A Preliminary Investigation of Myostatin Gene (MSTN) Variation in Red Deer (Cervus elaphus) and Its Implications for Venison Production in New Zealand
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Investigated and Phenotypic Data
2.2. Genomic DNA and Variation Screening
2.3. DNA Sequencing and Sequence Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McPherron, A.C.; Lawler, A.M.; Lee, S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Dunner, S.; Miranda, M.E.; Amigues, Y.; Cañón, J.; Georges, M.; Hanset, R.; Williams, J.; Ménissier, F. Haplotype diversity of the myostatin gene among beef cattle breeds. Genet. Sel. Evol. 2003, 35, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Grobet, L.; Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J.; et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7, 910–916. [Google Scholar] [CrossRef] [Green Version]
- Marchitelli, C.; Savarese, M.C.; Crisà, A.; Nardone, A.; Marsan, P.A.; Valentini, A. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of gene. Mamm. Genome 2003, 14, 392–395. [Google Scholar] [CrossRef]
- Clop, A.; Marcq, F.; Takeda, H.; Pirottin, D.; Tordoir, X.; Bibé, B.; Bouix, J.; Caiment, F.; Elsen, J.M.; Eychenne, F.; et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38, 813–818. [Google Scholar] [CrossRef]
- Hickford, J.G.H.; Forrest, R.H.; Zhou, H.; Fang, Q.; Han, J.; Frampton, C.; Horrell, A.L. Polymorphism at the ovine myostatin gene (MSTN) and its association with growth and carcass traits in New Zealand Romney sheep. Anim. Genet. 2010, 41, 64–72. [Google Scholar] [CrossRef]
- Li, X.L.; Wu, Z.L.; Gong, Y.F.; Liu, Y.Q.; Liu, Z.Z.; Wang, X.J.; Xin, T.R.; Ji, Q. Single-nucleotide polymorphism identification in the caprine myostatin gene. J. Anim. Breed. Genet. 2006, 123, 141–144. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Xu, D.; Wen, Q.; Li, X.; Zhang, W.; Yang, L. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep. 2012, 39, 3081–3087. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Ling, Y.H.; Wang, L.J.; Hang, Y.F.; Guo, X.F.; Zhang, Y.H.; Ding, J.P.; Zhang, X.R. Polymorphisms of the myostatin gene (MSTN) and its relationship with growth traits in goat breeds. Genet. Mol. Res. 2013, 12, 965–971. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Li, N.; Plastow, G.; Liu, Z.L.; Hu, X.X.; Wu, C.X. Identification of three SNPs in the porcine myostatin gene (MSTN). Anim. Biotechnol. 2002, 13, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Stinckens, A.; Luyten, T.; Bijttebier, J.; Van den Maagdenberg, K.; Dieltiens, D.; Janssens, S.; De Smet, S.; Georges, M.; Buys, N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim. Genet. 2008, 39, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Scotti, E.; Frabetti, A.; Fornasini, D.; Picconi, A.; Russo, V. Identification of polymorphisms in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene and association analysis with finishing weight in a commercial rabbit population. Anim. Genet. 2011, 42, 339. [Google Scholar] [CrossRef] [PubMed]
- Sternstein, I.; Reissmann, M.; Maj, D.; Bieniek, J.; Brockmann, G.A. A new single nucleotide polymorphism in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene is associated with carcass composition traits. Anim. Genet. 2014, 45, 596–599. [Google Scholar] [CrossRef]
- Ye, X.H.; Brown, S.R.; Nones, K.; Coutinho, L.L.; Dekkers, J.C.M.; Lamont, S.J. Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genet. Sel. Evol. 2007, 39, 73–89. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, L.; Wei, Y.; Wang, J.; Ding, F.; Dai, G.; Xie, K. Polymorphisms of the myostatin gene and its relationship with reproduction traits in the Bian chicken. Anim. Biotechnol. 2012, 23, 184–193. [Google Scholar] [CrossRef]
- Smołucha, G.; Kozubska-Sobocińska, A.; Koseniuk, A.; Żukowski, K.; Lisowski, M.; Grajewski, B. Polymorphism of the myostatin (MSTN) gene in Landes and Kielecka geese breeds. Animals 2020, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Wiklund, E.; Farouk, M.; Finstad, G. Venison—Meat from red deer (Cervus elaphus) and reindeer (Rangifer tarandus tarandus). Anim. Front. 2014, 4, 55–61. [Google Scholar] [CrossRef]
- Chardonnet, P.; Clers, B.; Fischer, J.; Gerhold, R.; Jori, F.; Lamarque, F. The value of wildlife. Rev. Sci. Tech. 2002, 21, 15–52. [Google Scholar] [CrossRef]
- Gélin, U.; Keller, M.; de Beaupuis, V.; Nowak, R.; Evy, F.; Locatelli, Y. Impact of interspecific hybridization between sika and red deer on phenotypic traits of the newborn and establishment of mother-young relationships. Anim. Behav. 2019, 158, 65–75. [Google Scholar] [CrossRef]
- Schuelke, M.; Wagner, K.R.; Stolz, L.E.; Hübner, C.; Riebel, T.; Kömen, W.; Braun, T.; Tobin, J.F.; Lee, S.J. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 2004, 350, 2682–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, S.O.; Fang, Q.; Zhou, H.; Hickford, J.G. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 385, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Challies, C.N. Establishment, control, and commercial exploitation of wild deer in New Zealand. In Biology of Deer Production; Fenssey, P.F., Drew, K.R., Eds.; The Royal Society of New Zealand: Wellington, New Zealand, 1985; Bulletin 22; pp. 23–36. [Google Scholar]
- Asher, G.; Berg, D.; Evans, G. Storage of semen and artificial insemination in deer. Anim. Reprod. Sci. 2000, 62, 195–211. [Google Scholar] [CrossRef]
- Fiems, L.O. Double muscling in cattle: Genes, husbandry, carcasses and meat. Animals 2012, 2, 472–506. [Google Scholar] [CrossRef] [PubMed]
- Mendias, C.L.; Bakhurin, K.I.; Faulkner, J.A. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc. Natl. Acad. Sci. USA 2008, 105, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Arnold, H.; Della-fera, M.A.; Baile, C.A. Review of myostatin history, physiology and applications. Int. Arch. Biosci. 2001, 1, 1014–1022. [Google Scholar]
- Bellinge, R.; Liberles, D.; Laschi, S.; O’Brien, P.; Tay, G. Myostatin and its implications on animal breeding: A review. Anim. Genet. 2005, 36, 1–6. [Google Scholar] [CrossRef]
Trait | Raw Data (Mean ± SD) | Predicted Mean ± SE | p Value # | ||
---|---|---|---|---|---|
AA (n = 134) | AB (n = 65) | BB (n = 12) | |||
Eye muscle width (mm) | 109.3 ± 5.23 | 108.9 ± 0.63 | 109.0 ± 0.75 | 109.4 ± 1.58 | 0.961 |
Eye muscle depth (mm) | 41.7 ± 3.20 | 41.5 ± 0.28 | 41.7 ± 0.38 | 41.6 ± 0.83 | 0.932 |
Eye muscle area (cm2) | 32.2 ± 3.20 | 32.2 ± 0.33 | 32.0 ± 0.42 | 32.4 ± 0.91 | 0.857 |
Average daily gain (g/d) | 335.5 ± 23.7 | 335.0 ± 3.15 | 333.6 ± 3.52 | 335.9 ± 7.26 | 0.912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunningham, L.; Zhou, H.; Fang, Q.; Tapley, M.; Hickford, J.G.H. A Preliminary Investigation of Myostatin Gene (MSTN) Variation in Red Deer (Cervus elaphus) and Its Implications for Venison Production in New Zealand. Animals 2022, 12, 1615. https://doi.org/10.3390/ani12131615
Cunningham L, Zhou H, Fang Q, Tapley M, Hickford JGH. A Preliminary Investigation of Myostatin Gene (MSTN) Variation in Red Deer (Cervus elaphus) and Its Implications for Venison Production in New Zealand. Animals. 2022; 12(13):1615. https://doi.org/10.3390/ani12131615
Chicago/Turabian StyleCunningham, Lily, Huitong Zhou, Qian Fang, Mark Tapley, and Jonathan G. H. Hickford. 2022. "A Preliminary Investigation of Myostatin Gene (MSTN) Variation in Red Deer (Cervus elaphus) and Its Implications for Venison Production in New Zealand" Animals 12, no. 13: 1615. https://doi.org/10.3390/ani12131615
APA StyleCunningham, L., Zhou, H., Fang, Q., Tapley, M., & Hickford, J. G. H. (2022). A Preliminary Investigation of Myostatin Gene (MSTN) Variation in Red Deer (Cervus elaphus) and Its Implications for Venison Production in New Zealand. Animals, 12(13), 1615. https://doi.org/10.3390/ani12131615