Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Oilseeds, Experimental Birds, and Management
2.2. Sample Collection and Chemical Analyses
2.3. Analysis of Haematological Parameters and Blood Minerals
2.4. Statistical Analysis
3. Results
3.1. Carcass Composition
3.2. Basic Nutrients and Mineral Elements in Broiler Chicken Muscles and Organs
3.3. Haematological Indices and Blood Minerals in Broiler Chickens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W. The nutritional value and content of mineral elements in meat of broiler chicken feed diets supplemented with Boswellia serrata. J. Elem. 2017, 22, 1027–1037. [Google Scholar]
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W. The Boswellia serrata resin in broiler chicken diets and mineral elements content and meat nutritional value. Biol. Trace Elem. Res. 2017, 179, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciurescu, G.; Ropota, M.; Toncea, I.; Habeanu, M. Camelia (Camelina sativa L. Crantz Variety) Oil and Seeds as n-3 Fatty Acids Rich Products in Broiler Diets and Its Effects on Performance, Meat Fatty Acid Composition, Immune Tissue Weights, and Plasma Metabolic Profile. J. Agric. Sci. Technol. 2016, 18, 315–326. [Google Scholar]
- Kiczorowska, B.; Samolińska, W.; Andrejko, D. Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat. Anim. Sci. J. 2016, 87, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Kiczorowska, B.; Samolinska, W.; Grela, E.R.; Andrejko, D. Effect of infrared-irradiated pea seeds in mixtures for broilers on the health status and selected performance indicators of the birds. Med. Wet. 2015, 71, 583–588, (Summary In Polish). [Google Scholar]
- Mengesha, M. The issue of feed-food competition and chicken production for the demands of foods of animal origin. Asian J. Poult. Sci. 2012, 6, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Antosik, K. Nutritional value of traditional food. Zesz. Nauk. Uczel. Vistula Tur. III 2017, 54, 214–222, (Summary In Polish). [Google Scholar]
- Rosiak, E. World and Polish production of oilseed and linseed oil. Zesz. Nauk. SGGW. Probl. Rol. Swiat. 2018, 18, 214–223, (Summary In Polish). [Google Scholar]
- Kiczorowska, B.; Samolińska, W.; Andrejko, D.; Kiczorowski, P.; Antoszkiewicz, Z.; Zając, M.; Winiarska-Mieczan, A.; Bąkowski, M. Comparative analysis of selected bioactive components (fatty acids, tocopherols, carotenoides, polyphenols) with nutritional and functional properties in processed traditional oil seeds (Camelina sativa L. Crantz, Helianthus L., Linum L.). J. Food Sci. Technol. 2019, 56, 4296–4310. [Google Scholar] [CrossRef] [Green Version]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Ryhänen, E.L.; Perttilä, S.; Tupasela, T.; Valaja, J.; Eriksson, C.; Larkka, K. Effect of Camelina sativa Expeller Cake on Performance and Meat Quality of Broilers. J. Sci. Food Agric. 2007, 87, 1489–1494. [Google Scholar] [CrossRef]
- Rama Rao, S.V.; Raju, M.V.L.N.; Panda, A.K.; Reddy, M.R. Sunflower seed meal as a substitute for soybean meal in commercial broiler chicken diets. Brit. Poultry Sci. 2006, 47, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Alagawany, M.; Farag, M.R.; Abd El-Hack, M.E.; Dhama, K. The practical application of sunflower meal in poultry nutrition. Adv. Anim. Vet. Sci. 2015, 3, 634–648. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Leeson, S. Alternatives for Enrichment of Eggs and Chicken Meat with Omega-3 Fatty Acids. Can. J. Anim. Sci. 2001, 81, 295–305. [Google Scholar] [CrossRef]
- Woyengo, T.A.; Beltranena, E.; Zijlstra, R.T. Effect of anti-nutritional factors of oilseed co-products on feed intake of pigs and poultry. Anim. Feed. Sci. Technol. 2017, 233, 76–86. [Google Scholar] [CrossRef]
- Hamid, N.T.; Kumar, P. Anti-nutritional factors, their adverse effects and need for adequate processing to reduce them in food. Agricinternational 2017, 4, 56–60. [Google Scholar] [CrossRef]
- Laudadio, V.; Tufarelli, V. Growth performance and carcass and meat quality of broiler chickens fed diets containing micronized-dehulled peas (Pisum sativum cv. Spirale) as a substitute of soybean meal. Poult. Sci. 2010, 89, 1537–1543. [Google Scholar] [CrossRef]
- Aviagen. Ross Broiler Management Handbook. Retrieved on 10 April 2016. 2014. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-Broiler-Handbook-2014i-EN.pdf (accessed on 10 July 2019).
- Aviagen. Ross 308 Broiler: Nutrition specifications. Retrieved on 10 April 2016. 2014. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross308Broiler NutritionSpecs2014-EN.pdf (accessed on 10 July 2019).
- Ziołecki, J.; Doruchowski, W. The Method of Assessment of Slaughter Poultry; COBRD Publishing: Poznań, Poland, 1989. (In Polish) [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Official methods of analysis of AOAC (AOAC). Method 969.33, Fatty Acids in Oils and Fats. Preparation of Methyl Esters. Boron Trifluoride Method/AOACIUPAC Method, 13th ed.; Helrich, K., Ed.; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Wu, H.Q.; Huang, X.L.; Lin, X.S.; Huang, F.; Zhu, Z.X.; Ma, Y.F. Chromatographic retention time rule mass spectrometric fragmentation rule of fatty acids its Chinese. J. Anal. Chem. 2007, 35, 998–1003. [Google Scholar]
- Delgado-Zamarreno, M.M.; Bustamante-Rangel, M.; Sanchez-Perez, A.; Hernandez-Mendez, J. Analysis of vitamin E isomers in seeds and nuts with and without coupled hydrolysis by liquid chromatography and coulometric detection. J. Chromatogr. A 2001, 935, 77–86. [Google Scholar] [CrossRef]
- Arnoldi, A. Thermal processing and foods quality: Analysis and Control. In Thermal Technologies in Food Processing; Richardson, P., Ed.; Woodhead Publishing: Cambridge, UK, 2001. [Google Scholar]
- Polish Standard PN-EN ISO 6869; Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- Polish Standard PN-76/R-64781; Feed. Determination of Phosphorus Content. Polish Committee for Standardization: Warsaw, Poland, 1976. (In Polish)
- World’s Poultry Science Association (WPSA). European Table of Energy Values for Poultry Feedstuffs, 1st ed.; Subcommittee Energy of the Working Group no. 2; Nutrition of the European Federation of Branches of the WPSA: Wageningen, The Netherlands, 1986. [Google Scholar]
- UE Low. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004, Annex XIV ‘Conversion Rates’. 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?ur i=OJ:L:2011:304:0018:0063:EN:PDF/ (accessed on 23 March 2022).
- Campbell, T.W. (Ed.) Avian Hematology and Cytology, 2nd ed.; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Reece, W.O. The composition and functions of blood. In Dukes’ Physiology of Domestic Animals, 13th ed.; Reece, W.O., Erickson, H.H., Goff, J.P., Uemura, E.E., Eds.; Wiley Blackwell: New York, NY, USA, 2015; pp. 114–136. [Google Scholar]
- Zając, M.; Kiczorowska, B.; Samolińska, W.; Kowalczyk-Pecka, D.; Andrejko, D.; Kiczorowski, P. Effect of inclusion of micronized camelina, sunflower, and flax seeds in the broiler chicken diet on performance productivity, nutrient utilization, and intestinal microbial populations. Poult. Sci. 2021, 100, 101118. [Google Scholar] [CrossRef]
- Junghanns, M.K.; Coles, B.H. Aids to Diagnosis. Essentials of Avian Medicine and Surgery, 3rd ed.; Blackwell Publishing Ltd.: Oxford, UK, 2008. [Google Scholar]
- Scanes, C.G. Blood. In Sturkie’s Avian Physiology, 6th ed.; Scanes, C.G., Ed.; Academic Press: London, UK, 2015; pp. 167–191. [Google Scholar]
- Russo, R.; Reggiani, R. Antinutritive compounds in twelve Camelina sativa genotypes. Am. J. Plant Sci. 2012, 3, 1408–1412. [Google Scholar] [CrossRef] [Green Version]
- Parveen, R.; Khan, M.I.; Anjum, F.M.; Sheikh, M.A. Investigating potential roles of extruded flaxseed and α-tocopherol acetate supplementation for production of healthier broiler meat. Br. Poult. Sci. 2016, 57, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Anjum, F.M.; Haider, M.F.; Khan, M.I.; Sohaib, M.I.; Arshad, M. Impact of extruded flaxseed meal supplemented diet on growth performance, oxidative stability and quality of broiler meat and meat products. Lipids Health Dis. 2013, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.-M.; Lai, S.-J.; Lu, L.-Z.; Shi, F.-X.; Zhang, J.; Liu, L.; Yu, Y.; Tao, Z.-R.; Shen, J.-D.; Li, G.-Q.; et al. Effect of dietary fatty acids on serum parameters, fatty acid compositions, and liver histology in Shaoxing laying ducks. J. Zhejiang Univ. Sci. B 2011, 12, 736–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietras, M.P.; Orczewska, S.D. The effect of dietary camelina sativa oil on quality of broiler chicken meat. Ann. Anim. Sci. 2013, 4, 869–882. [Google Scholar] [CrossRef]
- Jakubowska, M.; Gardzielewska, J.; Szczerbińska, D.; Karamucki, T.; Tarasewicz, Z.; Ligocki, M. Effect of flax seed in feed on the quality of quail meat. Acta Sci. Pol. Zootech. 2012, 11, 41–52. [Google Scholar]
- Yasin, M.; Asghar, A.; Anjum, F.M.; Butt, M.S.; Khan, M.I.; Arshad, M.S.; Shahid, M.; El-Ghorab, A.H.; Shibamoto, T. Oxidative stability enhancement of broiler bird meats with α-lipoic acid and α-tocopherol acetate supplemented feed. Food Chem. 2012, 131, 768–773. [Google Scholar] [CrossRef]
- Sanz, M.; Lopez-Bote, C.J.; Menoyo, D.; Bautista, J.M. Abdominal fat deposition and fatty acid synthesis are lower and β-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J. Nutr. 2000, 130, 3034–3037. [Google Scholar] [CrossRef]
- Sanz, M.; Flores, A.; Lopez-Bote, C.J. The metabolic use of energy from dietary fat in broilers is affected by fatty acid saturation. Br. Poult. Sci. 2000, 41, 61–68. [Google Scholar] [CrossRef]
- Zhaleh, S.; Golian, A.; Zerehdaran, S. Effect of rolled or extruded flaxseeds in finisher diet on pellet quality, performance, and n-3 fatty acids in breast and thigh muscles of broiler chickens. Poult. Sci. J. 2019, 7, 63–75. [Google Scholar]
- Gümüş, E.; Küçükersan, S.; Bayraktaroğlu, A.; Sel, T. The effect of dietary supplementation of natural antioxidants and coated calcium butyrate on carcass traits, serum biochemical parameters, lipid peroxidation in meat and intestinal histomorphology in broilers. Ank. Univ. Vet. Fak. Derg. 2021, 68, 237–244. [Google Scholar] [CrossRef]
- Zając, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R. Inclusion of Camelina, Flax, and Sunflower Seeds in the Diets for Broiler Chickens: Apparent Digestibility of Nutrients, Growth Performance, Health Status, and Carcass and Meat Quality Traits. Animals 2020, 10, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Króliczewska, B.; Miśta, D.; Ziarnik, A.; Żuk, M.; Szopa, J.; Pecka-Kiełb, E.; Zawadzki, W.; Króliczewski, J. The effects of seed from Linum usitatissimum cultivar with increased phenylpropanoid compounds and hydrolysable tannin in a high cholesterol-fed rabbit. Lipids Health Dis. 2018, 17, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, J. Plant Cyanogenic Glycosides. Toxicon 2000, 38, 11–36. [Google Scholar] [CrossRef]
- Berhow, M.A.; Polat, U.; Gliński, J.A.; Glensk, M.; Vaughn, S.F.; Isbell, T.; Ayala, D.; Marek, L.; Gardner, C. Optimized analysis and quantification of glucosinolates from Camelina sativa seeds by reverse-phase liquid chromatography. Ind. Crops Prod. 2013, 43, 119–125. [Google Scholar] [CrossRef]
- Bhatty, R.S. Further compositional analyses of flax: Mucilage, trypsin inhibitors and hydrocyanic acid. J. Am. Oil Chem. Soc. 1993, 70, 899–904. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Contaminats in the Food Chain on a Request from the Commision Related to Cyanogenic Compounds as Undesirable Substances in Animal Feed. EFSA J. 2007, 434, 1–67. [Google Scholar]
- Cotzias, G.C. Importance of trace substances in environmental health as exemplified by manganese. Trace Sub. Environ. Health 1967, 1, 5–19. [Google Scholar]
- Reinhold, J.G. Trace elements: A selective survey. Clin. Chem. 1975, 21, 476–500. [Google Scholar] [CrossRef]
- Ponka, P.; Tenenbein, M.; Eaton, J.W. Chapter 41—Iron. In Handbook on the Toxicology of Metals, 4th ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: Cambridge, MA, USA, 2015; ISBN 9780444594532. [Google Scholar]
Compounds | Camelina | Flax | Sunflower | SEM 2 |
---|---|---|---|---|
Basic nutrients, g/kg dry matter | ||||
Dry matter | 949.3 | 967.5 | 973.1 | 5.33 |
Crude ash | 41.5 | 36.4 | 35.6 | 0.07 |
Crude protein 1 | 209.2 | 218.3 | 189.4 | 3.41 |
Ether extract | 403.8 | 422.9 | 531.7 | 4.52 |
Crude fibre | 83.5 | 39.1 | 36.6 | 0.73 |
Fatty acids, g/100 g ether extract | ||||
C16 | 6.51 | 6.49 | 9.73 | 0.06 |
C18 | 3.59 | 5.63 | 4.55 | 0.09 |
C16:1 | 0.09 | 0.09 | 0.08 | <0.01 |
C18:1 | 15.33 | 16.82 | 28.49 | 0.06 |
C18:2 | 16.42 | 15.29 | 57.63 | 0.38 |
C18:3 | 31.98 | 55.47 | 0.08 | 0.77 |
SFA 3 | 13.37 | 12.48 | 12.17 | 0.05 |
MUFA 4 | 33.87 | 17.85 | 28.34 | 0.31 |
PUFA 5 | 53.12 | 70.47 | 58.64 | 0.82 |
Minerals, mg/100 g natural matter | ||||
Ca | 368.2 | 119.2 | 276.3 | 8.37 |
P | 738.1 | 68.3 | 653.7 | 21.9 |
Mg | 398.7 | 44.6 | 325.1 | 13.7 |
Cu | 1.16 | 1.37 | 0.69 | 0.03 |
Fe | 14.1 | 5.41 | 8.43 | 0.21 |
Zn | 7.15 | 5.09 | 4.74 | 0.11 |
Bioactive components, total in fresh matter | ||||
Tocopherols, μg/g | 378.9 | 187.3 | 142.3 | 4.18 |
Xanthophyll, μg/g | 37.3 | 15.3 | 29.8 | 0.13 |
Phenolics, mg/100 g | 648.7 | 76.7 | 167.8 | 0.25 |
Component | Diets 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Starter (0 to 21 Days) | Grower (21 to 35 Days) | Finisher (35 to 42 Days) | ||||||||||
Control | CAM.IR | FLA.IR | SUN.IR | Control | CAM.IR | FLA.IR | SUN.IR | Control | CAM.IR | FLA.IR | SUN.IR | |
Diet Composition, % | ||||||||||||
Wheat | 20.0 | 23.0 | 23.0 | 23.0 | 23.0 | 27.0 | 27.0 | 27.0 | 27.0 | |||
Soybean meal, 46% CP 2 | 39.4 | 35.7 | 28.9 | 30.9 | 30.4 | 31.3 | 25.3 | 27.3 | 26.8 | |||
Maize | 30.04 | 30.0 | 29.03 | 27.03 | 27.53 | 29.93 | 28.95 | 26.95 | 27.45 | |||
Soybean oil | 6.0 | 7.0 | 8.0 | |||||||||
Camelina seeds 3 | 15.0 | 15.0 | ||||||||||
Flax seeds 3 | 15.0 | 15.0 | ||||||||||
Sunflower seeds 3 | 15.0 | 15.0 | ||||||||||
Dicalcium phosphate | 1.83 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | 1.80 | |||
Limestone | 1.20 | 1.00 | 1.00 | 1.00 | 1.00 | 0.70 | 0.70 | 0.70 | 0.70 | |||
NaCl | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | |||
DL-Met 4 | 0.36 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | |||
L-Lys 5 | 0.34 | 0.34 | 0.36 | 0.36 | 0.36 | 0.36 | 0.34 | 0.34 | 0.34 | |||
Vitamin-mineral premix 6 | 0.50 | 0.50 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | |||
Sum, % | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | |||
Chemical composition, g/kg | ||||||||||||
MEn (MJ/kg) 7 | 12.45 | 13.01 | 12.98 | 13.02 | 13.09 | 13.35 | 13.20 | 13.25 | 13.28 | |||
Gross energy (MJ/kg) | ||||||||||||
CP 2 | 221.3 | 209.2 | 206.2 | 205.1 | 207.8 | 191.5 | 195.4 | 195.1 | 197.8 | |||
Lys | 14.29 | 12.75 | 12.79 | 12.53 | 12.82 | 11.57 | 11.16 | 11.75 | 11.62 | |||
Met + Cys | 10.51 | 9.68 | 9.74 | 9.31 | 9.82 | 8.92 | 8.79 | 8.65 | 9.10 | |||
Thr | 0.97 | 0.98 | 0.97 | 0.98 | 0.98 | 0.73 | 0.74 | 0.73 | 0.75 | |||
Trp | 0.23 | 0.12 | 0.10 | 0.11 | 0.13 | 0.17 | 0.17 | 0.16 | 0.15 | |||
Val | 1.10 | 1.00 | 0.97 | 0.98 | 0.99 | 0.84 | 0.85 | 0.83 | 0.84 | |||
Ca | 9.84 | 8.87 | 8.56 | 8.28 | 8.69 | 7.86 | 7.86 | 7.97 | 8.02 | |||
P | 6.61 | 6.29 | 6.65 | 6.53 | 6.37 | 6.21 | 6.57 | 6.59 | 6.61 |
Items | Treatments 2 | Statistical Parameters | ||||
---|---|---|---|---|---|---|
Control | CAM.IR | FLA.IR | SUN.IR | SEM 3 | p-Value 4 | |
Slaughter parameters | ||||||
Dressing percentage, % | 76.6 | 77.6 | 77.2 | 77.8 | 3.28 | 0.151 |
Abdominal fat, % 5 | 0.59 a | 0.38 b | 0.42 b | 0.44 b | 0.12 | 0.016 |
Muscle weight, % 5 | ||||||
Breast muscle | 20.5 b,c | 21.39 a,b | 23.4 a | 18.73 c | 2.64 | 0.019 |
Thigh muscle | 7.79 b | 8.71 a | 7.91 a,b | 8.70 a | 1,36 | 0.022 |
Drumstick muscle | 5.90 a,b | 5.77 a,b | 6.12 a | 5.71 b | 0.28 | 0.031 |
Organ weight, % 5 | ||||||
Liver | 1.84 | 1.77 | 1.80 | 2.12 | 0.44 | 0.293 |
Proventriculus | 10.04 b | 1.11 a,b | 1.14 a,b | 1.18 a | 0.38 | 0.027 |
Heart | 0.43 | 0.45 | 0.43 | 0.42 | 0.01 | 0.168 |
Items | Treatments 2 | Statistical Parameters | ||||
---|---|---|---|---|---|---|
Control | CAM.IR | FLA.IR | SUN.IR | SEM 3 | p-Value 4 | |
Breast muscle | ||||||
Basic nutrients, g/100 g | ||||||
Dry matter | 26.1 | 25.1 | 23.8 | 24.7 | 0.27 | 0.134 |
Crude protein 5 | 22.3 | 23.2 | 22.9 | 21.8 | 0.26 | 0.127 |
Ether extract 6 | 1.31 a | 1.12 b | 1.15 b | 1.08 b | 0.11 | 0.031 |
Crude ash | 1.21 | 1.19 | 1.18 | 1.20 | 0.08 | 0.153 |
Energy, kcal | 101.0 | 102.9 | 102.0 | 96.9 | 2.86 | 0.067 |
Energy, kJ | 422.8 | 430.7 | 426.8 | 405.8 | 0.45 | 0.098 |
Mineral elements, mg/kg | ||||||
Ca | 28.76 b | 32.15 a | 34.41 a | 28.86 a,b | 0.41 | 0.018 |
Mg | 16.05 | 17.03 | 16.16 | 16.57 | 0.15 | 0.153 |
P | 240.1 | 265.3 | 247.2 | 251.4 | 16.83 | 0.238 |
Cu | 0.044 b | 0.043 b | 0.056 a | 0.047 a,b | 0.03 | 0.041 |
Fe | 0.475 b | 0.503 ab | 0.512 a | 0.483 b | 0.05 | 0.017 |
Zn | 0.513 | 0.523 | 0.517 | 0.534 | 0.04 | 0.238 |
Drumstick muscle | ||||||
Dry matter | 26.5 | 25.3 | 24.1 | 24.6 | 0.11 | 0.167 |
Crude protein 5 | 18.3 | 18.9 | 17.5 | 19.4 | 0.63 | 0.159 |
Ether extract 6 | 7.45 a | 4.75 b | 4.87 b,c | 4.49 c | 0.05 | 0.027 |
Crude ash | 1.12 | 1.09 | 1.04 | 1.08 | 0.07 | 0.151 |
Energy, kcal | 140.3 a | 118.4 b | 113.8 b | 118.0 b | 6.89 | 0.018 |
Energy, kJ | 587.2 a | 495.5 b | 476.6 b | 494.1 b | 0.73 | 0.021 |
Mineral elements, mg/kg | ||||||
Ca | 8.03 | 8.15 | 8.21 | 8.53 | 0.12 | 0.267 |
Mg | 22.09 | 22.18 | 22.54 | 22.12 | 0.53 | 0.152 |
P | 196.1 | 218.1 | 221.4 | 203.4 | 4.41 | 0.171 |
Cu | 0.078 | 0.096 | 0.095 | 0.083 | 0.05 | 0.083 |
Fe | 0.641 b | 0.686 a,b | 0.715 a | 0.643 b | 0.06 | 0.024 |
Zn | 1.527 | 1.521 | 1.534 | 1.544 | 0.05 | 0.326 |
Items | Treatments 2 | Statistical Parameters | ||||
---|---|---|---|---|---|---|
Control | CAM.IR | FLA.IR | SUN.IR | SEM 3 | p-Value 4 | |
Liver | ||||||
Basic nutrients, g/100 g | ||||||
Dry matter | 15.9 | 16.8 | 17.4 | 16.8 | 0.31 | 0.234 |
Crude protein 5 | 7.85 | 8.12 | 7.69 | 7.69 | 0.51 | 0.087 |
Ether extract 6 | 1.31 a | 1.27 a | 1.18 b | 1.19 b | 0.16 | 0.035 |
Crude ash | 6.15 | 6.17 | 6.16 | 6.21 | 0.12 | 0.147 |
Energy, kcal | 43.19 | 43.91 | 41.38 | 41.47 | 2.43 | 0.067 |
Energy, kJ | 180.8 | 183.8 | 173.2 | 173.6 | 0.65 | 0.098 |
Mineral elements, mg/kg | ||||||
Ca | 9.15 c | 10.44 b | 11.56 a | 9.93 b,c | 0.44 | 0.024 |
Mg | 18.34 | 17.53 | 18.09 | 18.41 | 0.18 | 0.208 |
P | 285.8 | 287.3 | 284.9 | 293.5 | 11.85 | 0.061 |
Cu | 0.039 | 0.041 | 0.045 | 0.043 | 0.01 | 0.075 |
Fe | 9.15 | 9.45 | 9.27 | 9.44 | 0.06 | 0.127 |
Zn | 2.67 | 2.59 | 2.64 | 2.61 | 0.01 | 0.108 |
Proventriculus | ||||||
Basic nutrients, g/100 g | ||||||
Dry matter | 29.1 | 30.4 | 27.9 | 28.9 | 0.06 | 0.108 |
Crude protein 5 | 16.8 b | 19.1 a | 17.2 a,b | 18.3 a,b | 0.52 | 0.023 |
Ether extract 6 | 6.50 a | 5.51 b | 5.78 b | 5.41 b | 0.03 | 0.041 |
Crude ash | 0.891 | 0.923 | 1.022 | 0.934 | 0.07 | 0.201 |
Energy, kcal | 125.7 | 126.0 | 120.8 | 121.9 | 3.2 | 0.105 |
Energy, kJ | 526.3 | 527.5 | 505.8 | 510.3 | 0.76 | 0.123 |
Mineral elements, mg/kg | ||||||
Ca | 9.98 | 9.65 | 9.51 | 9.76 | 0.07 | 0.141 |
Mg | 12.15 | 12.74 | 12.53 | 12.69 | 0.38 | 0.156 |
P | 133.7 | 141.5 | 138.4 | 148.7 | 2.42 | 0.203 |
Cu | 0.172 b | 0.194 a | 0.197 a | 0.181 a,b | 0.02 | 0.015 |
Fe | 1.01 | 1.12 | 1.16 | 1.07 | 0.01 | 0.138 |
Zn | 1.81 | 1.87 | 1.91 | 1.83 | 0.05 | 0.142 |
Heart | ||||||
Basic nutrients, g/100 g | ||||||
Dry matter | 26.1 | 25.7 | 26.9 | 25.8 | 0.08 | 0.118 |
Crude protein 5 | 15.6 | 16.3 | 16.4 | 15.9 | 0.48 | 0.143 |
Ether extract 6 | 9.50 a | 8.60 b | 8.16 b | 9.61 a | 0.05 | 0.027 |
Crude ash | 0.863 | 0.901 | 0.876 | 0.873 | 0.07 | 0.139 |
Energy, kcal | 147.9 | 142.6 | 139.04 | 150.09 | 7.3 | 0.252 |
Energy, kJ | 619.2 | 597.0 | 582.1 | 628.4 | 0.64 | 0.116 |
Mineral elements, mg/kg | ||||||
Ca | 12.01 | 12.12 | 12.45 | 12.78 | 0.25 | 0.171 |
Mg | 15.89 | 16.13 | 16.09 | 16.47 | 0.16 | 0.262 |
P | 178.2 | 187.9 | 184.9 | 183.1 | 13.85 | 0.108 |
Cu | 0.346 | 0.349 | 0.351 | 0.349 | 0.04 | 0.235 |
Fe | 4.97 b | 6.01 a | 6.15 a | 6.08 a | 0.09 | 0.021 |
Zn | 6.54 | 6.87 | 6.94 | 6.58 | 0.12 | 0.119 |
Items | Treatments 2 | Statistical Parameters | ||||
---|---|---|---|---|---|---|
Control | CAM.IR | FLA.IR | SUN.IR | SEM 3 | p-Value 4 | |
Haematological indices 5 | ||||||
RBC, 1012·L−1 | 2.99 | 2.86 | 2.87 | 2.88 | 0.05 | 0.746 |
HGB, mmol·L−1 | 8.05 a | 7.28 b | 7.23 b | 7.95 a | 0.13 | 0.013 |
MCHC, mmol·L−1 | 23.97 a | 22.49 b | 22.49 b | 24.45 a | 0.27 | 0.007 |
MCH, pg | 43.57 | 41.10 | 40.76 | 44.43 | 0.63 | 0.094 |
MCV, fl | 112.8 | 113.4 | 112.4 | 112.8 | 0.64 | 0.965 |
PCV, l·L−1 | 0.34 | 0.32 | 0.32 | 0.32 | <0.01 | 0.604 |
Plasma elements | ||||||
Ca, mmol·L−1 | 2.42 a | 2.19 b,c | 2.35 a,b | 2.09 c | 0.04 | 0.023 |
Mg, mmol·L−1 | 0.86 | 0.80 | 0.80 | 0.75 | 0.02 | 0.106 |
P, mmol·L−1 | 1.91 | 1.86 | 2.05 | 1.80 | 0.05 | 0.277 |
Cu, µmol·L−1 | 6.02 | 6.36 | 4.98 | 5.37 | 0.27 | 0.125 |
Fe, µmol·L−1 | 14.04 b | 14.88 a,b | 17.80 a | 17.77 a | 0.58 | 0.003 |
Zn, µmol·L−1 | 22.42 | 21.37 | 23.15 | 23.47 | 0.83 | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, M.; Kiczorowska, B.; Samolińska, W.; Klebaniuk, R.; Andrejko, D.; Kiczorowski, P.; Milewski, S.; Winiarska-Mieczan, A. Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status. Animals 2022, 12, 1623. https://doi.org/10.3390/ani12131623
Zając M, Kiczorowska B, Samolińska W, Klebaniuk R, Andrejko D, Kiczorowski P, Milewski S, Winiarska-Mieczan A. Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status. Animals. 2022; 12(13):1623. https://doi.org/10.3390/ani12131623
Chicago/Turabian StyleZając, Malwina, Bożena Kiczorowska, Wioletta Samolińska, Renata Klebaniuk, Dariusz Andrejko, Piotr Kiczorowski, Szymon Milewski, and Anna Winiarska-Mieczan. 2022. "Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status" Animals 12, no. 13: 1623. https://doi.org/10.3390/ani12131623
APA StyleZając, M., Kiczorowska, B., Samolińska, W., Klebaniuk, R., Andrejko, D., Kiczorowski, P., Milewski, S., & Winiarska-Mieczan, A. (2022). Supplementation of Broiler Chicken Feed Mixtures with Micronised Oilseeds and the Effects on Nutrient Contents and Mineral Profiles of Meat and Some Organs, Carcass Composition Parameters, and Health Status. Animals, 12(13), 1623. https://doi.org/10.3390/ani12131623