Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Data Recording
2.2. Genomic DNA Isolation
2.3. PCR Amplification and Genotyping
2.4. Statistical Analyses
3. Results
3.1. Identification of Indel Variations within the CRY2 Gene
3.2. Genotypic Frequencies and Population Genetic Parameters Analysis
3.3. Associations between Different Genotypes and Carcass Traits
3.4. Linkage Disequilibrium Analysis of Different Genotypes in the Bovine CRY2 Gene
3.5. Analysis of the Combined Effect of the CRY2-P6 and CRY2-P67 Loci on Carcass Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Li, G.P. Meat quality traits of cattle and it influence factors. Chin. J. Anim. Nutr. 2019, 31, 4949–4958. (In Chinese) [Google Scholar]
- Liu, R.; Liu, X.; Bai, X.; Xiao, C.; Dong, Y. Different expression of lipid metabolism-related genes in Shandong black cattle and Luxi cattle based on transcriptome analysis. Sci. Rep. 2020, 10, 21915. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, H.A.; Kwan, P.; Clark, S.A.; Ferdosi, M.H.; Tellam, R.; Gondro, C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol. 2015, 47, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macé, T.; González-García, E.; Pradel, J.; Parisot, S.; Carrière, F.; Douls, S.; Foulquié, D.; Hazard, D. Genetic analysis of robustness in meat sheep through body weight and body condition score changes over time. J. Anim. Sci. 2018, 96, 4501–4511. [Google Scholar] [CrossRef]
- Ren, F.; Yu, S.; Chen, R.; Lv, X.; Pan, C. Identification of a novel 12-bp insertion/deletion (indel) of iPS-related Oct4 gene and its association with reproductive traits in male piglets. Anim. Reprod. Sci. 2017, 178, 55–60. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Yuan, T.; Sun, X. Genetic effects of FTO gene insertion/deletion (InDel) on fat-tail measurements and growth traits in Tong sheep. Anim. Biotechnol. 2021, 32, 229–239. [Google Scholar] [CrossRef]
- Xin, D.; Bai, Y.; Bi, Y.; He, L.; Kang, Y.; Pan, C.; Zhu, H.; Chen, H.; Qu, L.; Lan, X. Insertion/deletion variants within the IGF2BP2 gene identified in reported genome-wide selective sweep analysis reveal a correlation with goat litter size. J. Zhejiang Univ.-Sci. B 2021, 22, 757–766. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Meng, T.; Zhang, J.; Wei, Y.; Meng, Z.; Lin, Y.; Liu, D.; Sui, L. KDM6A promotes, chondrogenic differentiation of periodontal ligament stem cells by deme-thylation of SOX9. Cell Prolif. 2018, 51, e12413. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Sancar, A. Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. Proc. Natl. Acad. Sci. USA 2011, 108, 10668–10672. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Patel, M.S.; Bradley, A.; Wagner, E.F.; Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 2005, 122, 803–815. [Google Scholar] [CrossRef] [Green Version]
- Van der Horst, G.T.; Muijtjens, M.; Kobayashi, K.; Takano, R.; Kanno, S.; Takao, M.; de Wit, J.; Verkerk, A.; Eker, A.P.; van Leenen, D.; et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999, 398, 627–630. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.; Kwon, I.; Nakajima, Y.; Ohmiya, Y.; Son, G.H.; Lee, K.H.; Kim, K. Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. J. Cell Sci. 2010, 123, 3547–3557. [Google Scholar] [CrossRef] [Green Version]
- Sahar, S.; Sassone-Corsi, P. Regulation of metabolism: The circadian clock dictates the time. Trends Endocrinol. Metab. 2012, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.J.; Andrews, J.L.; McDearmon, E.L.; Campbell, K.S.; Barber, B.K.; Miller, B.H.; Walker, J.R.; Hogenesch, J.B.; Takahashi, J.S.; Esser, K.A. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genom. 2007, 31, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Vitaterna, M.H.; Selby, C.P.; Todo, T.; Niwa, H.; Thompson, C.; Fruechte, E.M.; Hitomi, K.; Thresher, R.J.; Ishikawa, T.; Miyazaki, J.; et al. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 1999, 96, 12114–12119. [Google Scholar] [CrossRef] [Green Version]
- Bur, I.M.; Cohen-Solal, A.M.; Carmignac, D.; Abecassis, P.Y.; Chauvet, N.; Martin, A.O.; van der Horst, G.T.; Robinson, I.C.; Maurel, P.; Mollard, P.; et al. The circadian clock components CRY1 and CRY2 are necessary to sustain sex dimorphism in mouse liver metabolism. J. Biol. Chem. 2009, 284, 9066–9073.e4. [Google Scholar] [CrossRef] [Green Version]
- Chaix, A.; Lin, T.; Le, H.D.; Chang, M.W.; Panda, S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019, 29, 303–319. [Google Scholar] [CrossRef]
- Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72, 517–549. [Google Scholar] [CrossRef] [Green Version]
- Maury, E.; Ramsey, K.M.; Bass, J. Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circ. Res. 2010, 106, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Bass, J.; Lazar, M.A. Circadian time signatures of fitness and disease. Science 2016, 354, 994–999. [Google Scholar] [CrossRef] [Green Version]
- Panda, S. Circadian physiology of metabolism. Science 2016, 354, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef] [Green Version]
- Sahar, S.; Sassone-Corsi, P. Metabolism and cancer: The circadian clock connection. Nat. Rev. Cancer 2009, 9, 886–896. [Google Scholar] [CrossRef]
- Gauger, M.A.; Sancar, A. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 2005, 65, 6828–6834. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Gaddameedhi, S.; Ozturk, N.; Ye, R.; Sancar, A. DNA damage-specific control of cell death by cryptochrome in p53-mutant ras-transformed cells. Cancer Res. 2013, 73, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Li, H.; Zhang, H.; Wang, S.Z.; Wang, Q.G.; Wang, Y.X. Identification of a single nucleotide polymorphism of the insulin-like growth factor binding protein 2 gene and its association with growth and body composition traits in the chicken. J. Anim. Sci. 2006, 84, 2902–2906. [Google Scholar] [CrossRef] [Green Version]
- Köchl, S.; Niederstätter, H.; Parson, W. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods Mol. Biol. 2005, 297, 13–30. [Google Scholar] [CrossRef]
- Lan, X.Y.; Pan, C.Y.; Chen, H.; Zhang, C.L.; Li, J.Y.; Zhao, M.; Lei, C.Z.; Zhang, A.L.; Zhang, L. An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 2007, 73, 8–12. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.; Ma, L.; Xu, H.; Cao, X.; Luo, R.; Chen, H.; Sun, X.; Cai, Y.; Lan, X. Detection of a new 20 bp insertion/deletion (indel) within sheep PRND gene using mathematical expectation (ME) method. Prion 2017, 11, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, H.; Kang, Z.; Cai, H.; Dang, R.; Lei, C.; Chen, H.; Guo, X.; Lan, X. Bovine pituitary homeobox 2 (PITX2): mRNA expression profiles of different alternatively spliced variants and association analyses with growth traits. Gene 2018, 669, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Škrlec, I.; Talapko, J.; Juzbašić, M.; Steiner, R. Sex Differences in Circadian Clock Genes and Myocardial Infarction Susceptibility. J. Cardiovasc. Dev. Dis. 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Phua, W.W.T.; Tan, W.R.; Yip, Y.S.; Hew, I.D.; Wee, J.W.K.; Cheng, H.; Leow, M.K.S.; Wahli, W.; Tan, N.S. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; Rabaiolli, S.M.D.S.; Stefanel, C.M. Determining the Polymorphism Information Content of a molecular marker. Gene 2020, 726, 144175. [Google Scholar] [CrossRef]
- Hastings, M.H.; Reddy, A.B.; Maywood, E.S. A clockwork web: Circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci. 2003, 4, 649–661. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Peschke, E.; Peschke, D.; Hammer, T.; Csernus, V. Influence of melatonin and serotonin on glucose-stimulated insulin release from perifused rat pancreatic islets in vitro. J. Pineal Res. 1997, 23, 156–163. [Google Scholar] [CrossRef]
- Picinato, M.C.; Haber, E.P.; Cipolla-Neto, J.; Curi, R.; de Oliveira Carvalho, C.R.; Carpinelli, A.R. Melatonin inhibits insulin secretion and decreases PKA levels without interfering with glucose metabolism in rat pancreatic islets. J. Pineal Res. 2002, 33, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.; Lage, J.; Paatela, E.; Munson, D.; Hostager, R.; Yuan, C.; Katoku-Kikyo, N.; Ruiz-Estevez, M.; Asakura, Y.; Staats, J.; et al. CRY2 Is Critical for Circadian Regulation of Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of Cyclin D1 and Tmem176b. Cell Rep. 2018, 22, 2118–2132. [Google Scholar] [CrossRef] [Green Version]
- Bekki, H.; Duffy, T.; Okubo, N.; Olmer, M.; Alvarez-Garcia, O.; Lamia, K.; Kay, S.; Lotz, M. Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis. Osteoarthr. Cartil. 2020, 28, 966–976. [Google Scholar] [CrossRef]
Names | Primer Sequences (5′ to 3′) | Product Sizes (bp) | Location |
---|---|---|---|
P1-5-bp del | F:CCCCACCACCAAAAAAAG R:TGGATGGATGGCATCACC | 197/192 | intron 1 |
P2-20-bp ins | F:GCCAGGAGGCCACAATCTG R:ACCATGAGCCATAAACTTCCCA | 227/247 | intron 1 |
P3-5-bp del | F:TCCTTCTCCAACGTATGAAAGT R:GAGACACAAGAGATGAGGGTTC | 199/194 | intron 1 |
P4-15-bp del | F:CTGGAGTCGTCCCTCATTGG R:AGGTCTCACGATGACCTCCA | 245/230 | intron 1 |
P5-8-bp ins | F: TTTCCTCCTGAGAGGACGGT R: CATTCTGGCACGAGCTGAGT | 250/258 | intron 1 |
P6-24-bp del | F:AACTGAGAAGGTAAAGCCCTCC R:AGGCAAATACCTCTGCAACC | 244/220 | intron 5 |
P7-6-bp ins | F:GGGTTCGAGGAAATAGAGTGAGG R:GCCATCAGGTAGGAAACACCT | 306/312 | intron 5 |
P8-13-bp del | F:GACACGGGCCGTCCTAAC R:TCCGGGAAATCAAACGAGGC | 227/214 | intron 11 |
Population Genetic Parameters | Formula | Purpose |
---|---|---|
Ho | Estimation of allele homozygosity | |
He | Estimation of allele heterozygosity | |
Ne | Reflecting the interaction between alleles | |
PIC | Estimation of marker gene polymorphism |
Loci | Sizes | Genotypic Frequencies | Allelic Frequencies | HWE | Population Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|
II | ID | I | D | p-Values | Ho | He | Ne | PIC | ||
CRY2-P6 | 705 | 0.933 (n = 658) | 0.067 (n = 47) | 0.967 | 0.033 | p > 0.05 | 0.936 | 0.064 | 1.069 | 0.062 |
CRY2-P7 | 702 | 0.622 (n = 437) | 0.378 (n = 265) | 0.811 | 0.189 | p < 0.05 | 0.694 | 0.306 | 1.441 | 0.259 |
Carcass Traits | Observed Genotypes (MEAN ± SE) | p-Value | |
---|---|---|---|
II | ID | ||
Male (n = 195) | |||
Gross weight (kg) | 765.36 ± 7.93 (n = 181) | 669.73 ± 24.90 (n = 11) | 0.004 |
Back tendon (kg) | 0.85 ± 0.02 (n = 91) | 0.72 ± 0.05 (n = 6) | 0.041 |
Chuck tender (kg) | 3.60 ± 0.07 (n = 91) | 2.71 ± 0.21 (n = 6) | 0.002 |
Right limbs weight (kg) | 230.41 ± 3.14 (n = 91) | 201.00 ± 15.02 (n = 5) | 0.036 |
Money tendon (kg) | 1.49 ± 0.03 (n = 91) | 1.15 ± 0.13 (n = 6) | 0.002 |
Flank steak (kg) | 7.69 ± 0.13 (n = 90) | 6.13 ± 0.48 (n = 6) | 0.004 |
Triangle flank (kg) | 7.13 ± 0.13 (n = 106) | 6.08 ± 0.35 (n = 9) | 0.020 |
Ribeye (kg) | 12.38 ± 0.19 (n = 105) | 11.09 ± 0.32 (n = 10) | 0.044 |
High rib (kg) | 18.72 ± 0.48 (n = 106) | 13.25 ± 1.56 (n = 10) | 0.001 |
Beef tenderloin (kg) | 6.10 ± 0.09 (n = 103) | 5.69 ± 0.12 (n = 10) | 0.012 |
Female (n = 512) | |||
Chuck tender (kg) | 3.01 ± 0.03 (n = 376) | 2.79 ± 0.11 (n = 33) | 0.034 |
Thick flank (kg) | 11.41 ± 0.12 (n = 376) | 10.38 ± 0.38 (n = 33) | 0.017 |
Right limbs weight (kg) | 209.08 ± 1.75 (n = 377) | 196.60 ± 5.38 (n = 33) | 0.042 |
Boneless short ribs (kg) | 1.24 ± 0.02 (n = 372) | 1.10 ± 0.06 (n = 32) | 0.033 |
Carcass Traits | Observed Genotypes (MEAN ± SE) | p-Value | |
---|---|---|---|
II | ID | ||
Male (n = 195) | |||
Beef tongue (kg) | 1.44 ± 0.07 (n = 59) | 1.28 ± 0.04 (n = 33) | 0.040 |
The length of ribeye (cm) | 9.54 ± 0.53 (n = 8) | 7.38 ± 0.46 (n = 5) | 0.017 |
Brisket (kg) | 9.24 ± 0.34 (n = 68) | 7.69 ± 0.43 (n = 46) | 0.005 |
Female (n = 512) | |||
Meat tendon (kg) | 4.74 ± 0.40 (n = 186) | 6.00 ± 0.47 (n = 117) | 0.045 |
Shoulder clod (kg) | 1.18 ± 0.03 (n = 255) | 1.28 ± 0.04 (n = 150) | 0.021 |
Gender | Combined Genotype Name | Combined Genotype Type | Genotype Frequency |
---|---|---|---|
Male | Combined-1 | II-II | 0.566 |
Combined-2 | II-ID | 0.377 | |
Combined-3 | ID-II | 0.047 | |
Combined-4 | ID-ID | 0.010 | |
Female | Combined-1 | II-II | 0.571 |
Combined-2 | II-ID | 0.360 | |
Combined-3 | ID-II | 0.055 | |
Combined-4 | ID-ID | 0.014 |
Weight of Carcass Traits | Combined Genotype (MEAN ± SE) | p-Value | ||
---|---|---|---|---|
II-II | II-ID | ID-II | ||
Male (n = 195) | ||||
Gross weight (kg) | 769.97 a ± 10.18 (n = 108) | 760.32 a ± 12.86 (n = 72) | 671.67 b ± 30.48 (n = 9) | 0.033 |
Money tendon (kg) | 1.49 a ± 0.04 (n = 57) | 1.48 a ± 0.39 (n = 33) | 1.14 b ± 0.16 (n = 5) | 0.025 |
Chuck tender (kg) | 3.61 a ± 0.09 (n = 57) | 3.52 b ± 0.10 (n = 33) | 2.93 b ± 0.12 (n = 5) | 0.019 |
Flank steak (kg) | 7.77 a ± 0.16 (n = 57) | 7.56 a ± 0.23 (n = 32) | 6.39 b ± 0.49 (n = 5) | 0.018 |
Brisket (kg) | 9.66 a ± 0.32 (n = 59) | 7.69 ab ± 0.43 (n = 45) | 7.31 b ± 1.38 (n = 7) | 0.001 |
Triangle flank (kg) | 7.42 a ± 0.16 (n = 60) | 6.72 ab ± 0.19 (n = 45) | 6.10 b ± 0.40 (n = 8) | 0.004 |
High rib (kg) | 19.32 a ± 0.63 (n = 61) | 17.71 a ± 0.75 (n = 44) | 13.79 b ± 1.71 (n = 8) | 0.004 |
Weight of Carcass Traits | Combined Genotype (LSMa ± SE) | p-Value | |||
---|---|---|---|---|---|
II-II | II-ID | ID-II | ID-ID | ||
Female (n = 506) | |||||
Gross weight (kg) | 688.74 a ± 4.81 (n = 287) | 672.02 b ± 6.13 (n = 182) | 650.50 b ± 11.77 (n = 28) | 679.43 ab ± 41.60 (n = 7) | 0.034 |
Left limbs weight (kg) | 210.15 a ± 2.09 (n = 231) | 205.75 a ± 2.92 (n = 144) | 191.37 b ± 4.91 (n = 26) | 211.33 ab ± 16.61 (n = 6) | 0.041 |
Right limbs weight (kg) | 210.66 ab ± 2.16 (n = 231) | 206.42 ab ± 2.99 (n = 144) | 190.73 ac± 5.05 (n = 26) | 210.92 a ± 15.80 (n = 6) | 0.035 |
Chuck tender (kg) | 3.00 ab ± 0.04 (n = 231) | 3.02 ab ± 0.05 (n = 143) | 2.67 ac ± 0.11 (n = 26) | 3.14 a ± 0.33 (n = 6) | 0.034 |
Thick flank (kg) | 11.37 a ± 0.16 (n = 231) | 11.47 a ± 0.19 (n = 143) | 10.02 b ± 0.38 (n = 26) | 11.06 ab ± 0.93 (n = 6) | 0.037 |
Shoulder clod (kg) | 1.17 b ± 0.03 (n = 230) | 1.20 b ± 0.0 4 (n = 144) | 1.20 b ± 0.11 (n = 25) | 1.99 a± 0.22 (n = 6) | 3.9 × 105 |
Flank steak (kg) | 6.82 a ± 0.09 (n = 230) | 6.75 a ± 0.11 (n = 140) | 6.10 b ± 0.25 (n = 26) | 7.52 a ± 0.54 (n = 6) | 0.029 |
Outside flat (kg) | 18.16 ab ± 0.49 (n = 224) | 18.00 ab ± 0.66 (n = 139) | 13.75 ac ± 1.44 (n = 26) | 17.17 a ± 1.42 (n = 6) | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Jiang, E.; Zhang, K.; Zhang, S.; Jiang, F.; Song, E.; Chen, H.; Guo, P.; Lan, X. Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits. Animals 2022, 12, 1616. https://doi.org/10.3390/ani12131616
Li X, Jiang E, Zhang K, Zhang S, Jiang F, Song E, Chen H, Guo P, Lan X. Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits. Animals. 2022; 12(13):1616. https://doi.org/10.3390/ani12131616
Chicago/Turabian StyleLi, Xuelan, Enhui Jiang, Kejing Zhang, Sihuan Zhang, Fugui Jiang, Enliang Song, Hong Chen, Peng Guo, and Xianyong Lan. 2022. "Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits" Animals 12, no. 13: 1616. https://doi.org/10.3390/ani12131616
APA StyleLi, X., Jiang, E., Zhang, K., Zhang, S., Jiang, F., Song, E., Chen, H., Guo, P., & Lan, X. (2022). Genetic Variations within the Bovine CRY2 Gene Are Significantly Associated with Carcass Traits. Animals, 12(13), 1616. https://doi.org/10.3390/ani12131616