Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Nitrogen Forms
3.2. NH3 Release from Excreta
3.3. Number of Ureolytic Bacteria in Excreta
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapp, C.W.; Dolfing, J.; Ehlert, P.A.; Graham, D.W. Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environ. Sci. Technol. 2010, 44, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Jjemba, P.K. The Potential Impact of Veterinary and Human Therapeutic Agents in Manure and Biosolids on Plants Grown on Arable Land: A Review. Agric. Ecosyst. Environ. 2002, 93, 267–278. [Google Scholar] [CrossRef]
- Terényi, M. Az Antibiotikum Felhasználás Jogi Szabályozása; Állatgyógyászati Termékek Igazgatósága: Hajdúszoboszló, Hungary, 2016. [Google Scholar]
- Anadón, A.; Rosa Martínez-Larrañaga, M.; Aranzazu Martínez, M. Probiotics for Animal Nutrition in the European Union. Regulation and Safety Assessment. Regul. Toxicol. Pharmacol. 2006, 45, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Asp, N.-G.; Bruce, Å.; Roos, S.; Wadström, T.; Wold, A.E. Health Effects of Probiotics and Prebiotics A Literature Review on Human Studies. Näringsforskning 2001, 45, 58–75. [Google Scholar] [CrossRef]
- Schneeman, B.O. Gastrointestinal Physiology and Functions. Br. J. Nutr. 2002, 88, S159–S163. [Google Scholar] [CrossRef] [Green Version]
- Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. World J. Gastroenterol. 2011, 17, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Hess, C.; Pál, L.; Wágner, L.; Awad, W.A.; Husvéth, F.; Hess, M.; Dublecz, K. Composition of Diet Modifies Colonization Dynamics of Campylobacter Jejuni in Broiler Chickens. J. Appl. Microbiol. 2015, 118, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, K.; Verspreet, J.; Courtin, C.M.; Haesebrouck, F.; Baeyen, S.; Haegeman, A.; Ducatelle, R.; Van Immerseel, F. Reducedparticle-Size Wheat Bran Is Efficiently Colonized by a Lactic Acid-Producing Community and Reduces Levels of Enterobacteriaceae in the Cecal Microbiota of Broilers. Appl. Environ. Microbiol. 2018, 84, 1343–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raninen, K.; Lappi, J.; Mykkänen, H.; Poutanen, K. Dietary Fiber Type Reflects Physiological Functionality: Comparison of Grain Fiber, Inulin, and Polydextrose. Nutr. Rev. 2011, 69, 9–21. [Google Scholar] [CrossRef]
- Zhang, R.; Ishibashi, K.; Day, D.L. Experimental Study of Microbial Decomposition in Liquid Swine Manure, and Generation Rates of Ammonia. In Proceedings of the Livestock Waste Management Conference, American Society of Agricultural Engineers, St. Joseph, MI, USA, 23–26 April 1991. [Google Scholar]
- Varel, V.H.; Wells, J.E.; Miller, D.N. Combination of a Urease Inhibitor and a Plant Essential Oil to Control Coliform Bacteria, Odour Production and Ammonia Loss from Cattle Waste. J. Appl. Microbiol. 2007, 102, 472–477. [Google Scholar] [CrossRef]
- Santoso, U.; Ohtani, S.; Tanaka, K.; Sakaida, M. Dried Bacillus Subtilis Culture Reduced Ammonia Gas Release in Poultry House. Asian-Australas. J. Anim. Sci. 1999, 12, 806–809. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Verstegen, M.W.A. Nutrition, Key Factor to Reduce Environmental Load from Pig Production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- Singh, A.K.; Kim, W.K. Effects of Dietary Fiber on Nutrients Utilization and Gut Health of Poultry: A Review of Challenges and Opportunities. Animals 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Nahm, K.H. Evaluation of the Nitrogen Content in Poultry Manure. Worlds Poult. Sci. J. 2003, 59, 77–88. [Google Scholar] [CrossRef]
- Yusrizal; Chen, T.C. Effect of Adding Chicory Fructans in Feed on Fecal and Intestinal Microflora and Excreta Volatile Ammonia. Int. J. Poult. Sci. 2003, 2, 188–194. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Ghareeb, K.; Zentek, J. Effect of Addition of a Probiotic Microorganism to Broiler Diets Contaminated with Deoxynivalenol on Performance and Histological Alterations of Intestinal Villi of Broiler Chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ji, H. Influence of Probiotics on Dietary Protein Digestion and Utilization in the Gastrointestinal Tract. Curr. Prot. Pep. Sci. 2018, 20, 125–131. [Google Scholar] [CrossRef]
- DeLaune, P.B.; Moore, P.A.; Daniel, T.C.; Lemunyon, J.L. Effect of Chemical and Microbial Amendments on Ammonia Volatilization from Composting Poultry Litter. J. Environ. Qual. 2004, 33, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.B.; Baird, C.L.; Rice, J.M. Effect of a Metabolic Stimulant on Ammonia Volatilization from Broiler Litter. J. Appl. Poult. Res. 2007, 16, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.L.; Rothrock, M.J.; Eiteman, M.A.; Lovanh, N.; Sistani, K. Evaluation of Nitrogen Retention and Microbial Populations in Poultry Litter Treated with Chemical, Biological or Adsorbent Amendments. J. Environ. Manag. 2011, 92, 1760–1776. [Google Scholar] [CrossRef]
- Such, N.; Farkas, V.; Koltay, I.; Rawash, M.A.; Dublecz, K.; Molnár, A. Wheat Bran Supplementation Increases the Abundance of Akkermansia Muciniphila Whereas Single Strain Probiotic Clostridium Butyricum Fails to Influence Caecal Microflora Composition of Broiler Chickens. In Proceedings of the 18, BOKU-Symposium Animal Nutrion, Vienna, Austria, 30 April 2019; pp. 189–192. [Google Scholar]
- Aviagen. Roos Broiler Management Handbook; Aviagen: Huntsville, AL, USA, 2018. [Google Scholar]
- Magyar Szabványügyi Testület. Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 2: Block Digestion and Steam Distillation Method (ISO 5983-2:2009); Magyar Szabványügyi Testület: Budapest, Hungary, 2009. [Google Scholar]
- Peters, B.J. Recommended Methods for Manure Analysis; A3769; University of Wisconsin, Cooperative Extension Publishing: Madison, WI, USA, 2003. [Google Scholar]
- Marquardt, R.R.; Ward, A.T.; Campbell, L.D. A Rapid High-Performance Liquid Chromatographic Method for the Quantitation of Uric Acid in Excreta and Tissue Samples. Poult. Sci. 1983, 62, 2099–2105. [Google Scholar] [CrossRef]
- O’dell, B.L.; Woods, W.D.; Laerdal, O.A.; Jeffay, A.M.; Savage, J.E. Distribution of the Major Nitrogenous Compounds and Amino Acids in Chicken Urine. Poult. Sci. 1960, 39, 426–432. [Google Scholar] [CrossRef]
- Fujita, Y.; Taylor, J.L.; Wendt, L.M.; Reed, D.W.; Smith, R.W. Evaluating the Potential of Native Ureolytic Microbes To Remediate a 90Sr Contaminated Environment. Environ. Sci. Technol. 2010, 44, 7652–7658. [Google Scholar] [CrossRef] [PubMed]
- Such, N.; Molnár, A.; Farkas, V.; Pál, L.; Husvéth, F.; Koltay, I.; Rawash, M.; Mezőlaki, Á.; Dublecz, K. Feeding Two Single Strain Probiotic Bacteria and Wheat Bran Failed to Modify the Production Traits but Altered Some Gut Characteristics in Broiler Chickens. J. Cent. Eur. Agric. 2020, 21, 499–507. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, I.H. Effect of Bacillus Subtilis C-3102 Spores as a Probiotic Feed Supplement on Growth Performance, Noxious Gas Emission, and Intestinal Microflora in Broilers. Poult. Sci. 2014, 93, 3097–3103. [Google Scholar] [CrossRef]
- DOS Santos, S.; Laosutthipong, C.; Yamauchi, K.E.; Thongwittaya, N.; Sittiya, J. Effects of Dietary Fiber on Growth Performance, Fecal Ammonia Nitrogen and Gastrointestinal Tract pH in Broilers from 1 to 21 Days of Age. Walailak Procedia 2019, 1, IC4IR-73. [Google Scholar]
- Such, N.; Koltay, I.A.; Ujj, Z.; Bányai, A.; Bartos, A. Egy Probiotikus Kiegészítő Hatása a Takarmány Táplálóanyagainak Látszólagos Emészthetőségére Lovakkal Végzett Kísérletben. Állattenyésztés és Tak. 2017, 66, 196–205. [Google Scholar]
- Elliott, H.A.; Collins, N.E. Factors Affecting Ammonia Release in Broiler Houses. Am. Soc. Agric. Eng. Trans. 1982, 25, 413–418. [Google Scholar] [CrossRef]
- Brouček, J.; Čermák, B. Emission of Harmful Gases from Poultry Farms and Possibilities of Their Reduction. Ekol. Bratisl. 2015, 34, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Cloetens, L.; De Preter, V.; Swennen, K.; Broekaert, W.F.; Courtin, C.M.; Delcour, J.A.; Rutgeerts, P.; Verbeke, K. Dose-Response Effect of Arabinoxylooligosaccharides on Gastrointestinal Motility and on Colonic Bacterial Metabolism in Healthy Volunteers. J. Am. Coll. Nutr. 2013, 27, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Wutzke, K.D.; Lotz, M.; Zipprich, C. The Effect of Pre- and Probiotics on the Colonic Ammonia Metabolism in Humans as Measured by Lactose-[15N2]Ureide. Eur. J. Clin. Nutr. 2010, 64, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macfarlane, G.T.; Cummings, J.H. The colonic flora, fermentation and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology and Disease; Raven Press: New York, NY, USA, 1991; pp. 51–92. [Google Scholar]
- Dirk Van Der Klis, J.; De Lange, L. Water Intake of Poultry. In Proceedings of the 19th European Symposium on Poultry Nutrition, Potsdam, Germany, 26–29 August 2013. [Google Scholar]
- Wathes, C.M. Aerial Emissions from Poultry Production. Worlds Poult. Sci. J. 1998, 54, 241–251. [Google Scholar] [CrossRef]
- Roberts, S.A.; Xin, H.; Kerr, B.J.; Russell, J.R.; Bregendahl, K. Effects of Dietary Fiber and Reduced Crude Protein on Ammonia Emission from Laying-Hen Manure. Poult. Sci. 2007, 86, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.R.; Ryu, K.-S. Naturally Derived Probiotic Supplementation Effects on Physiological Properties and Manure Gas Emission of Broiler Chickens. J. Agric. Life Sci. 2012, 46, 119–127. [Google Scholar]
- Yoon, C.; Park, J.H.; Nam, Y.M. Effect of Feeding Multiple Probiotics on Performance and Fecal Noxious Gas Emission in Broiler Chicks -Korean Journal of Poultry Science | Korea Science. Korean Soc. Poult. Sci. 2004, 31, 229–235. [Google Scholar] [CrossRef]
- Molnár, A.; Such, N.; Farkas, V.; Pál, L.; Menyhárt, L.; Wágner, L.; Husvéth, F.; Dublecz, K. Effects of Wheat Bran and Clostridium Butyricum Supplementation on Cecal Microbiota, Short-Chain Fatty Acid Concentration, PH and Histomorphometry in Broiler Chickens. Animals 2020, 10, 2230. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, D.A.; Martin, R.J.; Adams, S.H. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Adv. Nutr. 2016, 7, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.; Geier, M.S.; Chen, H.; Hughes, R.J.; Moore, R.J. Comparison of Fecal and Cecal Microbiotas Reveals Qualitative Similarities but Quantitative Differences. BMC Microbiol. 2015, 15, 51. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.; Kim, K. Il Effect of Feeding Diets Containing an Antibiotic, a Probiotic, or Yucca Extract on Growth and Intestinal Urease Activity in Broiler Chicks. Poult. Sci. 1997, 76, 381–385. [Google Scholar] [CrossRef]
- Endo, T.; Nakano, M.; Shimizu, S.; Fukusima, M.; Miyoshi, S. Effects of a Probiotic on the Lipid Metabolism of Cocks Fed on a Cholesterol-Enriched Diet. Biosci. Biotechnol. Biochem. 1999, 63, 1569–1575. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Mun, H.S.; Sim, H.J.; Kim, Y.J.; Yang, C.J. Effects of Bacillus Amyloliquefaciens as a Probiotic Strain on Growth Performance, Cecal Microflora, and Fecal Noxious Gas Emissions of Broiler Chickens. Poult. Sci. 2014, 93, 1963–1971. [Google Scholar] [CrossRef] [PubMed]
Starter Day 1–10 | Grower Day 11–24 | Finisher Day 25–40 | ||||
---|---|---|---|---|---|---|
C | WB | C | WB | C | WB | |
Maize | 466 | 434 | 534 | 469 | 589 | 524 |
Wheat bran | 0 | 30 | 0 | 60 | 0 | 60 |
Extracted soybean meal | 338 | 333 | 361 | 352 | 310 | 300 |
Sunflower meal | 80 | 80 | 0 | 0 | 0 | 0 |
Sunflower oil | 63 | 70 | 62 | 76 | 60 | 74 |
Limestone | 19 | 19 | 15 | 15 | 15 | 15 |
MCP | 15 | 15 | 14 | 14 | 13 | 13 |
L-lysine | 5 | 5 | 2 | 2 | 2 | 2 |
DL-methionine | 4 | 4 | 3 | 3 | 3 | 3 |
L-threonine | 1 | 1 | 1 | 1 | 0 | 1 |
L-valine | 1 | 1 | 0 | 0 | 0 | 0 |
NaCl | 3 | 3 | 3 | 3 | 3 | 3 |
NaHCO3 | 1 | 1 | 1 | 1 | 1 | 1 |
Premix 1 | 4 | 4 | 4 | 4 | 3.5 | 3.5 |
Phytase 2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
NSP enzyme 3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
SUM | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Starter Day 10 | Grower Day 24 | Finisher Day 40 | ||||
---|---|---|---|---|---|---|
C | WB | C | WB | C | WB | |
AMEn (MJ/kg) | 12.1 | 12.2 | 13.1 | 13.0 | 13.0 | 13.1 |
Dry matter | 88.8 | 89.0 | 88.5 | 88.8 | 88.2 | 88.8 |
Crude protein | 22.9 | 23.0 | 20.7 | 21.2 | 18.8 | 19.1 |
Crude fat | 8.3 | 9.2 | 9.1 | 10.1 | 8.9 | 10.0 |
Crude fiber | 4.02 | 4.575 | 3.77 | 4.18 | 3.63 | 4.33 |
Ash | 6.69 | 6.83 | 5.61 | 5.96 | 5.43 | 5.69 |
Ca | 1.07 | 1.08 | 0.94 | 0.94 | 0.89 | 0.89 |
P | 0.80 | 0.81 | 0.67 | 0.71 | 0.66 | 0.7 |
Starch | 30.5 | 29.4 | 36.9 | 33.6 | 38.7 | 36.4 |
Treatments | Total N | NH+4-N | Uric Acid-N | pH | Dry Matter |
---|---|---|---|---|---|
mg/g DM | % | ||||
Probiotic effects | |||||
C | 50.076 | 4.864 | 17.531 | 6.322 | 21.454 a |
LAB | 51.576 | 4.806 | 14.143 | 6.142 | 25.568 ab |
BAB | 50.468 | 4.065 | 15.407 | 6.278 | 27.321 b |
Diet effects | |||||
C | 50.624 | 5.172 a | 16.836 | 6.258 | 24.315 |
WB | 50.75 | 4.000 b | 14.664 | 6.242 | 25.358 |
Pooled SEM | 2.744 | 0.271 | 0.846 | 0.039 | 0.857 |
p-values | |||||
Probiotic | 0.979 | 0.273 | 0.224 | 0.168 | 0.012 |
Diet | 0.992 | 0.024 | 0.226 | 0.915 | 0.313 |
Probiotic × Diet | 0.827 | 0.128 | 0.875 | 0.170 | 0.412 |
Treatments | 1.5 h | 4 h | |
---|---|---|---|
C | 4.80 | 33.10 | |
LAB | 10.33 | 40.66 | |
BAB | 5.08 | 32.91 | |
WB | 8.71 | 42.85 | |
LAB | 4.16 | 41.66 | |
BAB | 10.55 | 45.44 | |
SEM | 0.867 | 1.765 | |
Probiotic effects | |||
C | 6.31 | 36.93 | |
LAB | 6.98 | 39.92 | |
BAB | 7.63 | 37.81 | |
Diet effects | |||
C | 6.50 | 34.08 a | |
WB | 7.40 | 42.36 b | |
Pooled SEM | 0.89 | 1.85 | |
p-values | |||
Probiotic | 0.805 | 0.803 | |
Diet | 0.593 | 0.029 | |
Probiotic × Diet | 0.048 | 0.493 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Such, N.; Csitári, G.; Stankovics, P.; Wágner, L.; Koltay, I.A.; Farkas, V.; Pál, L.; Strifler, P.; Dublecz, K. Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta. Animals 2021, 11, 2703. https://doi.org/10.3390/ani11092703
Such N, Csitári G, Stankovics P, Wágner L, Koltay IA, Farkas V, Pál L, Strifler P, Dublecz K. Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta. Animals. 2021; 11(9):2703. https://doi.org/10.3390/ani11092703
Chicago/Turabian StyleSuch, Nikoletta, Gábor Csitári, Petra Stankovics, László Wágner, Ilona Anna Koltay, Valéria Farkas, László Pál, Patrik Strifler, and Károly Dublecz. 2021. "Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta" Animals 11, no. 9: 2703. https://doi.org/10.3390/ani11092703
APA StyleSuch, N., Csitári, G., Stankovics, P., Wágner, L., Koltay, I. A., Farkas, V., Pál, L., Strifler, P., & Dublecz, K. (2021). Effects of Probiotics and Wheat Bran Supplementation of Broiler Diets on the Ammonia Emission from Excreta. Animals, 11(9), 2703. https://doi.org/10.3390/ani11092703