Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Focal Species and Sample Sites
2.2. Assessment of Supercolony Status
2.3. Inference of Trophic Ecology
2.4. Population Genetic Analysis
2.5. Morphological Analysis
2.6. Statistical Analysis
3. Results
3.1. Assessment of Supercolony Status
3.2. Inference of Trophic Niche
3.3. Population Genetic Analysis
3.4. Morphological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luque, G.M.; Giraud, T.; Courchamp, F. Allee effects in ants. J. Anim. Ecol. 2013, 82, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Mačić, V.; Albano, P.G.; Almpanidou, V.; Claudet, J.; Corrales, X.; Essl, F.; Evagelopoulos, A.; Giovos, I.; Jimenez, C.; Kark, S. Biological invasions in conservation planning: A global systematic review. Front. Mar. Sci. 2018, 5, 178. [Google Scholar] [CrossRef] [Green Version]
- Turbelin, A.J.; Malamud, B.D.; Francis, R.A. Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 2017, 26, 78–92. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, T.P. The worldwide transfer of ants: Geographical distribution and ecological invasions. J. Biogeogr. 1999, 26, 535–548. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Ants; Springer: Berlin, Germany, 1990; p. 752. [Google Scholar]
- Holway, D.A.; Lach, L.; Suarez, A.V.; Tsutsui, N.D.; Case, T.J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 2002, 33, 181–233. [Google Scholar] [CrossRef] [Green Version]
- Lach, L.; Hooper-Bui, L.M. Consequences of Ant Invasions. In Ant Ecology; Lach, L., Parr, C., Abbott, K., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 261–286. [Google Scholar]
- Baldwin, J.M. A new factor in evolution. Am. Nat. 1896, 7, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.L.; Suarez, A.V. The Role of Behavioural Variation in the Invasion of New Areas. In Behavioural Responses to a Changing World: Mechanisms and Consequence; Candolin, U., Wong, B.B.M., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Agrawal, A.A. Phenotypic plasticity in the interactions and evolution of species. Science 2001, 294, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, C.L.; Bossdorf, O.; Muth, N.Z.; Gurevitch, J.; Pigliucci, M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol. Lett. 2006, 9, 981–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, A.M.; Jennions, M.; Nicotra, A.B. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol. Lett. 2011, 14, 419–431. [Google Scholar] [CrossRef]
- Palacio-López, K.; Gianoli, E. Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: A meta-analysis. Oikos 2011, 120, 1393–1401. [Google Scholar] [CrossRef]
- Sol, D.; Timmermans, S.; Lefebvre, L. Behavioural flexibility and invasion success in birds. Anim. Behav. 2002, 63, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Hendrix, P.F.; Snyder, B.A.; Molina, M.; Li, J.; Rao, X.; Siemann, E.; Fu, S. Dietary flexibility aids Asian earthworm invasion in North American forests. Ecology 2010, 91, 2070–2079. [Google Scholar] [CrossRef]
- Caut, S.; Angulo, E.; Courchamp, F. Dietary shift of an invasive predator: Rats, seabirds and sea turtles. J. Appl. Ecol. 2008, 45, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, F.; Arbetman, M.; Toth, A.L. A potential role for phenotypic plasticity in invasions and declines of social insects. Front. Ecol. Evol. 2019, 7, 375. [Google Scholar] [CrossRef] [Green Version]
- Ingram, K.K. Plasticity in queen number and social structure in the invasive Argentine ant (Linepithema humile). Evolution 2002, 56, 2008–2016. [Google Scholar] [CrossRef]
- Passera, L. Characteristics of Tramp Species. In Exotic Ants. Biology, Impact, and Control of Introduced Species; Williams, D.F., Ed.; Westview Press: Boulder, CO, USA; San Francisco, CA, USA; Oxford, UK, 1994; pp. 23–43. [Google Scholar]
- Helanterä, H.; Strassmann, J.E.; Carrillo, J.; Queller, D.C. Unicolonial ants: Where do they come from, what are they and where are they going? Trends Ecol. Evol. 2009, 24, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.; Pedersen, J.S.; d’Ettorre, P.; Lehmann, L.; Keller, L. Dynamics and genetic structure of Argentine ant supercolonies in their native range. Evolution 2009, 63, 1627–1639. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, J.S.; Krieger, M.J.; Vogel, V.; Giraud, T.; Keller, L. Native supercolonies of unrelated individuals in the invasive Argentine ant. Evolution 2006, 60, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Giraud, T.; Pedersen, J.S.; Keller, L. Evolution of supercolonies: The Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA 2002, 99, 6075–6079. [Google Scholar] [CrossRef] [Green Version]
- Suarez, A.; Holway, D.; Tsutsui, N. Genetics and behavior of a colonizing species: The invasive Argentine ant. Am. Nat. 2008, 172, S72–S84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holway, D.A.; Case, T.J. Effects of colony-level variation on competitive ability in the invasive Argentine ant. Anim. Behav. 2001, 61, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Holway, D.A.; Suarez, A.V. Animal behavior: An essential component of invasion biology. Trends Ecol. Evol. 1999, 14, 328–330. [Google Scholar] [CrossRef]
- Tillberg, C.V.; Holway, D.A.; Lebrun, E.G.; Suarez, A.V. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl. Acad. Sci. USA 2007, 104, 20856–20861. [Google Scholar] [CrossRef] [Green Version]
- Wilder, S.M.; Holway, D.A.; Suarez, A.V.; LeBrun, E.G.; Eubanks, M.D. Intercontinental differences in resource use reveal the importance of mutualisms in fire ant invasions. Proc. Natl. Acad. Sci. USA 2011, 108, 20639–20644. [Google Scholar] [CrossRef] [Green Version]
- Grover, C.D.; Kay, A.D.; Monson, J.A.; Marsh, T.C.; Holway, D.A. Linking nutrition and behavioural dominance: Carbohydrate scarcity limits aggression and activity in Argentine ants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2007, 274, 2951–2957. [Google Scholar] [CrossRef] [Green Version]
- O’Dowd, D.J.; Green, P.T.; Lake, P.S. Invasional ‘meltdown’on an oceanic island. Ecol. Lett. 2003, 6, 812–817. [Google Scholar] [CrossRef]
- Shik, J.Z.; Silverman, J. Towards a nutritional ecology of invasive establishment: Aphid mutualists provide better fuel for incipient Argentine ant colonies than insect prey. Biol. Invasions 2013, 15, 829–836. [Google Scholar] [CrossRef]
- Sorger, D.; Booth, W.; Eshete, A.W.; Lowman, M.; Moffett, M. Outnumbered: A new dominant ant species with genetically diverse supercolonies in Ethiopia. Insectes Soc. 2017, 64, 141–147. [Google Scholar] [CrossRef]
- Tsutsui, N.D.; Suarez, A.V.; Holway, D.A.; Case, T.J. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. USA 2000, 97, 5948–5953. [Google Scholar] [CrossRef] [Green Version]
- Balzani, P.; Vizzini, S.; Frizzi, F.; Masoni, A.; Lessard, J.P.; Bernasconi, C.; Francoeur, A.; Ibarra-Isassi, J.; Brassard, F.; Cherix, D. Plasticity in the trophic niche of an invasive ant explains establishment success and long-term coexistence. Oikos 2021, 130, 691–696. [Google Scholar] [CrossRef]
- Blight, O.; Josens, R.; Bertelsmeier, C.; Abril, S.; Boulay, R.; Cerdá, X. Differences in behavioural traits among native and introduced colonies of an invasive ant. Biol. Invasions 2017, 19, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Guénard, B.; Weiser, M.D.; Gomez, K.; Narula, N.; Economo, E.P. The Global Ant Biodiversity Informatics (GABI) database: Synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). Myrmecol. News 2017, 24, 83–89. [Google Scholar]
- Teranishi, C. Japanese ants, their behavior and distribution I. Dobustsu Zasshi (Zool. Mag.) 1929, 41, 239–251. [Google Scholar]
- Tsuji, K.; Furukawa, T.; Kinomura, K.; Takamine, H.; Yamauchi, K. The caste system of the dolichoderine ant Technomyrmex albipes (Hymenoptera, Formicidae)—Morphological description of queens, workers and reproductively active intercastes. Insectes Soc. 1991, 38, 413–422. [Google Scholar] [CrossRef]
- Sugiura, S.; Abe, T.; Makino, S. Loss of extrafloral nectary on an oceanic island plant and its consequences for herbivory. Am. J. Bot. 2006, 93, 491–495. [Google Scholar] [CrossRef]
- Ogura, Y.; Yamamoto, A.; Kobayashi, H.; Cronin, A.L.; Eguchi, K. New Discovery of an exotic ant Technomyrmex brunneus (Formicidae: Dolichoderinae) on Hachijo-jima, Izu islands, an oceanic island of Tokyo prefecture, Japan. Ari 2017, 38, 45–52. [Google Scholar]
- Terayama, M.; Sunamura, E.; Fujimaki, R.; Ono, T.; Eguchi, K. A surprisingly non-attractiveness of commercial opoison baits to newly established population of white-footed ant, Technomyrmex brunneus (Hymenoptera: Formicidae), in a remote island of Japan. Sociobiology 2021, 68, 5898. [Google Scholar] [CrossRef]
- Yamauchi, K.; Furukawa, T.; Kinomura, K.; Takamine, H.; Tsuji, K. Secondary polygyny by inbred wingless sexuals in the dolichoderine ant Technomyrmex albipes. Behav. Ecol. Sociobiol. 1991, 29, 313–319. [Google Scholar] [CrossRef]
- Bolton, B. Taxonomy of the dolichoderine ant genus Technomyrmex Mayr (Hymenoptera: Formicidae) based on the worker caste. Contrib. Am. Entomol. Inst. 2007, 35, 1–150. [Google Scholar]
- Sugiura, S. Hot water tolerance of soil animals: Utility of hot water immersion in preventing invasions of alien soil animals. Appl. Entomol. Zool. 2008, 43, 207–212. [Google Scholar] [CrossRef]
- Thomas, M.L.; Payne-Makrisâ, C.M.; Suarez, A.V.; Tsutsui, N.D.; Holway, D.A. When supercolonies collide: Territorial aggression in an invasive and unicolonial social insect. Mol. Ecol. 2006, 15, 4303–4315. [Google Scholar] [CrossRef] [PubMed]
- Feldhaar, H.; Gebauer, G.; Blúthgen, N. Stable isotopes: Past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol. News 2009, 13, 3–13. [Google Scholar]
- Helms, K.R.; Vinson, S.B. Plant resources and colony growth in an invasive ant: The importance of honeydew-producing hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 2008, 37, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Blüthgen, N.; Feldhaar, H. Food and Shelter: How Resources Influence Ant Ecology. In Ant Ecology; Lach, L., Parr, C., Abbott, K., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 115–136. [Google Scholar]
- Woodcock, P.; Edwards, D.P.; Newton, R.J.; Edwards, F.A.; Khen, C.V.; Bottrell, S.H.; Hamer, K.C. Assessing trophic position from nitrogen isotope ratios: Effective calibration against spatially varying baselines. Naturwissenschaften 2012, 99, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Cronin, A.L.; Donnerhack, O.; Seidel, F.; Yamanaka, T. Fine-scale variation in natural nitrogen isotope ratios of ants (Hymenoptera: Formicidae). Entomol. Exp. Appl. 2015, 157, 354–359. [Google Scholar] [CrossRef]
- Gibb, H.; Cunningham, S.A. Habitat contrasts reveal a shift in the trophic position of ant assemblages. J. Anim. Ecol. 2011, 80, 119–127. [Google Scholar] [CrossRef]
- Satria, R.; Kurushima, H.; Herwina, H.; Yamane, S.; Eguchi, K. The trap-jaw ant genus Odontomachus Latreille (Hymenoptera: Formicidae) from Sumatra, with a new species description. Zootaxa 2015, 4048, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Suyama, Y.; Matsuki, Y. MIG-seq: An effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 2015, 5, 16963. [Google Scholar] [CrossRef] [Green Version]
- Eaton, D.A.; Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [Green Version]
- Dray, S.; Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 2005, 5, 184–186. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 2010, 26, 419–420. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. (Stat. Method) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wilson, E.O. The relation between caste ratios and division of labor in the ant genus Pheidole (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 1984, 16, 89–98. [Google Scholar] [CrossRef]
- Evison, S.E.; Hart, A.G.; Jackson, D.E. Minor workers have a major role in the maintenance of leafcutter ant pheromone trails. Anim. Behav. 2008, 75, 963–969. [Google Scholar] [CrossRef]
- Arnan, X.; Ferrandiz-Rovira, M.; Pladevall, C.; Rodrigo, A. Worker size-related task partitioning in the foraging strategy of a seed-harvesting ant species. Behav. Ecol. Sociobiol. 2011, 65, 1881–1890. [Google Scholar] [CrossRef]
- Westling, J.; Harrington, K.; Bengston, S.; Dornhaus, A. Morphological differences between extranidal and intranidal workers in the ant Temnothorax rugatulus, but no effect of body size on foraging distance. Insectes Soc. 2014, 61, 367–369. [Google Scholar] [CrossRef]
- Honorio, R.; Doums, C.; Molet, M. Manipulation of worker size diversity does not affect colony fitness under natural conditions in the ant Temnothorax nylanderi. Behav. Ecol. Sociobiol. 2020, 74, 104. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2000; Available online: https://www.r-project.org/ (accessed on 11 September 2020).
- Zeileis, A.; Hothorn, T. Diagnostic Checking in Regression Relationships. R N. 2002, 2, 7–10. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 25 May 2020).
- Torres, C.W.; Brandt, M.; Tsutsui, N.D. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insectes Soc. 2007, 54, 363–373. [Google Scholar] [CrossRef]
- Sturgis, S.J.; Gordon, D.M. Nestmate recognition in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 2012, 16, 101–110. [Google Scholar]
- Lenoir, A.; Fresneau, D.; Errard, C.; Hefetz, A. Individuality and Colonial Identity in Ants: The Emergence of the Social Representation Concept. In Information Processing in Social Insects; Springer: Basel, Switzerland, 1999; pp. 219–237. [Google Scholar]
- Crozier, R.H.; Pamilo, P. Evolution of Social Insect Colonies: Sex. Allocation and Kin Selection; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Howard, R.W.; Blomquist, G.J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 2005, 50, 371–393. [Google Scholar] [CrossRef]
- Nei, M.; Maruyama, T.; Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 1975, 29, 1–10. [Google Scholar] [CrossRef]
- Eyer, P.-A.; McDowell, B.; Johnson, L.N.; Calcaterra, L.A.; Fernandez, M.B.; Shoemaker, D.; Puckett, R.T.; Vargo, E.L. Supercolonial structure of invasive populations of the tawny crazy ant Nylanderia fulva in the US. BMC Evol. Biol. 2018, 18, 1–14. [Google Scholar] [CrossRef]
- Cremer, S.; Ugelvig, L.V.; Drijfhout, F.P.; Schlick-Steiner, B.C.; Steiner, F.M.; Seifert, B.; Hughes, D.P.; Schulz, A.; Petersen, K.S.; Konrad, H. The evolution of invasiveness in garden ants. PLoS ONE 2008, 3, e3838. [Google Scholar] [CrossRef]
- Tsutsui, N.D.; Case, T.J. Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 2001, 55, 976–985. [Google Scholar] [CrossRef]
- Wilder, S.M.; Barnum, T.R.; Holway, D.A.; Suarez, A.V.; Eubanks, M.D. Introduced fire ants can exclude native ants from critical mutualist-provided resources. Oecologia 2013, 172, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Torchin, M.E.; Lafferty, K.D.; Dobson, A.P.; McKenzie, V.J.; Kuris, A.M. Introduced species and their missing parasites. Nature 2003, 421, 628–630. [Google Scholar] [CrossRef]
- Moffett, M.W. Supercolonies of billions in an invasive ant: What is a society? Behav. Ecol. 2012, 23, 925–933. [Google Scholar] [CrossRef]
- Tanaka, H.; Ohnishi, H.; Tatsuta, H.; Tsuji, K. An analysis of mutualistic interactions between exotic ants and honeydew producers in the Yanbaru district of Okinawa Island, Japan. Ecol. Res. 2011, 26, 931–941. [Google Scholar] [CrossRef]
- Buczkowski, G.; Kumar, R.; Suib, S.L.; Silverman, J. Diet-related modification of cuticular hydrocarbon profiles of the Argentine ant, Linepithema humile, diminishes intercolony aggression. J. Chem. Ecol. 2005, 31, 829–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Silverman, J. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 2000, 87, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Hölldobler, B.; Wilson, E.O. The number of queens: An important trait in ant evolution. Naturwissenschaften 1977, 64, 8–15. [Google Scholar] [CrossRef]
- Suarez, A.; Suhr, E. Ecological and evolutionary perspectives on “supercolonies”: A commentary on Moffett. Behav. Ecol. 2012, 23, 937–938. [Google Scholar] [CrossRef] [Green Version]
- Rey, O.; Estoup, A.; Vonshak, M.; Loiseau, A.; Blanchet, S.; Calcaterra, L.; Chifflet, L.; Rossi, J.P.; Kergoat, G.J.; Foucaud, J. Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol. Lett. 2012, 15, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
Population | N | The Number of Alleles (NA) | Allelic Richness (AR) | Observed Heterozygosity (HO) | Expected Heterozygosity (HE) | Inbreeding Coefficient (FIS) (95% CIs) | Loci in HWE (%) | Isolation by Distance (IBD) p-Value |
---|---|---|---|---|---|---|---|---|
Hachijojima | 16 | 580 | 1.22 | 0.061 | 0.084 | 0.271 (0.197–0.345) | 97.4 | 0.986 |
Okinawa | 21 | 675 | 1.50 | 0.055 | 0.088 | 0.372 (0.313–0.431) | 90.0 | 0.058 |
Chichijima | 28 | 615 | 1.37 | 0.048 | 0.063 | 0.228 (0.173–0.281) | 98.8 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putri, D.; Yokozawa, M.; Yamanaka, T.; Cronin, A.L. Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan. Animals 2021, 11, 2702. https://doi.org/10.3390/ani11092702
Putri D, Yokozawa M, Yamanaka T, Cronin AL. Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan. Animals. 2021; 11(9):2702. https://doi.org/10.3390/ani11092702
Chicago/Turabian StylePutri, Diyona, Masanori Yokozawa, Toshiro Yamanaka, and Adam L. Cronin. 2021. "Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan" Animals 11, no. 9: 2702. https://doi.org/10.3390/ani11092702
APA StylePutri, D., Yokozawa, M., Yamanaka, T., & Cronin, A. L. (2021). Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan. Animals, 11(9), 2702. https://doi.org/10.3390/ani11092702