mm) | 41.84 | 16.56 | 0 | 77.98 |
CFt | ||||
CFP (mm) | 62.1 | 316.2 | 0 | 360.8 |
kCF (% × min−1) | 27.0 | 13.0 | 1.0 | 90.0 |
kSR (% × min−1) | 1.5 | 1.9 | 0.1 | 16.3 |
CFmax (mm) | 54.17 | 9.96 | 0 | 75.96 |
tmax (min) | 30.57 | 13.41 | 8.75 | 60 |
Milk Yield and Composition | MCP | CFt | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Gene SNP ID # | Genotype and (n) | dMY | Protein | Casein | Lactose | SCS | LBC | RCT | a30 | kSR |
PRKAA2 rs119102735 | CC (695) | 1681 | 5.39 | 4.20 | 4.79 b | 4.84 | 2.42 | 9.12 | 48.47 | 1.46 |
CT (340) | 1657 | 5.36 | 4.17 | 4.79 b | 4.93 | 2.38 | 9.08 | 47.94 | 1.65 | |
TT (41) | 1679 | 5.42 | 4.23 | 4.68 a | 5.03 | 2.28 | 9.26 | 45.47 | 1.46 | |
PRKAG3 rs159573167 | AA (346) | 1859 B | 5.24 a | 4.09 a | 4.84 | 4.32 A | 1.77 A | 8.03 a | 49.20 | 1.18 |
AG (11) | 1851 AB | 5.49 b | 4.29 b | 4.84 | 4.85 B | 2.22 AB | 10.79 b | 47.73 | 1.82 | |
GG (724) | 1585 A | 5.45 b | 4.25 b | 4.76 | 5.17 B | 2.62 B | 9.77 b | 47.71 | 1.64 | |
TLR4 rs160202315 | CC (286) | 1747 | 5.21 a | 4.06 a | 4.85 | 4.26 a | 1.63 A | 8.35 | 47.87 | 1.02 |
TC (58) | 1742 | 5.53 b | 4.32 b | 4.76 | 4.93 b | 2.50 B | 9.77 | 48.38 | 1.95 | |
TT (746) | 1637 | 5.44 b | 4.24 ab | 4.76 | 5.15 b | 2.61 B | 9.50 | 48.52 | 1.71 | |
GHRHR rs409504706 | GG (67) | 1645 | 5.33 | 4.15 | 4.76 | 5.32 | 2.31 | 9.73 | 47.62 | 2.14 b |
GT (334) | 1684 | 5.36 | 4.18 | 4.79 | 4.79 | 2.47 | 8.92 | 47.86 | 1.58 ab | |
TT (662) | 1680 | 5.38 | 4.19 | 4.79 | 4.85 | 2.36 | 9.14 | 48.43 | 1.42 a | |
CD14 rs160087383 § | CC (70) | 2012 B | 5.32 | 4.15 | 4.81 | 4.40 | 2.03 | 7.60 a | 52.52 b | 1.45 |
TT (1037) | 1654 A | 5.38 | 4.20 | 4.78 | 4.90 | 2.39 | 9.28 b | 48.03 a | 1.50 | |
GHR rs55631463 | CC (85) | 1743 | 5.36 | 4.18 | 4.78 | 5.00 | 2.33 | 9.36 | 48.61 | 1.11 A |
CT (426) | 1645 | 5.37 | 4.19 | 4.77 | 4.82 | 2.41 | 9.38 | 47.38 | 1.79 B | |
TT (567) | 1680 | 5.38 | 4.19 | 4.79 | 4.94 | 2.39 | 8.98 | 48.70 | 1.39 A | |
GHR rs428862267 | AA (214) | 1737 | 5.39 | 4.19 | 4.77 | 4.93 | 2.27 | 8.88 | 50.21 b | 1.28 |
GA (470) | 1648 | 5.37 | 4.19 | 4.80 | 4.80 | 2.32 | 8.88 | 47.95 a | 1.61 | |
GG (366) | 1675 | 5.36 | 4.17 | 4.79 | 4.90 | 2.47 | 9.50 | 48.05 ab | 1.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazzola, M.; Vacca, G.M.; Paschino, P.; Bittante, G.; Dettori, M.L. Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals 2021, 11, 2207. https://doi.org/10.3390/ani11082207
Pazzola M, Vacca GM, Paschino P, Bittante G, Dettori ML. Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals. 2021; 11(8):2207. https://doi.org/10.3390/ani11082207
Chicago/Turabian StylePazzola, Michele, Giuseppe Massimo Vacca, Pietro Paschino, Giovanni Bittante, and Maria Luisa Dettori. 2021. "Novel Genes Associated with Dairy Traits in Sarda Sheep" Animals 11, no. 8: 2207. https://doi.org/10.3390/ani11082207
APA StylePazzola, M., Vacca, G. M., Paschino, P., Bittante, G., & Dettori, M. L. (2021). Novel Genes Associated with Dairy Traits in Sarda Sheep. Animals, 11(8), 2207. https://doi.org/10.3390/ani11082207