Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animals
2.3. Sample Collection, Clinicopathological Data, and Laboratory Methods
2.4. Statistical Analysis
3. Results
Study Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Niemi, T.T.; Miyashita, R.; Yamakage, M. Colloid solutions: A clinical update. J. Anesth. 2010, 24, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Jamnicki, M.; Zollinger, A.; Seifert, B.; Popovic, D.; Pasch, T.; Spahn, D.R. The effect of potato starch derived and corn starch derived hydroxyethyl starch on in vitro blood coagulation. Anaesthesia 1998, 53, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Hartog, C.; Reinhart, K. CONTRA: Hydroxyethyl starch solutions are unsafe in critically ill patients. Intensive Care Med. 2009, 35, 1337–1342. [Google Scholar] [CrossRef]
- Wiedermann, C.J.; Joannidis, M. Accumulation of hydroxyethyl starch in human and animal tissues: A systematic review. Crit. Care Med. 2014, 40, 160–170. [Google Scholar] [CrossRef]
- Perner, A.; Haase, N.; Guttormsen, A.B.; Tenhunen, J.; Klemenzson, G.; Åneman, A.; Madsen, K.R.; Møller, M.H.; Elkjær, J.M.; Poulsen, L.M.; et al. 6S Trial Group; Scandinavian Critical Care Trials Group. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N. Engl. J. Med. 2012, 367, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012, 367, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.; Waheed, U.; Brett, S.J. Randomised trials of 6% tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: Systematic review and meta-analysis. Intensive Care Med. 2013, 39, 811–822. [Google Scholar] [CrossRef] [Green Version]
- Zarychanski, R.; Abou-Setta, A.M.; Turgeon, A.F.; Houston, B.L.; McIntyre, L.; Marshall, J.C.; Dean, A.; Fergusson, D.A. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: A systematic review and meta-analysis. JAMA 2013, 309, 678–688. [Google Scholar] [CrossRef]
- Hayes, G.; Benedicenti, L.; Mathews, K. Retrospective cohort study on the incidence of acute kidney injury and death following hydroxyethyl starch (HES 10% 250/0.5/5:1) administration in dogs (2007–2010). J. Vet. Emerg. Crit. Care 2016, 26, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Yozova, I.D.; Howard, J.; Adamik, K.N. Retrospective evaluation of the effects of administration of tetrastarch (hydroxyethyl starch 130/0.4) on plasma creatinine concentration in dogs (2010–2013): 201 dogs. J. Vet. Emerg. Crit. Care 2016, 26, 568–577. [Google Scholar] [CrossRef]
- Sigrist, N.E.; Kälin, N.; Dreyfus, A. Changes in serum creatinine concentration and acute kidney injury (AKI) grade in dogs treated with hydroxyethyl starch 130/0.4 from 2013 to 2015. J. Vet. Intern. Med. 2017, 31, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Diniz, M.S.; Teixeira-Neto, F.J.; Celeita-Rodríguez, N.; Girotto, C.H.; Fonseca, M.W.; Oliveira-Garcia, A.C.; López-Castañeda, B. Effects of 6% Tetrastarch and Lactated Ringer’s Solution on Extravascular Lung Water and Markers of Acute Renal Injury in Hemorrhaged, Isoflurane-Anesthetized Healthy Dogs. J. Vet. Intern. Med. 2018, 32, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.J.; Claus, M.A.; Raisis, A.L.; Cianciolo, R.; Bosio, E.; Hosgood, G.; Nabity, M.; Mori, T.; Barden, A.; Sharp, C.R.; et al. Evaluation of biomarkers of kidney injury following 4% succinylated gelatin and 6% hydroxyethyl starch 130/0.4 administration in a canine hemorrhagic shock model. J. Vet. Emerg. Crit. Care 2019, 29, 132–142. [Google Scholar] [CrossRef]
- Boyd, C.J.; Sharp, C.R.; Claus, M.A.; Raisis, A.L.; Hosgood, G.; Smart, L. Prospective randomized controlled blinded clinical trial evaluating biomarkers of acute kidney injury following 6% hydroxyethyl starch 130/0.4 or Hartmann’s solution in dogs. J. Vet. Emerg. Crit. Care 2021, 31, 306–314. [Google Scholar] [CrossRef]
- Cowgill, L.D. Iris Grading of Acute Kidney Injury: International Renal Interest Society (IRIS). 2012. Available online: http://www.iris-kidney.com/guidelines/grading.html (accessed on 28 June 2021).
- Adamik, K.N.; Yozova, I.D.; Regenscheit, N. Controversies in the use of hydroxyethyl starch solutions in small animal emergency and critical care. J. Vet. Emerg. Crit. Care 2015, 25, 20–47. [Google Scholar] [CrossRef] [PubMed]
- Glover, P.A.; Rudloff, E.; Kirby, R. Hydroxyethyl starch: A review of pharmacokinetics, pharmacodynamics, current products, and potential clinical risks, benefits, and use. J. Vet. Emerg. Crit. Care 2014, 24, 642–661. [Google Scholar] [CrossRef]
- Crisi, P.E.; Dondi, F.; De Luca, E.; Di Tommaso, M.; Vasylyeva, K.; Ferlizza, E.; Savini, G.; Luciani, A.; Malatesta, D.; Lorusso, A.; et al. Early Renal Involvement in Cats with Natural Feline Morbillivirus Infection. Animals 2020, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Monari, E.; Troìa, R.; Magna, L.; Gruarin, M.; Grisetti, C.; Fernandez, M.; Balboni, A.; Giunti, M.; Dondi, F. Urine neutrophil gelatinase-associated lipocalin to diagnose and characterize acute kidney injury in dogs. J. Vet. Intern. Med. 2020, 34, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Schuh, M.P.; Neus, E.; Ma, Q.; Haffner, C.; Bennett, M.; Krawczeski, C.D.; Devarajan, P. Long-term stability of urinary biomarkers of acute kidney injury in children. Am. J. Kidney Dis. 2016, 67, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serpa Neto, A.; Veelo, D.P.; Peireira, V.G.; Cesar de Assunção, M.S.; Manetta, J.A.; Espósito, D.C.; Schultz, M.J. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: A systematic review and meta-analysis of the literature. J. Crit. Care 2014, 29, e1–e7. [Google Scholar] [CrossRef]
- Mutter, T.C.; Ruth, C.A.; Dart, A.B. Hydroxyethyl starch (HES) versus other fluid therapies: Effects on kidney function. Cochrane Database Syst Rev. 2013, 23, CD007594. [Google Scholar] [CrossRef]
- Kashy, B.K.; Podolyak, A.; Makarova, N.; Dalton, E.J.; Sessler, D.I.; Kurz, A. Effect of hydroxyethyl starch on postoperative kidney function in patients having noncardiac surgery. Anesthesiology 2014, 121, 730–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagel, J.I.; Rehm, M.; Kammerer, T.; Hulde, N.; Speck, E.; Briegel, J.; Reinholz, F.; Crispin, A.; Hofmann-Kiefer, K.F. Hydroxyethyl starch 130/0.4 and its impact on perioperative outcome: A propensity score matched controlled observation study. Anesth. Analg. 2018, 126, 1949–1956. [Google Scholar] [CrossRef]
- Datzmann, T.; Hoenicka, M.; Reinelt, H.; Liebold, A.; Gorki, H. Influence of 6% Hydroxyethyl Starch 130/0.4 Versus Crystalloid Solution on Structural Renal Damage Markers After Coronary Artery Bypass Grafting: A Post Hoc Subgroup Analysis of a Prospective Trial. J. Cardiothorac Vasc Anesth. 2018, 32, 205–211. [Google Scholar] [CrossRef]
- Momeni, M.; Nkoy Ena, L.; Van Dyck, M.; Matta, A.; Kahn, D.; Thiry, D.; Grégoire, A.; Watremez, C. The dose of hydroxyethyl starch 6% 130/0.4 for fluid therapy and the incidence of acute kidney injury after cardiac surgery: A retrospective matched study. PLoS ONE 2017, 12, e0186403. [Google Scholar] [CrossRef] [Green Version]
- Hüter, L.; Simon, T.P.; Weinmann, L.; Schuerholz, T.; Reinhart, K.; Wolf, G.; Amann, K.U.; Marx, G. Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit. Care 2009, 13, R23. [Google Scholar] [CrossRef] [Green Version]
- Cowland, J.B.; Borregaard, N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 1997, 45, 17–23. [Google Scholar] [CrossRef]
- Nabity, M.B.; Lees, G.E.; Cianciolo, R.; Boggess, M.M.; Steiner, J.M.; Suchodolski, J.S. Urinary biomarkers of renal disease in dogs with X-linked hereditary nephropathy. J. Vet. Intern. Med. 2012, 26, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.; Segev, G.; Francey, T.; Kass, P.; Cowgill, L.D. Glomerular filtration rate, urine production, and fractional clearance of electrolytes in acute kidney injury in dogs and their association with survival. J. Vet. Intern. Med. 2015, 29, 28–34. [Google Scholar] [CrossRef] [PubMed]
Variable | T0 (N = 10) | T24 (N = 10) | T48 (N = 8) | Institutional Reference Values | p *-Value | p #-Value | p§-Value |
---|---|---|---|---|---|---|---|
Glucose (mmol/L) | 5.6 (4–7.9) | 5.2 (4.4–7.2) | 5.7 (4.8–7.2) | 4.1–7.4 | 1 | 1 | 0.008 |
Creatinine (µmol/L) | 59.2 (46–73.4) | 45.1 (33.6–75.1) | 50.4 (34.5–81.3) | 44.2–132.6 | 0.18 | 0.29 | 0.73 |
Chloride (mmol/L) | 119 (107–124) | 120 (107–124) | 122 (113–124) | 109–120 | 0.45 | 1 | 1 |
Sodium (mmol/L) | 143 (123–148) | 143 (130–150) | 141 (133–150) | 140–150 | 0.29 | 0.63 | 0.69 |
Potassium (mmol/L) | 4 (3.4–5.7) | 3.85 (3.5–5.5) | 4.05 (3.5–5) | 3.9–4.9 | 1 | 1 | 1 |
Ionized Calcium (mmol/L) | 1.2 (1.1–1.3) | 1.3 (1.1–1.4) | 1.3 (1.1–1.3) | 1.25–1.5 | 0.11 | 0.63 | 0.13 |
UPC | 0.1 (0.02–0.29) | 0.07 (0.04–1.36) | 0.13 (0.02–0.2) | ≤0.5 | 1 | 1 | 0.7 |
UAC | 0.01 (0.0004–0.07) | 0.013 (0.001–0.06) | 0.01 (0.001–0.07) | 0.00-0.03 | 0.34 | 0.73 | 0.73 |
uCr (µmol/L) | 12,959 (3960–49,707) | 11,386 (2997–64,665) | 136.9 (31.4–625.6) | 3894–49,769 | 0.75 | 0.3 | 0.73 |
uCr/sCr | 146.4 (44.8–562.3) | 128.8 (33.86–731.5) | 136.86 (31.4–625.56) | 37–547 | 0.75 | 0.14 | 0.73 |
uNGAL (pg/mL) | 972.8 (154.5–38,991.8) | 1271.35 (62.1–62,540.9) | 1656.45 (201.2–140,572.8) | 0–2600 | 1 | 1 | 0.73 |
uNGALC (pg/mg) | 0.08 (0.026–3.96) | 0.27 (0.02–12.76) | 0.16 (0.05–4.49) | 0–1200 | 1 | 0.73 | 0.73 |
uGLUCr | 0.10 (0.06–0.26) | 0.14 (0.084–0.37) | 0.11 (0.05–0.3) | 0–0.6 | 0.01 | 0.29 | 1 |
FENa (%) | 0.21 (0.018–2.98) | 0.79 (0.016–3.67) | 0.61 (0.04–2.84) | 0–0.69 | 1 | 1 | 0.7 |
FECl (%) | 0.26 (0.05–3.55) | 1,08 (0.03–4.23) | 0.59 (0.06–3.14) | 0–1.09 | 1 | 0.45 | 0.13 |
FEK (%) | 6.86 (2.96–21.4) | 6.6 (0.97–12.23) | 10.53 (3.09–16.33) | 2.3–23.8 | 0.75 | 0.28 | 0.04 |
FECa (%) | 1 (0.32–8.47) | 1.14 (0.16–6.9) | 0.59 (0.19–2.16) | 0–0.33 | 0.75 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, B.; Troìa, R.; Dondi, F.; Maurella, C.; Gianella, P.; Lippi, I.; Tarducci, A.; Borrelli, A. Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4. Animals 2021, 11, 2555. https://doi.org/10.3390/ani11092555
Bruno B, Troìa R, Dondi F, Maurella C, Gianella P, Lippi I, Tarducci A, Borrelli A. Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4. Animals. 2021; 11(9):2555. https://doi.org/10.3390/ani11092555
Chicago/Turabian StyleBruno, Barbara, Roberta Troìa, Francesco Dondi, Cristiana Maurella, Paola Gianella, Ilaria Lippi, Alberto Tarducci, and Antonio Borrelli. 2021. "Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4" Animals 11, no. 9: 2555. https://doi.org/10.3390/ani11092555
APA StyleBruno, B., Troìa, R., Dondi, F., Maurella, C., Gianella, P., Lippi, I., Tarducci, A., & Borrelli, A. (2021). Stage 1-Biomarkers of Kidney Injury in Dogs Undergoing Constant Rate Infusion of Hydroxyethyl Starch 130/0.4. Animals, 11(9), 2555. https://doi.org/10.3390/ani11092555