Physicochemical, Microbiological and Technological Properties of Red Deer (Cervus elaphus) Milk during Lactation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement and Animal Management
2.2. Milk Samples and Milk Production
2.3. Milk Composition, Bacteriology and Somatic Cell Count
2.4. Physical Analysis
2.5. Ethanol Stability
2.6. Milk Fat Globule Size
2.7. Rennet Coagulation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Milk Production and Chemical Red Deer Milk Properties
3.2. Total Bacteria and Somatic Cell Count of Red Deer Milk
3.3. Physical Red Deer Milk Properties
3.4. Milk Fat Globule Size
3.5. Red Deer Milk Coagulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U.R.; Burlingame, B. Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric. 2012, 92, 445–474. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Nuñez, M. Existing technologies in non-cow milk processing and traditional non-cow milk products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 161–185. ISBN 9780128033623. [Google Scholar]
- El Zubeir, I.E.M.; Basher, M.A.E.; Alameen, M.H.; Mohammed, M.A.S.; Shuiep, E.S. The processing properties, chemical characteristics and acceptability of yoghurt made from non bovine milks. Livest. Res. Rural Dev. 2012, 24, 50. Available online: http://www.lrrd.org/lrrd24/3/zube24050.htm (accessed on 18 December 2020).
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector—The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Ha, M.; Bekhit, A.E.-D.; Mason, S.; Carne, A. Fractionation of whey proteins from red deer (Cervus elaphus) milk and compaison wiht whey proteins form cow, sheep and goat milks. Small Rumin. Res. 2014, 120, 125–134. [Google Scholar] [CrossRef]
- International Deer & Wild Ungulate Breeders Association (IDUBA). Newsletter September-October 2019 News no. 5: Another Potential Deer Business Emerging: Milk for Cosmetics. Available online: https://iduba.info/news/ (accessed on 30 December 2020).
- Products|Pāmu Farms of New Zealand. Available online: https://pamunewzealand.com/products (accessed on 10 March 2021).
- Wang, Y.; Bekhit, A.E.-D.; Morton, J.D.; Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Academic Press: London, UK, 2017; pp. 361–373. ISBN 9780128097625. [Google Scholar]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.P.; Maggiolino, A.; Pateiro, M.; Landete-Castillejos, T.; Domínguez, R.; García, A.; Franco, D.; Gallego, L.; De Palo, P.; Lorenzo, J.M. Carcass characteristics and meat quality of deer. In More Than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Lorenzo, J.M., Munekata, P.E.S., Barba, F.J., Toldrá, F., Lorenzo, J.M., Eds.; Springer Nature: Cham, Switzerland; AG: Cham, Switzerland, 2019; pp. 227–268. ISBN 9783030054830. [Google Scholar]
- Wiklund, E.; Farouk, M.; Finstad, G. Venison: Meat from red deer (Cervus elaphus) and reindeer (Rangifer tarandus tarandus). Anim. Front. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Deer Milker Cheese. Available online: https://talbotforestcheese.co.nz/deer-milker-cheese.php (accessed on 10 March 2021).
- Pāmu Signs Deal to Supply Deer Milk to South Korea Company Yuhan|Stuff.co.nz. Available online: https://www.stuff.co.nz/business/109235950/pmu-signs-deal-to-supply-deer-milk-to-south-korea-company-yuhan?rm=m (accessed on 10 March 2021).
- Landete-Castillejos, T.; Garcia, A.; Molina, P.; Vergara, H.; Garde, J.; Gallego, L. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 2000, 78, 2771–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergara, H.; Landete-Castillejos, T.; Garcia, A.; Molina, P.; Gallego, L. Concentration of Ca, Mg, K, Na, P and Zn in milk in two subspecies of red deer: Cervus elaphus hispanicus and C. e. scoticus. Small Rumin. Res. 2003, 47, 77–83. [Google Scholar] [CrossRef]
- Holand, Ø.; Gjøstein, H.; Nieminen, M.; Haenlein, G.F.W. Reindeer milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 535–558. [Google Scholar]
- Murtaza, M.A.; Pandya, A.J.; Khan, M.H.M. Buffalo milk: Buffalo milk utilization for dairy products. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 284–342. ISBN 9781119110316. [Google Scholar]
- Osthoff, G.; Hugo, A.; de Wit, M. Milk composition of free-ranging springbok (Antidorcas marsupialis). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Ophata Vithana, N.L. A Comparative Study of Immunomodulatory Activity of Deer and Cow Milk Proteins. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2012. [Google Scholar]
- Opatha Vithana, N.L.; Mason, S.L.; Bekhit, A.E.A.; Morton, J.D. In vitro digestion of red deer (Cervus elaphus) and cow (Bos taurus) milk. Int. Food Res. J. 2012, 19, 1367–1374. Available online: http://www.ifrj.upm.edu.my/ (accessed on 20 October 2016).
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Gelation of milks of different species (dairy cattle, goat, sheep, red deer, and water buffalo) using glucono-δ-lactone and pepsin. J. Dairy Sci. 2020, 103, 5844–5862. [Google Scholar] [CrossRef] [PubMed]
- Landete-Castillejos, T.; García, A.; Gómez, J.A.; Molina, A.; Gallego, L. Subspecies and body size allometry affect milk production andcomposition, and calgrowth in red deer: Comparison of Cervus elaphus hispanicus and Cervus elaphus scoticus. Physiol. Biochem. Zool. 2003, 76, 594–602. [Google Scholar] [CrossRef]
- De la Vara, J.A.; Berruga, M.I.; Cappelli, J.; Landete-Castillejos, T.; Carmona, M.; Gallego, L.; Molina, A. Some aspects of the ethanol stability of red deer milk (Cervus elaphus hispanicus): A comparison with other dairy species. Int. Dairy J. 2018, 86, 103–109. [Google Scholar] [CrossRef]
- De la Vara, J.A.; Berruga, M.I.; Serrano, M.P.; Cano, E.L.; García, A.; Landete-Castillejos, T.; Gallego, L.; Argüello, A.; Carmona, M.; Molina, A. Short communication: Red deer (Cervus elaphus) colostrum during its transition to milk. J. Dairy Sci. 2020, 103, 5662–5667. [Google Scholar] [CrossRef]
- Asthon, A. Potential in Cheese From Deer’s Milk. Available online: http://www.odt.co.nz/regions/north-otago/253360/potential-cheese-deers-milk (accessed on 20 September 2016).
- García-Rodríguez, M.V. Estudio de Aptitud Tecnológica de Leche de Cierva Para la Elaboracion de Yogur. Master’s Thesis, Universidad de Castilla-La Mancha, Albacete, Spain, 2012. [Google Scholar]
- Real Decreto 53/2013, de 1 de Febrero, Por El Que SE Establecen Las Normas Básicas Aplicables Para la Protección de Los Animales Utilizados en Experimentación Y Otros Fines Científicos, Incluyendo la Docencia. Boletín Oficial del Estado. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-1337 (accessed on 28 June 2020).
- Serrano, M.P.; Gambín, P.; Landete-Castillejos, T.; García, A.; Cappelli, J.; Pérez-Barbería, F.J.; Gómez, J.A.; Gallego, L. Effects of Mn supplementation in late-gestating and lactating red deer (Cervus elaphus hispanicus) on milk production, milk composition, and calf growth. J. Anim. Sci. 2018, 96, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; National Academies Press: Washington, DC, USA, 2007; p. 384.
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Landete-Castillejos, T.; Garciá, A.; Garde, J.; Gallego, L. Milk intake and production curves and allosuckling in captive Iberian red deer, Cervus elaphus hispanicus. Anim. Behav. 2000, 60, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.P.; García, A.J.; Landete-Castillejos, T.; Cappelli, J.; Gómez, J.Á.; Hidalgo, F.; Gallego, L. Parenteral Cu supplementation of late-gestating and lactating Iberian red deer hinds fed a balanced diet reduces somatic cell count and modifies mineral profile of milk. Animals 2020, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Caballero Villalobos, J.; Garzón Sigler, A.I.; Oliete, B.; Arias Sánchez, R.; Jiménez, L.; Núñez, N.; Martínez Marín, A.L. Relationship of somatic cell count and composition and coagulation properties of ewe’s milk. Mljekarstvo 2015, 65, 138–143. [Google Scholar] [CrossRef]
- Pérez-Barbería, F.J.; García, A.J.; Cappelli, J.; Landete-Castillejos, T.; Serrano, M.P.; Gallego, L. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 2020, 15, e0233809. [Google Scholar] [CrossRef]
- Mehaba, N.; Coloma-Garcia, W.; Such, X.; Caja, G.; Salama, A.A.K. Heat stress affects some physiological and productive variables and alters metabolism in dairy ewes. J. Dairy Sci. 2021, 104, 1099–1110. [Google Scholar] [CrossRef]
- Costa, A.; De Marchi, M.; Battisti, S.; Guarducci, M.; Amatiste, S.; Bitonti, G.; Borghese, A.; Boselli, C. On the effect of the temperature-humidity index on buffalo bulk milk composition and coagulation traits. Front. Vet. Sci. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Arman, P.; Kay, R.N.; Goodall, E.D.; Sharman, G.A. The composition and yield of milk from captive red deer (Cervus elaphus L.). J. Reprod. Fertil. 1974, 37, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Krzywiński, A.; Krzywińska, K.; Kisza, J.; Roskosz, A.; Kruk, A. Milk composition, lactation and the artificial rearing of red deer. Acta Theriol. 1980, 25, 341–347. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Milovanovic, B.; Djekic, I.; Miocinovic, J.; Djordjevic, V.; Lorenzo, J.M.; Barba, F.J.; Mörlein, D.; Tomasevic, I. What is the color of milk and dairy products and how is it measured? Foods 2020, 9, 1629. [Google Scholar] [CrossRef] [PubMed]
- Fox, P.F. History of dairy chemistry. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: London, UK, 2011; pp. 18–25. [Google Scholar]
- Bittante, G.; Cipolat-Gotet, C.; Malchiodi, F.; Sturaro, E.; Tagliapietra, F.; Schiavon, S.; Cecchinato, A. Effect of dairy farming system, herd, season, parity, and days in milk on modeling of the coagulation, curd firming, and syneresis of bovine milk. J. Dairy Sci. 2015, 98, 2759–2774. [Google Scholar] [CrossRef]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Usman, S. A comparative study on the physicochemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujrat, Pakistan. Pak. J. Nutr. 2010, 9, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Kailasapathy, K. Chemical composition, physical, and functional properties of milk and milk ingredients. In Dairy Processing and Quality Assurance: An Overview; Chandan, R.C., Kilara, A., Shah, N.P., Eds.; Wiley Blackwell: Melbourne, Australia, 2009; pp. 77–105. ISBN 9780813804033. [Google Scholar]
- Popov-Raljić, J.V.; Lakić, N.S.; Laličić-Petronijević, J.G.; Barać, M.B.; Sikimić, V.M. Color changes of UHT milk during storage. Sensors 2008, 8, 5961–5974. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W. Rheological characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 73–87. [Google Scholar] [CrossRef]
- Guo, M.R.; Wang, S.; Li, Z.; Qu, J.; Jin, L.; Kindsted, P.S. Ethanol stability of goat’s milk. Int. Dairy J. 1998, 8, 57–60. [Google Scholar] [CrossRef]
- Chen, B.Y.; Grandison, A.S.; Lewis, M.J. Comparison of heat stability of goat milk subjected to ultra-high temperature and in-container sterilization. J. Dairy Sci. 2012, 95, 1057–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Real Decreto 752/2011, de 27 de mayo, por el que se establece la normativa básica de control que deben cumplir los agentes del sector de leche cruda de oveja y cabra. Boletín Oficial del Estado 2011, 137, 58609–58630.
- Attaie, R.; Richter, R.L. Size distribution of fat globules in goat milk. J. Dairy Sci. 2000, 83, 940–944. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Pazzola, M. Coagulation traits of sheep and goat milk. Animals 2019, 9, 540. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Macías, D.; Moreno-Indias, I.; Castro, N.; Morales-delaNuez, A.; Argüello, A. From goat colostrum to milk: Physical, chemical, and immune evolution from partum to 90 days postpartum. J. Dairy Sci. 2014, 97, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Díaz, J.R.; Romero, G.; Muelas, R.; Sendra, E.; Pantoja, J.C.F.; Paredes, C. Analysis of the influence of variation factors on electrical conductivity of milk in Murciano-Granadina goats. J. Dairy Sci. 2011, 94, 3885–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrake, R.F.; Hoare, R.J.T.; McGregor, G.D. Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J. Dairy Sci. 1983, 66, 542–547. [Google Scholar] [CrossRef]
- Romero, G.; Roca, A.; Alejandro, M.; Muelas, R.; Díaz, J.R. Relationship of mammary gland health status and other non infectious factors with electrical conductivity of milk in Manchega ewes. J. Dairy Sci. 2017, 100, 1555–1567. [Google Scholar] [CrossRef]
- Licón, C.C.; Carmona, M.; Rubio, R.; Molina, A.; Berruga, M.I. Preliminary study of saffron (Crocus sativus L. stigmas) color extraction in a dairy matrix. Dye. Pigment. 2012, 92, 1355–1360. [Google Scholar] [CrossRef]
- Paschino, P.; Vacca, G.M.; Dettori, M.L.; Pazzola, M. An approach for the estimation of somatic cells’ effect in Sarda sheep milk based on the analysis of milk traits and coagulation properties. Small Rumin. Res. 2019, 171, 77–81. [Google Scholar] [CrossRef]
- Bittante, G.; Pellattiero, E.; Malchiodi, F.; Cipolat-Gotet, C.; Pazzola, M.; Vacca, G.M.; Schiavon, S.; Cecchinato, A. Quality traits and modeling of coagulation, curd firming, and syneresis of sheep milk of Alpine breeds fed diets supplemented with rumen-protected conjugated fatty acid. J. Dairy Sci. 2014, 97, 4018–4028. [Google Scholar] [CrossRef] [PubMed]
- Cecchinato, A.; Penasa, M.; Cipolat Gotet, C.; De Marchi, M.; Bittante, G. Short communication: Factors affecting coagulation properties of Mediterranean buffalo milk. J. Dairy Sci. 2012, 95, 1709–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Haj, O.A.; Al Kanhal, H.A. Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 2010, 20, 811–821. [Google Scholar] [CrossRef]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off. J. Eur. Union 2004, 139, 55–205.
- Food and Drug Administration. Grade “A” Pasteurized Milk Ordinance. 2017 Revision; U.S. Department of Health and Human Services, Public Health Service, Food and Drug Administration: Silver Spring, MD, USA, 2017.
- Raynal-Ljutovac, K.; Pirisi, A.; de Crémoux, R.; Gonzalo, C. Somatic cells of goat and sheep milk: Analytical, sanitary, productive and technological aspects. Small Rumin. Res. 2007, 68, 126–144. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Park, Y.W.; Gaucheron, F.; Bouhallab, S. Heat stability and enzymatic modifications of goat and sheep milk. Small Rumin. Res. 2007, 68, 207–220. [Google Scholar] [CrossRef]
- Jaeggi, J.J.; Govindasamy-Lucey, S.; Berger, Y.M.; Johnson, M.E.; McKusick, B.C.; Thomas, D.L.; Wendorff, W.L. Hard ewe’s milk cheese manufactured from milk of three different groups of somatic cell counts. J. Dairy Sci. 2003, 86, 3082–3089. [Google Scholar] [CrossRef]
- Albenzio, M.; Figliola, L.; Caroprese, M.; Marino, R.; Sevi, A.; Santillo, A. Somatic cell count in sheep milk. Small Rumin. Res. 2019, 176, 24–30. [Google Scholar] [CrossRef]
- Paape, M.J.; Wiggans, G.R.; Bannerman, D.D.; Thomas, D.L.; Sanders, A.H.; Contreras, A.; Moroni, P.; Miller, R.H. Monitoring goat and sheep milk somatic cell counts. Small Rumin. Res. 2007, 68, 114–125. [Google Scholar] [CrossRef]
- Guo, H.Y.; Pang, K.; Zhang, X.Y.; Zhao, L.; Chen, S.W.; Dong, M.L.; Ren, F.Z. Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 2007, 90, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Fava, L.W.; Serpa, P.B.S.; Külkamp-guerreiro, I.C.; Pinto, A.T. Evaluation of viscosity and particle size distribution of fresh, chilled and frozen milk of Lacaune ewes. Small Rumin. Res. 2013, 113, 247–250. [Google Scholar] [CrossRef]
- Logan, A.; Auldist, M.; Greenwood, J.; Day, L. Natural variation of bovine milk fat globule size within a herd. J. Dairy Sci. 2014, 97, 4072–4082. [Google Scholar] [CrossRef]
- Ji, X.; Li, X.; Ma, Y.; Li, D. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem. 2017, 221, 1822–1827. [Google Scholar] [CrossRef]
- Martini, M.; Scolozzi, C.; Cecchi, F.; Mele, M.; Salari, F. Relationship between morphometric characteristics of milk fat globules and the cheese making aptitude of sheep’s milk. Small Rumin. Res. 2008, 74, 194–201. [Google Scholar] [CrossRef]
- Bencini, R. Factors affecting the clotting properties of sheep milk. J. Sci. Food Agric. 2002, 82, 705–719. [Google Scholar] [CrossRef]
Parameter | Lactation Stage, Weeks 1 | Mean | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
4 | 6 | 10 | 14 | 18 | ||||
DMP 2 (mL/day) | 2362 a | 2545 a | 1795 ab | 1786 ab | 1313 b | 1960 | 106 | 0.000 |
Fat, g/100 g | 9.00 a | 8.79 a | 10.26 ab | 11.24 bc | 12.70 c | 10.40 | 0.40 | 0.002 |
Protein, g/100 g | 6.77 a | 6.76 a | 7.00 ab | 7.32 bc | 7.78 c | 7.13 | 0.11 | 0.002 |
CN 3, g/100 g | 4.57 a | 4.67 a | 4.98 ab | 5.30 b | 5.97 c | 5.12 | 0.12 | 0.000 |
CN/Protein, % | 67.4 a | 69.1 a | 71.1 b | 71.8 b | 72.65 b | 70.4 | 0.46 | 0.000 |
Lactose, g/100 g | 4.17 a | 4.16 a | 4.34 ab | 4.28 ab | 4.72 b | 4.33 | 0.07 | 0.076 |
Urea, mg/100 mL | 309 a | 320 a | 327 a | 163 b | 203 b | 265 | 14 | 0.000 |
Dry matter, g/100 g | 23.15 ab | 22.71 a | 23.59 ab | 24.65 b | 26.76 c | 24.17 | 0.37 | 0.000 |
Parameter | Ruminants | Non-Ruminants | ||||||
---|---|---|---|---|---|---|---|---|
Red Deer 2 | Cow | Goat | Sheep | Buffalo | Reindeer | Mare | Camel | |
Total solids, g/100 g | 21.8–26.8 | 11.8–13.0 | 11.0–16.3 | 11.8–20.0 | 7.9–18.4 | 20.1–27.1 | 9.3–12.1 | 10.6–15.0 |
Fat, g/100 g | 8.8–12.7 | 3.3–5.4 | 3.0–7.2 | 5.0–9.0 | 5.3–9.0 | 10.2–21.5 | 0.5–4.2 | 10.2–21.5 |
Total protein, g/100 g | 6.7–7.8 | 3.0–3.9 | 3.0–5.2 | 4.5–7.0 | 2.7–4.7 | 7.5–13.0 | 1.4–3.2 | 7.5–13.0 |
Casein, g/100 g | 4.6–5.9 | 2.6 | 2.4 | 4.2 | 3.5–4.6 | 8.3 | ||
Lactose, g/100 g | 4.2–4.7 | 4.4–5.6 | 3.2–5.0 | 4.1–5.9 | 3.2–5.4 | 1.2–4-7 | 5.6–7.2 | 2.8–3.7 |
Urea, mg/100 g | 163–320 | 393 | - 3 | - | - | - | - | - |
pH | 6.2–7.1 | 6.6–6.7 | 6.5–6.8 | 6.5–6.8 | 6.5–6.8 | - | - | - |
Acidity, °D | 22–24 | 14–19 | 14–23 | 22–26 | 13–21 | - | - | - |
EC, mS/cm | 2.1–3.9 | 4.7 | 4.2–5.9 | 3.9 | 0.7 | - | - | - |
Density, g/mL | 1.037–1.040 | 1.023–1.031 | 1.028–1.035 | 1.035–1.038 | 1.030–1.035 | - | - | - |
Viscosity, cP | 2.6–3.8 | 1.7–2.5 | 2.1–2.2 | 2.5–3.9 | 2.0–2.2 | - | - | 1.7–2.3 |
Coordinate L* | 88.2–90.8 | 81.0–84.8 | 86.0 | 79.9–87.9 | - | - | 73.5 | 67.8 |
Coordinate a* | −3.6–2.6 | −3.3–1.5 | −2.1 | −3.5–2.4 | - | - | −2.2 | −2.0 |
Coordinate b* | 6.6–9.1 | 5.2–7.5 | 5.5 | 6.6–7.5 | - | - | −2.3 | −0.2 |
ES 4, % v/v | 61–72 | 83–93 | 44–50 | 63 | 60–72 | - | - | - |
D4,3, µm | 5.6–6.2 | 2.5–5.7 | 2.8 | 4.9 | 5.0 | - | - | - |
SSA 4, m2/g fat | 1.6–1.8 | 1.9 | 2.2 | - | 1.8 | - | - | - |
r4, min | 1.7–41.1 | 13.0–19.2 | 12.9–13.2 | 6.5–28.1 | 11.6 | - | - | - |
k20 4, min | 2.3–24.1 | 5.2 | 4.5 | 1.6–4.1 | - | - | - | - |
A30 4, mm | 1.0–34.6 | 30.1–36.0 | 36.0–44.0 | 15.1–59.3 | 40.2 | - | - | - |
A60 4, mm | 23.9–34.7 | - | 27.8 | 36.4–40.1 | - | - | - | - |
Curd yield, g/10 mL | 3.2–3.4 | - | - | - | - | - | - | - |
References | [24,40,42] | [1,2,5,24,34,41,42,43,44,45,46,47,48] | [1,2,5,24,41,42,46,49,50,51,52,53,54,55,56,57,58] | [1,2,5,24,35,41,42,46,47,49,52,56,59,60,61,62] | [1,2,5,18,34,46,63] | [1,2,5,17,42] | [1,2,5,42] | [1,2,5,42,64] |
Parameter | Lactation Stage, Weeks 1 | Mean | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
4 | 6 | 10 | 14 | 18 | ||||
TBC 2, log cfu/mL | 5.37 b | 6.03 a | 4.91 c | 5.14 bc | 4.86 c | 5.26 | 0.10 | 0.000 |
SCC 2, log cell/mL | 5.13 | 4.81 | 4.67 | 4.56 | 4.65 | 4.76 | 0.09 | 0.404 |
Parameter | Lactation Stage, Weeks 1 | Mean | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
4 | 6 | 10 | 14 | 18 | ||||
pH | 6.79 | 6.74 | 6.77 | 6.70 | 6.65 | 6.73 | 0.02 | 0.239 |
Acidity, °D | 21.96 | 21.88 | 23.12 | 23.40 | 24.44 | 22.96 | 0.51 | 0.496 |
Electrical conductivity (EC), mS/cm | 2.31 a | 2.29 a | 2.11 a | 3.90 b | 3.56 c | 2.83 | 0.15 | 0.000 |
Density, g/mL | 1.040 a | 1.040 a | 1.037 ab | 1.037 ab | 1.034 b | 1.038 | 0.01 | 0.006 |
Viscosity, cP | 2.95 ab | 2.83 a | 2.68 a | 3.36 bc | 3.76 c | 3.12 | 0.10 | 0.001 |
Coordinate L* | 88.23 a | 89.81 bc | 89.58 b | 90.79 c | 90.61 bc | 89.94 | 0.23 | 0.002 |
Coordinate a* | −3.59 a | −3.32 a | −3.58 a | −2.87 ab | −2.57 b | −3.15 | 0.12 | 0.015 |
Coordinate b* | 6.62 | 9.03 | 8.72 | 8.42 | 8.41 | 8.38 | 0.34 | 0.360 |
Ethanol stability (ES), % v/v | 65.60 | 72.40 | 68.80 | 65.60 | 60.80 | 66.64 | 1.79 | 0.345 |
Parameter | Lactation Stage, Weeks 1 | Mean | SEM | p-Value | ||
---|---|---|---|---|---|---|
6 | 10 | 18 | ||||
d(0.1) (µm) | 2.23 | 1.62 | 1.81 | 1.80 | 0.12 | 0.167 |
d(0.5) (µm) | 3.84 | 3.59 | 3.83 | 3.68 | 0.21 | 0.845 |
d(0.9) (µm) | 5.88 | 6.10 | 6.34 | 6.22 | 0.29 | 0.884 |
D3,2 (µm) | 4.19 | 3.84 | 4.24 | 3.99 | 0.12 | 0.320 |
D4,3 (µm) | 5.62 a | 6.14 b | 6.26 b | 6.12 | 0.05 | 0.000 |
Span | 1.10 | 1.31 | 1.18 | 1.25 | 0.07 | 0.665 |
SSA (m2/g fat) | 1.61 | 1.78 | 1.71 | 1.73 | 0.05 | 0.285 |
Parameter | Lactation Stage, Weeks 1 | Mean | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
4 | 6 | 8 | 10 | ||||
pH | 6.77 a | 6.64 b | 6.39 c | 6.45 bc | 6.61 | 0.04 | 0.000 |
r, min | 41.11 a | 25.64 b | 17.70 b | 16.67 b | 25.23 | 1.91 | 0.000 |
k20, min | 24.07 a | 3.56 b | 3.12 b | 2.27 b | 7.83 | 2.46 | 0.002 |
A30, mm | 1.00 a | 17.20 b | 29.69 c | 34.58 c | 20.73 | 2.56 | 0.000 |
A60, mm | 23.95 a | 34.64 b | 32.86 b | 34.74 b | 31.93 | 1.08 | 0.000 |
Curd yield (g/10 mL) | 3.18 a | 3.23 ab | 3.27 ab | 3.43 b | 3.29 | 0.03 | 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berruga, M.I.; de la Vara, J.Á.; Licón, C.C.; Garzón, A.I.; García, A.J.; Carmona, M.; Chonco, L.; Molina, A. Physicochemical, Microbiological and Technological Properties of Red Deer (Cervus elaphus) Milk during Lactation. Animals 2021, 11, 906. https://doi.org/10.3390/ani11030906
Berruga MI, de la Vara JÁ, Licón CC, Garzón AI, García AJ, Carmona M, Chonco L, Molina A. Physicochemical, Microbiological and Technological Properties of Red Deer (Cervus elaphus) Milk during Lactation. Animals. 2021; 11(3):906. https://doi.org/10.3390/ani11030906
Chicago/Turabian StyleBerruga, María Isabel, Juan Ángel de la Vara, Carmen C. Licón, Ana Isabel Garzón, Andrés José García, Manuel Carmona, Louis Chonco, and Ana Molina. 2021. "Physicochemical, Microbiological and Technological Properties of Red Deer (Cervus elaphus) Milk during Lactation" Animals 11, no. 3: 906. https://doi.org/10.3390/ani11030906
APA StyleBerruga, M. I., de la Vara, J. Á., Licón, C. C., Garzón, A. I., García, A. J., Carmona, M., Chonco, L., & Molina, A. (2021). Physicochemical, Microbiological and Technological Properties of Red Deer (Cervus elaphus) Milk during Lactation. Animals, 11(3), 906. https://doi.org/10.3390/ani11030906