Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows and Pre-Trial Measurements
2.2. Housing, Experimental Design and Diets
2.3. Data Recording and Sampling
2.4. Chemical Analysis
2.5. Microbial Analysis
2.5.1. DNA Isolation
2.5.2. 16S rRNA Gene Amplicon Sequencing
2.5.3. qPCR of Ciliate Protozoa
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Pre-Trial Measurements of Intake, Body Weight and CH4 Emissions
3.2. Experimental Dietary Ingredients and Diets
3.3. Intake, Milk Production and Efficiency
3.4. Apparent Digestibility of Nutrients
3.5. Gas Emissions
3.6. Rumen Microbiota
4. Discussion
4.1. Intake, Milk Production and Apparent Digestibility of Nutrients
4.2. Gas Emissions and Effect of Individual Cow Pre-Trial Measured CH4 Emissions
4.3. Rumen Microbiota
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howarth, R.W. Ideas and perspectives: Is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences 2019, 16, 3033–3046. [Google Scholar] [CrossRef] [Green Version]
- Olivier, J.G.J.; Van Aardenne, J.A.; Dentener, F.; Pagliari, V.; Ganzeveld, L.N.; Peters, J.A. Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000. J. Integr. Environ. Sci. 2005, 2, 81–99. [Google Scholar]
- GLAM 2.0—Global Livestock Environmental Assessment Model. 2017. Available online: http://www.fao.org/gleam/results/en/ (accessed on 15 August 2021).
- CAPRI. CAPRI Baseline Calibrated to the Mid-Term Outlook of the European Commission Published in 2015. 2016. Available online: www.capri-model.org (accessed on 15 August 2021).
- Ramin, M.; Huhtanen, P. Development of equations for predicting methane emissions from ruminants. J. Dairy Sci. 2013, 96, 2476–2493. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Klop, G.; Alferink, S.J.J.; Hendriks, W.H.; Dijkstra, J. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. J. Dairy Sci. 2015, 98, 1915–1927. [Google Scholar] [CrossRef] [Green Version]
- Bayat, A.R.; Tapio, I.; Vilkki, J.; Shingfield, K.J.; Leskinen, H. Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J. Dairy Sci. 2018, 101, 1136–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, M.L.; Hegarty, R.S.; Nolan, J.V.; Godwin, I.R.; McPhee, M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim. Feed Sci. Technol. 2020, 259, 114294. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fikse, W.F.; Løvendahl, P.; Lassen, J.; Lidauer, M.H.; Män-Tysaari, P.; Berglund, B. Genetic heterogeneity of feed in-take, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows. J. Dairy Sci. 2018, 101, 10011–10021. [Google Scholar] [CrossRef]
- Grandl, F.; Furger, M.; Kreuzer, M.; Zehetmeier, M. Impact of longevity on greenhouse gas emissions and profitability of individual dairy cows analysed with different system boundaries. Animal 2019, 13, 198–208. [Google Scholar] [CrossRef]
- De Haas, Y.; Windig, J.J.; Calus, M.P.L.; Dijkstra, J.; de Haan, M.; Bannink, A.; Veerkamp, R.F. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J. Dairy Sci. 2011, 94, 6122–6134. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Moon, C.D.; Leahy, S.C. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 2014, 24, 1517–1525. [Google Scholar] [CrossRef] [Green Version]
- Difford, G.F.; Plichta, D.R.; Løvendahl, P.; Lassen, J.; Noel, S.J. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 2018, 14, e1007580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herd, R.M.; Bird, S.H.; Donoghue, K.A.; Arthur, P.F.; Hegarty, R.S. Phenotypic associations between methane production traits, volatile fatty acids and animal breeding traits. Proc. Assoc. Adv. Anim. Breed. Genet. 2013, 20, 286–289. [Google Scholar]
- Berry, D.P.; Lassen, J.; de Haas, Y. Residual feed intake and breeding approached for enteric methane. In Livestock Production and Climate Change; CABI: Wallingford, UK, 2015; pp. 273–291. [Google Scholar]
- Manzanilla-Pech, C.I.; de Haas, Y.; Hayes, B.J.; Veerkamp, R.F.; Khansefid, M.; Donoghue, K.A.; Arthur, P.F.; Pryce, J.E. Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle. J. Anim. Sci. 2016, 94, 4151–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Cabezas-Garcia, E.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. J. Dairy Sci. 2015, 98, 3394–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LUKE. Finnish Feed Tables. 2019. Available online: https://portal.mtt.fi/portal/page/portal/Rehutaulukot/feed_tables_english (accessed on 3 September 2021).
- Spörndly, R. Fodertabeller för Idisslare; SLU—Institutionen för Husdjurens Utfodring Och Vård: Uppsala, Sweden, 2003; p. 257. (In Swedish) [Google Scholar]
- Geishauser, T. An instrument for the collection and transfer of ruminal fluid and for the administration of water soluble drugs in adult cattle. Bovine Pract. 1993, 27, 38–42. [Google Scholar]
- Huida, L.; Väätäinen, H.; Lampila, M. Comparison of dry matter contents in grass silages as determined by oven drying and gas chromatographic water analysis. Ann. Agric. Fenniae 1986, 25, 215–230. [Google Scholar]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Krizsan, S.J.; Rinne, M.; Nyholm, L.; Huhtanen, P. New recommendations for the ruminal in situ determination of indigestible neutral detergent fibre. Anim. Feed Sci. Technol. 2015, 205, 31–41. [Google Scholar] [CrossRef]
- Salo, M.L.; Salmi, M. Determination of starch by the amyloglucosidase method. Agric. Food Sci. 1968, 40, 38–45. [Google Scholar] [CrossRef]
- Ramin, M.; Höjer, A.; Hetta, M. The effects of legume seeds on the lactation performance of dairy cows fed grass silage-based diets. Agric. Food Sci. 2017, 26, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Ericson, B.; André, J. HPLC—Applications for agricultural and animal science. In Proceedings of the 1st Nordic Feed Science Conference, Uppsala, Sweden, 22–23 June 2010; pp. 23–26. [Google Scholar]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2015, 1, e00009-15. [Google Scholar] [CrossRef] [Green Version]
- Hartinger, T.; Edwards, J.E.; Gómez, E.R.; Smidt, H.; ter Braak, C.J.; Gresner, N.; Südekum, K.H. Differently pre-treated alfalfa silages affect the in vitro ruminal microbiota composition. Front. Microbiol. 2019, 10, 2761. [Google Scholar] [CrossRef] [Green Version]
- Ramiro-Garcia, J.; Hermes, G.; Giatsis, C.; Sipkema, D.; Zoetendal, E.G.; Schaap, P.J.; Smidt, H. NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000Research 2016, 5, 1791. [Google Scholar] [CrossRef]
- Sylvester, J.T.; Karnati, S.K.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Sjaunja, L.O.; Baevre, B.; Junkkarinen, L.; Pedersen, J.; Setala, J. A Nordic proposal for an energy corrected milk (ECM) formula. In Proceedings of the 27th Session of the ICRPMA, Paris, France, 2–6 July 1990; pp. 156–157. [Google Scholar]
- Brouwer, E. Report of Sub-Committee on Constants and Factors; EAAP Publication: Rome, Italy, 1965; p. 11. [Google Scholar]
- Poncheewin, W.; Hermes, G.D.; Van Dam, J.C.; Koehorst, J.J.; Smidt, H.; Schaap, P.J. NG-Tax 2.0: A semantic framework for high-throughput amplicon analysis. Front. Genet. 2020, 10, 1366. [Google Scholar] [CrossRef]
- Gonthier, C.; Mustafa, A.F.; Ouellet, D.R.; Chouinard, P.Y.; Berthiaume, R.; Petit, H.V. Feeding micronized and extruded flaxseed to dairy cows: Effects on blood parameters and milk fatty acid composition. J. Dairy Sci. 2005, 88, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Ivan, M.; Petit, H.V.; Chiquette, J.; Wright, A.D.G. Rumen fermentation and microbial population in lactating dairy cows receiving diets containing oilseeds rich in C-18 fatty acids. Br. J. Nutr. 2013, 109, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Hassanat, F.; Martineau, R.; Gervais, R. Linseed oil supplementation to dairy cows fed red clover silage- or corn silage-based diets: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production. J. Dairy Sci. 2015, 98, 7993–8008. [Google Scholar] [CrossRef]
- Darabighane, B.; Tapio, I.; Ventto, L.; Kairenius, P.; Stefański, T.; Leskinen, H.; Shingfield, K.J.; Vilkki, J.; Bayat, A.-R. Effects of Starch Level and a Mixture of Sunflower and Fish Oils on Nutrient Intake and Digestibility, Rumen Fermentation, and Ruminal Methane Emissions in Dairy Cows. Animals 2021, 11, 1310. [Google Scholar] [CrossRef]
- Brask, M.; Lund, P.; Hellwing, A.L.F.; Poulsen, M.; Weisbjerg, M.R. Enteric methane production, digestibility and rumen fermentation in dairy cows fed different forages with and without rapeseed fat supplementation. Anim. Feed Sci. Technol. 2013, 184, 67–79. [Google Scholar] [CrossRef]
- Arndt, C.; Powell, J.M.; Aguerre, M.J.; Wattiaux, M.A. Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios. J. Dairy Sci. 2015, 98, 418–430. [Google Scholar] [CrossRef]
- Hart, K.J.; Huntington, J.A.; Wilkinson, R.G.; Bartram, C.G.; Sinclair, L.A. The influence of grass silage-to-maize silage ratio and concentrate composition on methane emissions, performance and milk composition of dairy cows. Animal 2015, 9, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Law, R.A.; Young, F.J.; Patterson, D.C.; Kilpatrick, D.J.; Wylie, A.R.G.; Mayne, C.S. Effect of dietary protein content on the fertility of dairy cows during early and mid-lactation. J. Dairy Sci. 2009, 92, 2737–2746. [Google Scholar] [CrossRef] [PubMed]
- Gadeken, D.L.; Casper, D.P. Evaluation of a high forage total mixed ration on the lactational performance of late lactation dairy cows. Transl. Anim. Sci. 2017, 1, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendrinks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2014, 99, 885–902. [Google Scholar] [CrossRef]
- Gonda, H.L.; Lindberg, J.E. Evaluation of dietary nitrogen utilization in dairy cows based on urea concentrations in blood, urine and milk, and on urinary concentration of purine derivatives. Acta Agric. Scand. Sect. A Anim. Sci. 1994, 44, 236–245. [Google Scholar] [CrossRef]
- Huhtanen, P.; Hristov, A.N. A meta-analysis of the effects of dietary protein concentration and degradability on milk protein yield and milk N efficiency in dairy cows. J. Dairy Sci. 2009, 92, 3222–3232. [Google Scholar] [CrossRef] [PubMed]
- Ishler, V.A. Interpretation of Milk Urea Nitrogen Values. Available online: https://extension.psu.edu/interpretation-of-milk-urea-nitrogen-mun-values (accessed on 3 September 2021).
- Alvarez-Hess, P.S.; Williams, S.R.O.; Jacobs, J.L.; Hannah, M.C.; Beauchemin, K.A.; Eckard, R.J.; Wales, W.J.; Morris, G.L.; Moate, P.J. Effect of dietary fat supplementation on methane emissions from dairy cows fed wheat or corn. J. Dairy Sci. 2019, 102, 2714–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K.A.; McGinnl, S.M. Methane emissions from beef cattle: Effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci. 2006, 84, 1489–1496. [Google Scholar] [CrossRef]
- Martin, C.; Rouel, J.; Jouany, J.P.; Doreau, M.; Chilliard, Y. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci. 2008, 86, 2642–2650. [Google Scholar] [CrossRef] [Green Version]
- Welter, K.C.; Martins, C.M.; de Palma, A.S.V.; Martins, M.M.; dos Reis, B.R.; Schmidt, B.L.U.; Saran Netto, A. Canola oil in lactating dairy cow diets reduces milk saturated fatty acids and improves its omega-3 and oleic fatty acid content. PLoS ONE 2016, 11, e0151876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, T.C. Lipid metabolism in the rumen. J. Dairy Sci. 1993, 76, 3851–3863. [Google Scholar] [CrossRef]
- Maia, M.R.G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Cancino-Padilla, N.; Geldsetzer-Mendoza, C.; Morales, M.S.; Leskinen, H.; Garnsworthy, P.C.; Loor, J.; Romero, J. Effects of dietary polyunsaturated fatty acid sources on expression of lipid-related genes in bovine milk somatic cells. Sci. Rep. 2020, 10, 14850. [Google Scholar] [CrossRef]
- Van Gastelen, S.; Antunes-Fernandes, E.C.; Hettinga, K.A.; Klop, G.; Alferink, S.J.J.; Dijkstra, J. Replacing grass silage with maize silage affects rumen fermentation characteristics and enteric methane production in dairy cattle. In Proceedings of the 39th Animal Nutrition Research (ANR) Forum, Utrecht, The Netherlands, 3 April 2014; p. 299625. [Google Scholar]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Nur Atikah, I.; Alimon, A.R.; Yaakub, H. Profiling of rumen fermentation, microbial population and digestibility in goats fed with dietary oils containing different fatty acids. BMC Vet. Res. 2018, 14, 344. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.; Bjerg, B.S.; Hvelplund, T.; Weisbjerg, M.R.; Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 2010, 129, 223–227. [Google Scholar] [CrossRef]
- Ellis, J.L.; Kebreab, E.; Odongo, N.E.; McBride, B.W.; Okine, E.K.; France, J. Prediction of methane production from dairy and beef cattle. J. Dairy Sci. 2007, 90, 3456–3466. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Mayne, C.S.; Gordon, F.G.; Porter, M.G.; Agnew, R.E.; Patterson, D.C.; Ferris, C.P.; Kilpatrick, D.J. Mitigation of enteric methane emissions through improving efficiency of energy utilization and productivity in lactating dairy cows. J. Dairy Sci. 2010, 93, 2630–2638. [Google Scholar] [CrossRef] [PubMed]
- Pinares-Patiño, C.S.; Ulyatt, M.J.; Lassey, K.R.; Barry, T.N.; Holmes, C.W. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay. J. Agric. Sci. 2003, 140, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Pinares-Patiño, C.S.; Ebrahimi, S.H.; McEwan, J.C.; Clark, H.; Luo, D. Is Rumen Retention Time Implicated in Sheep Differences in Methane Emission? In Proceedings of the New Zealand Society of Animal Production; New Zealand Society of Animal Production: Wellington, New Zealand, 2011; Volume 71, pp. 219–222. [Google Scholar]
- Goopy, J.P.; Donaldson, A.; Hegarty, R.; Vercoe, P.E.; Haynes, F.; Barnett, M.; Oddy, V.H. Low-methane yield sheep have smaller rumens and shorter rumen retention time. Br. J. Nutr. 2014, 111, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J.; Stevenson, D.M.; Mantovani, H.C.; Man, S.L.C. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J. Anim. Sci. 2010, 93, 5902–5912. [Google Scholar] [CrossRef]
- Roehe, R.; Dewhurst, R.J.; Duthie, C.-A.; Rooke, J.A.; Mckain, N.; Ross, D.W. Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 2016, 12, e1005846. [Google Scholar] [CrossRef]
- Cabezas-Garcia, E.H.; Krizsan, S.J.; Shingfield, K.J.; Huhtanen, P. Effects of replacement of late-harvested grass silage and barley with early-harvested silage on milk production and methane emissions. J. Dairy Sci. 2017, 100, 5228–5240. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, M.; Schwab, C.; Jensen, B.; Engberg, R.M.; Spang, A.; Canibe, N.; Højberg, O.; Milinovich, G.; Fragner, L.; Schleper, C.; et al. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 2013, 4, 1428. [Google Scholar] [CrossRef] [Green Version]
- Kittelmann, S.; Pinares-Patiño, C.S.; Seedorf, H.; Kirk, M.R.; Ganesh, S.; McEwan, J.C. Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS ONE 2014, 9, e103171. [Google Scholar] [CrossRef]
- Bowen, J.M.; Cormican, P.; Lister, S.J.; McCabe, M.S.; Duthie, C.A.; Roehe, R. Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation. PLoS ONE 2020, 15, e0231759. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 2016, 24, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Pope, P.; Smith, W.; Denman, S.; Tringe, S.; Barry, K.; Hugenholtz, P. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011, 333, 646–648. [Google Scholar] [CrossRef]
- Granja-Salcedo, Y.T.; Fernandes, R.M.; de Araujo, R.C.; Kishi, L.T.; Berchielli, T.T.; de Resende, F.D.; Berndt, A.; Siqueira, G.R. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol. 2019, 29, 614. [Google Scholar] [CrossRef] [PubMed]
- Ungerfeld, E.M. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Front. Microbiol. 2020, 11, 589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Medrano, R.F.; Wang, M. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats. J. Anim. Sci. Biotechnol. 2019, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Lima, P.R.; Apdini, T.; Freire, A.S.; Santana, A.S.; Moura, L.M.L.; Nascimento, J.C.S.; Rodrigues, R.T.S.; Dijkstra, J.; Garcez Neto, A.F.; Queiroz, M.A.Á.; et al. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 2019, 249, 10–17. [Google Scholar] [CrossRef]
- Hassanat, F.; Benchaar, C. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. J. Dairy Sci. 2021, 104, 5375–5390. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Eva, R.-M.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 6, 1313. [Google Scholar] [CrossRef] [Green Version]
- Levy, B.; Jami, E. Exploring the prokaryotic community associated with the rumen ciliate protozoa population. Front. Microbiol. 2018, 9, 2526. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; de la Fuente, G.; Newbold, C.J. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol. Ecol. 2014, 90, 663–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item 1 | Dietary Ingredient | ||||
---|---|---|---|---|---|
Grass Silage | Maize Silage | Crimped Barley | Rapeseed Meal 2 | Concentrate 3 | |
Dry matter, g/kg | 294 | 432 | 590 | 870 | 883 |
Chemical composition | |||||
Organic matter | 921 | 966 | 966 | 916 | 922 |
Crude protein | 142 | 65.3 | 142 | 371 | 222 |
Neutral detergent fibre (NDF) | 529 | 438 | 161 | 240 | 254 |
Indigestible NDF (iNDF) | 66.6 | 90.0 | 45.2 | 94.5 | 64.2 |
pdNDF | 458 | 348 | 113 | 146 | 190 |
Crude fat | 35.0 | 31.7 | 19.0 | 86.8 | 60.0 |
Starch | NA 4 | 320 | 503 | 16.0 | 357 |
Fermentation quality | |||||
pH | 3.75 | 3.89 | - | - | - |
Ammonia-N, g/kg of N | 47.1 | 106 | - | - | - |
Lactic acid | 99.0 | 51.7 | - | - | - |
Acetic acid | 21.7 | 19.3 | - | - | - |
Butyric acid | 0.62 | 0.38 | - | - | - |
Nutritional values | |||||
ME, MJ/kg of DM | 11.5 | 11.3 | 13.2 | 11.4 | 13.3 |
MP, g/kg of DM | 84 | 81 | 90 | 169 | 112 |
PVB, g/kg of DM | 35 | −38 | −20 | 154 | 46 |
Item 1 | Diet 2 | |||
---|---|---|---|---|
GS | GSO | GSMS | GSMSO | |
Ingredient composition (n = 20) | ||||
Grass silage | 560 (13.1) | 530 (13.7) | 276 (11.5) | 283 (11.9) |
Maize silage | 0 | 0 | 290 (8.5) | 258 (6.7) |
Crimped barley | 330 (10.3) | 318 (9.3) | 328 (5.9) | 314 (5.20) |
Rapeseed meal | 90 (2.8) | 90 (2.7) | 90 (1.6) | 90 (1.3) |
Rapeseed oil | 0 | 42 (4.2) | 0 | 39 (2.8) |
Mineral mixture | 20 (0.46) | 20 (0.45) | 16 (0.27) | 16 (0.24) |
Chemical composition (n = 4) | ||||
Organic matter | 922 (3.3) | 924 (2.9) | 935 (2.1) | 935 (1.6) |
Crude protein | 160 (9.0) | 154 (3.1) | 138 (9.3) | 133 (4.5) |
Neutral detergent fibre (NDF) | 371 (10.3) | 355 (5.4) | 348 (14.4) | 332 (9.7) |
Indigestible NDF (iNDF) | 61.9 (3.8) | 59.4 (2.0) | 68.8 (3.8) | 66.1 (2.2) |
pdNDF | 309 (10) | 296 (8.7) | 279 (9.1) | 266 (6.7) |
Crude fat | 35.1 (0.57) | 75.3 (4.1) | 34.6 (0.78) | 72.9 (2.6) |
Nutritional values (n = 4) | ||||
ME, MJ/kg of DM | 11.9 (0.04) | 12.8 (0.08) | 11.8 (0.03) | 12.6 (0.05) |
MP, g/kg of DM | 92.5 (0.49) | 88.7 (0.71) | 92.0 (0.35) | 88.6 (0.41) |
PVB, g/kg of DM | 26.9 (0.30) | 26.4 (0.41) | 5.9 (0.98) | 6.1 (0.65) |
Item 1 | Diet 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
GS | GSO | GSMS | GSMSO | Forage | Oil | ||
Intake, kg/d | |||||||
Total DM | 21.6 | 19.9 | 20.7 | 18.8 | 0.27 | <0.01 | <0.01 |
Silage DM | 11.4 | 10.0 | 11.1 | 9.4 | 0.14 | <0.01 | <0.01 |
Organic matter | 19.9 | 18.4 | 19.3 | 17.6 | 0.25 | <0.01 | <0.01 |
Crude protein | 3.6 | 3.2 | 3.0 | 2.6 | 0.04 | <0.01 | <0.01 |
Neutral detergent fibre (NDF) | 7.6 | 6.8 | 6.8 | 6.0 | 0.19 | <0.01 | <0.01 |
Indigestible NDF (iNDF) | 1.2 | 1.1 | 1.3 | 1.2 | 0.04 | 0.18 | <0.01 |
pdNDF | 6.4 | 5.7 | 5.6 | 4.8 | 0.17 | <0.01 | <0.01 |
ME, MJ/d | 256 | 254 | 246 | 235 | 3.7 | <0.01 | 0.08 |
MP, kg/d | 2.0 | 1.78 | 1.92 | 1.60 | 0.035 | 0.05 | <0.01 |
PVB, kg/d | 0.59 | 0.54 | 0.16 | 0.16 | 0.02 | <0.01 | <0.01 |
Milk yield, kg/d | 31.5 | 32.4 | 28.8 | 29.5 | 0.39 | <0.01 | 0.05 |
ECM yield, kg/d | 34.3 | 32.1 | 31.8 | 29.0 | 0.57 | <0.01 | <0.01 |
Milk composition, g/kg | |||||||
Fat | 46.2 | 39.7 | 47.6 | 38.5 | 0.80 | 0.84 | <0.01 |
Protein | 36.7 | 33.7 | 36.6 | 34.0 | 0.36 | 0.93 | <0.01 |
Lactose | 45.2 | 46.1 | 45.0 | 46.2 | 0.15 | 0.72 | <0.01 |
MU, mmol/L | 3.99 | 2.91 | 3.19 | 2.74 | 0.124 | <0.01 | <0.01 |
Composition yield, g/d | |||||||
Fat | 1428 | 1283 | 1368 | 1138 | 31.5 | <0.01 | <0.01 |
Protein | 1135 | 1091 | 1054 | 1001 | 16.7 | <0.01 | <0.01 |
Lactose | 1399 | 1491 | 1295 | 1362 | 26.3 | <0.01 | <0.01 |
Feed efficiency, kg/kg | 1.59 | 1.63 | 1.56 | 1.56 | 0.056 | 0.09 | 0.51 |
N efficiency, g/kg | 313 | 339 | 352 | 377 | 6.3 | <0.01 | <0.01 |
Item 1 | Diet 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
GS | GSO | GSMS | GSMSO | Forage | Oil | ||
Dry matter | 747 | 723 | 732 | 704 | 7.9 | <0.01 | <0.01 |
Organic matter | 768 | 746 | 753 | 723 | 7.5 | <0.01 | <0.01 |
Crude protein | 659 | 676 | 497 | 518 | 14.7 | <0.01 | 0.15 |
Neutral detergent fibre (NDF) | 626 | 584 | 570 | 516 | 11.2 | <0.01 | <0.01 |
pdNDF | 745 | 694 | 699 | 625 | 14.2 | <0.01 | <0.01 |
Item 1 | Diet 2 | SEM | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
GS | GSO | GSMS | GSMSO | Forage | Oil | ||
CH4 | |||||||
g/d | 453 | 351 | 440 | 341 | 13.0 | 0.27 | <0.01 |
g/kg of DMI | 20.9 | 17.9 | 21.7 | 18.6 | 0.77 | 0.13 | <0.01 |
g/kg of ECM | 13.3 | 11.0 | 14.0 | 12.0 | 0.40 | 0.01 | <0.01 |
CO2 | |||||||
g/d | 12590 | 11695 | 12060 | 11006 | 221.4 | <0.01 | <0.01 |
g/kg of DMI | 585 | 594 | 594 | 593 | 15.7 | 0.66 | 0.70 |
g/kg of ECM | 370 | 368 | 382 | 387 | 8.0 | 0.02 | 0.86 |
CH4/CO2, g/kg | 35.8 | 29.9 | 36.6 | 30.1 | 0.70 | 0.14 | <0.01 |
O2, g/d | 9117 | 8724 | 8727 | 8217 | 147.9 | <0.01 | <0.01 |
RQ | 1.00 | 0.98 | 1.00 | 0.98 | 0.005 | 0.85 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chagas, J.C.; Ramin, M.; Exposito, R.G.; Smidt, H.; Krizsan, S.J. Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals 2021, 11, 2597. https://doi.org/10.3390/ani11092597
Chagas JC, Ramin M, Exposito RG, Smidt H, Krizsan SJ. Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals. 2021; 11(9):2597. https://doi.org/10.3390/ani11092597
Chicago/Turabian StyleChagas, Juana C., Mohammad Ramin, Ruth Gomez Exposito, Hauke Smidt, and Sophie J. Krizsan. 2021. "Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions" Animals 11, no. 9: 2597. https://doi.org/10.3390/ani11092597
APA StyleChagas, J. C., Ramin, M., Exposito, R. G., Smidt, H., & Krizsan, S. J. (2021). Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions. Animals, 11(9), 2597. https://doi.org/10.3390/ani11092597