Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Diet
2.2. Sample Collection
2.3. Sample Processing
2.4. Serum Lipids Parameter Analysis
2.5. Meat Quality Analysis
2.5.1. Meat Quality Traits
2.5.2. Inosine Monphosphate Analysis
2.5.3. GC–MS Analysis of Fatty Acids
2.6. 16S rRNA-Based Sequencing Analysis
2.7. Metabolomics Analysis of Cecal Contents and Metabolic Profile of Dihydromyricetin and Myricetin from AGE
2.8. ELISA Analysis
2.9. Statistical Analysis
3. Results
3.1. Serum Lipids Parameters
3.2. Meat Quality Traits
3.3. Fatty Acids
3.4. Microbial Composition
3.5. Metabolomics Analysis
3.6. Correlation Analysis between Microbiota and Metabolites in the Cecal Content
3.7. Metabolic Profile of Dihydromyricetin and Myricetinin from the AGE
3.8. ELISA Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef] [Green Version]
- Wegener, H.C. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 2003, 6, 439–445. [Google Scholar] [CrossRef]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Peng, S.; Li, Y.; Jiang, G.; Dai, Q. Magnolol additive improves carcass and meat quality of Linwu ducks by modulating antioxidative status. Anim. Sci. J. 2019, 91, e13301. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef] [PubMed]
- Huyghebaert, G.; Ducatelle, R.; Immerseel, F.V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 2011, 187, 182–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, F.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H. Effect of plant extracts derived from thyme on male broiler performance. Poult. Sci. 2015, 94, 2630–2634. [Google Scholar] [CrossRef] [PubMed]
- Shirzadi, H.; Shariatmadari, F.; Torshizi, M.A.K.; Rahimi, S.; Masoudi, A.A.; Zaboli, G.; Evrigh, N.H. Plant extract supplementation as a strategy for substituting dietary antibiotics in broiler chickens exposed to low ambient temperature. Arch. Anim. Nutr. 2020, 74, 206–221. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Ning, Z.X.; Yang, S.Z.; Wu, H. Antioxidant properties and mechanism of action of dihydromyricetin from Ampelopsis grossedentata. Acta Pharm. Sin. B 2003, 38, 241–244. [Google Scholar]
- Murakami, T.; Miyakoshi, M.; Araho, D.; Mizutani, K.; Kambara, T.; Ikeda, T.; Chou, W.H.; Inukai, M.; Takenaka, A.; Igarashi, K. Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors 2004, 21, 175–178. [Google Scholar] [CrossRef]
- Shevelev, A.B.; Porta, N.L.; Isakova, E.P.; Martens, S.; Biryukova, Y.K.; Belous, A.S.; Sivokhin, D.A.; Trubnikova, E.V.; Zylkova, M.V.; Belyakova, A.V.; et al. In vivo antimicrobial and wound-healing activity of resveratrol, dihydroquercetin, and dihydromyricetin against staphylococcus aureus, pseudomonas aeruginosa, and candida albicans. Pathogens 2020, 9, 296. [Google Scholar] [CrossRef] [PubMed]
- Ming, F.U.; Li, X.Y.; Wang, D.Y.; Guo, M.Q. Flavonoid constituents of leaves of ampelopsis grossedentata (Hand-Mazz) W.T.wang. Chin. Pharm. J. 2015, 24, 570–578. [Google Scholar]
- Zhang, Q.; Zhao, Y.; Zhang, M.; Zhang, Y.; Ji, H.; Shen, L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J. Pharm. Anal. 2021, 11, 555–563. [Google Scholar] [CrossRef]
- Le, L.; Jiang, B.P.; Wan, W.T.; Zhai, W.; Xu, L.J.; Hu, K.P.; Xiao, P.G. Metabolomics reveals the protective of dihydromyricetin on glucose homeostasis by enhancing insulin sensitivity. Sci. Rep. 2016, 6, 36184. [Google Scholar] [CrossRef]
- Sun, Y.; Lian, M.; Lin, Y.; Xu, B.; Li, Y.; Wen, J.; Chen, D.; Xu, M.; Almoiliqy, M.; Wang, L. Role of p-MKK7 in myricetin-induced protection against intestinal ischemia/reperfusion injury. Pharmacol. Res. 2018, 129, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Tong, Q.; Wang, W.; Xiong, W.; Shi, C.; Fang, J. Dihydromyricetin protects endothelial cells from hydrogen peroxide-induced oxidative stress damage by regulating mitochondrial pathways. Life Sci. 2015, 130, 38–46. [Google Scholar] [CrossRef]
- Tang, N.; Ma, J.; Wang, K.S.; Mi, C.L.; Lv, Y.; Piao, L.X.; Xu, G.H.; Li, X.Z.; Lee, J.J.; Jin, X.J. Dihydromyricetin suppresses TNF-α-induced NF-κB activation and target gene expression. Mol. Cell. Biochem. 2016, 422, 11–20. [Google Scholar] [CrossRef]
- Mao, M.; Huang, M. Myricetin attenuates lung inflammation and provides protection against lipopolysaccharide-induced acute lung injury by inhibition of NF-κB pathway in rats. Trop. J. Pharm. Res. 2017, 16, 2585–2593. [Google Scholar] [CrossRef] [Green Version]
- Kan, X.C.; Liu, B.R.; Guo, W.J.; Wei, L.B.; Lin, Y.Q.; Guo, Y.C.; Gong, Q.; Li, Y.W.; Xu, D.W.; Cao, Y.; et al. Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J. Cell. Physiol. 2019, 234, 16252–16262. [Google Scholar] [CrossRef]
- Liu, T.T.; Zeng, Y.; Tang, K.; Chen, X.M.; Zhang, W.; Xu, X.L. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice. Atherosclerosis. 2017, 66, 963. [Google Scholar]
- Meng, Z.; Wang, M.; Xing, J.; Liu, Y.; Li, H. Myricetin ameliorates atherosclerosis in the low-density-lipoprotein receptor knockout mice by suppression of cholesterol accumulation in macrophage foam cells. Nutr. Metab. 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wang, Q.; Chen, Z.; Sa, X.; Zhang, D.; Liu, N. Laboratory Animal-Requirements of Environment and Housing Facilities; Standards Press of China: Beijing, China, 2011. [Google Scholar]
- Zhou, L.; Wang, D.; Zhou, H. Metabolic profiling of two medicinal Piper species. S. Afr. J. Bot. 2021, 139, 281–289. [Google Scholar] [CrossRef]
- Jiang, S.; Jiang, Z.; Lin, Y.; Zhou, G.; Chen, F.; Zheng, C. Effects of different rearing and feeding methods on meat quality and antioxidative properties in Chinese Yellow male broilers. Brit. Poult. Sci. 2011, 52, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Walczak, J.; Bocian, S.; Kowalkowski, T.; Trziszka, T.; Buszewski, B. Determination of omega fatty acid profiles in egg yolk by HILIC-LC-MS and GC-MS. Food Anal. Method 2017, 10, 1264–1272. [Google Scholar] [CrossRef] [Green Version]
- Chao, X.P.; Sun, T.T.; Wang, S.; Fan, Q.B.; Lang, J.H. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int. J. Gynecol. Cancer 2019, 29, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Lee, M.K.; Yong, B.P.; Mi, A.K.; Choi, M.S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol. 2006, 38, 1134–1145. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Y.; Huang, C.; Huang, C.; Guo, X. Activation of AMP-activated protein kinase signaling pathway ameliorates steatosis in laying hen hepatocytes. Poult. Sci. 2020, 100, 100805. [Google Scholar] [CrossRef]
- Pallottini, V.; Martini, C.; Cavallini, G.; Bergamini, E.; Mustard, K.J.; Hardie, D.G.; Trentalance, A. Age-related HMG-CoA reductase deregulation depends on ROS-induced p38 activation. Mech. Ageing Dev. 2007, 128, 688–695. [Google Scholar] [CrossRef]
- Hartanti, L.; Yonas, S.; Mustamu, J.J.; Wijaya, S.; Setiawan, H.K.; Soegianto, L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon 2019, 5, 01485. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Han, J.C.; Dong, J.J.; Fan, X.C.; Cai, Y.Y.; Li, J.; Wang, T.; Zhou, J.; Shang, J. Metabolomics characterizes the effects and mechanisms of quercetin in nonalcoholic fatty liver disease development. Int. J. Mol. Sci. 2019, 20, 1220. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, R.B.; Boligon, A.A.; Rovani, B.T.; Piana, M.; de Brum, T.F.; da Silva Jesus, R.; Rother, F.C.; Alves, N.M.; Teixeira da Rocha, J.B.; Athayde, M.L.; et al. Effect of black grape juice against heart damage from acute gamma TBI in rats. Molecules 2013, 18, 12154–12167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.H.; Chen, C.H.; Tsai, G.J. Effects of chitosan on clostridium perfringens and application in the preservation of pork sausage. Mar. Drugs 2020, 18, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.W.; Luo, H.L.; Chen, Y.; Yan, L.Y.; Chang, Y.F.; Jiao, L.J.; Liu, K. Effects of liquorice extract on the pH value, temperature, drip loss, and meat color during aging of Longissimus dorsi muscle in Tan sheep. Small Rumin. Res. 2013, 113, 98–102. [Google Scholar] [CrossRef]
- Li, D.H.; Li, F.; Jiang, K.R.; Zhang, M.; Han, R.L.; Jiang, R.R.; Li, Z.J.; Tian, Y.D.; Yan, F.B.; Kang, X.T.; et al. Integrative analysis of long noncoding RNA and mRNA reveals candidate lncRNAs responsible for meat quality at different physiological stages in Gushi chicken. PLoS ONE 2019, 14, e0215006. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Franco, D. Fat effect on physico-chemical, microbial and textural changes through the manufactured of dry-cured foal sausage Lipolysis, proteolysis and sensory properties. Meat Sci. 2012, 92, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5’-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci. 2013, 92, 3275–3282. [Google Scholar] [CrossRef]
- Kamboh, A.A.; Zhu, W.Y. Effect of increasing levels of bioflavonoids in broiler feed on plasma anti-oxidative potential, lipid metabolites, and fatty acid composition of meat. Poult. Sci. 2013, 92, 454–461. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, L.; Fan, J.; Sun, X.; Yin, Y. n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Brit. J. Nutr. 2014, 111, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.J.; Bessa, R.; Santos, S.F. The effect of genotype, feeding system and slaughter weight on the quality of light lambs: 1. Growth, carcass composition and meat quality. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat composition, fatty acid profile and oxidative stability of meat from broilers supplemented with pomegranate (Punica granatum L.) by-products. Food. Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef]
- Backes, J.; Anzalone, D.; Hilleman, D.; Catini, J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016, 15, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.L.; Larkinson, M.; Clarke, T.B. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog. 2021, 17, e1009191. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V. Molecular analysis of commensal host-microbial relationships in the intestine. Science 2001, 291, 881. [Google Scholar] [CrossRef] [Green Version]
- Künstner, A.; Aherrahrou, R.; Hirose, M.; Bruse, P.; Aherrahrou, Z. Effect of differences in the microbiome of Cyp17a1-deficient mice on atherosclerotic background. Cells 2021, 10, 1292. [Google Scholar] [CrossRef]
- Akkol, E.K.; Ilhan, M.; Karpuz, B.; Gen, Y.; Sobarzo-Sánchez, E. Sedative and Anxiolytic Activities of Opuntia ficus indica (L.) Mill.: An Experimental Assessment in Mice. Molecules 2020, 25, 1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Contents |
---|---|
Ingredients | |
Corn | 63.55 |
Fermented soybean meal, CP ≥ 46% | 11.60 |
Middling, CP ≥ 15% | 5.00 |
Corn gluten meal, CP ≥ 60% | 5.00 |
Rapeseed meal, CP ≥ 38% | 3.00 |
Rice bran meal, CP ≥ 15% | 1.50 |
Soybean oil | 7.00 |
Stone powder | 0.50 |
Calcium hydrogen phosphate | 0.40 |
Premix 1 | 2.45 |
Total | 100 |
Nutrient levels 2 | |
Metabolic energy (MJ/kg) | 13.96 |
Crude protein | 15.32 |
Lysine | 0.58 |
Methionine | 0.27 |
Cysteine | 0.27 |
Calcium | 0.62 |
Available phosphorus | 0.44 |
Items | Groups | SEM | p | Contrast | ||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | |||
TCHO (mmol/L) | 4.01 a | 3.53 b | 3.45 b | 3.74 ab | 0.11 | 0.012 | 0.093 | 0.003 |
LDL-C (mmol/L) | 1.37 a | 1.21 ab | 1.10 b | 1.12 b | 0.06 | 0.014 | 0.003 | 0.130 |
HDL-C (mmol/L) | 2.21 | 2.40 | 2.41 | 2.47 | 0.07 | 0.077 | 0.019 | 0.353 |
TG (mmol/L) | 0.62 a | 0.60 ab | 0.53 b | 0.54 b | 0.02 | 0.018 | 0.004 | 0.594 |
Item | Groups | SEM | p | Contrast | ||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | |||
Thigh muscle | ||||||||
L * | 38.4 | 38.54 | 37.26 | 37.4 | 0.98 | 0.715 | 0.343 | 1.000 |
a * | 15.02 b | 15.90 ab | 18.20 a | 18.54 a | 0.80 | 0.016 | 0.002 | 0.739 |
b * | 11.58 | 10.5 | 10.48 | 9.86 | 0.57 | 0.230 | 0.057 | 0.690 |
pH45min | 6.28 | 6.54 | 6.40 | 6.28 | 0.07 | 0.055 | 0.698 | 0.015 |
pH24h | 5.91 | 5.98 | 6.05 | 5.95 | 0.04 | 0.179 | 0.360 | 0.067 |
Shear force (N) | 24.83 a | 21.75 b | 21.55 b | 21.80 b | 0.62 | 0.005 | 0.004 | 0.016 |
Drip loss (%) | 5.46 a | 5.21 ab | 4.93 b | 5.00 b | 0.10 | 0.010 | 0.003 | 0.143 |
IMP (mg/g) | 3.08 b | 3.79 a | 3.73 a | 3.38 ab | 0.14 | 0.008 | 0.201 | 0.002 |
Breast muscle | ||||||||
L* | 48.64 | 48.42 | 47.28 | 46.70 | 0.54 | 0.065 | 0.011 | 0.743 |
a* | 4.18 b | 4.60 ab | 5.00 a | 4.82 a | 0.13 | 0.003 | 0.001 | 0.037 |
b* | 15.88 | 16.40 | 13.88 | 14.16 | 0.70 | 0.051 | 0.025 | 0.865 |
pH45min | 6.32 | 6.15 | 6.01 | 6.03 | 0.12 | 0.271 | 0.076 | 0.429 |
pH24h | 5.55 | 5.54 | 5.60 | 5.50 | 0.03 | 0.230 | 0.586 | 0.169 |
Shear force (N) | 16.95 a | 14.70 b | 14.35 b | 13.87 b | 0.60 | 0.011 | 0.003 | 0.159 |
Drip loss (%) | 5.11 a | 4.48 ab | 4.25 b | 4.49 ab | 0.17 | 0.016 | 0.015 | 0.022 |
IMP (mg/g) | 2.22 b | 3.14 a | 3.12 a | 2.79 ab | 0.19 | 0.011 | 0.064 | 0.005 |
Items | Groups | SEM | p | Contrast | ||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | |||
C6:0 | 4.43 | 4.61 | 4.45 | 4.59 | 0.07 | 0.202 | 0.344 | 0.756 |
C8:0 | 2.47 | 2.57 | 2.71 | 2.39 | 0.10 | 0.174 | 0.863 | 0.053 |
C10:0 | 5.22 | 5.42 | 5.38 | 5.52 | 0.09 | 0.144 | 0.040 | 0.737 |
C11:0 | 4.40 | 4.30 | 4.58 | 4.59 | 0.09 | 0.106 | 0.052 | 0.576 |
C14:0 | 14.6 a | 14.16 ab | 13.75 b | 13.61 b | 0.43 | 0.002 | 0.001 | 0.405 |
C16:0 | 0.83 a | 0.78 ab | 0.77 b | 0.74 b | 0.02 | 0.006 | 0.001 | 0.473 |
C17:0 | 6.50 | 6.42 | 6.68 | 6.46 | 0.09 | 0.249 | 0.737 | 0.472 |
C18:0 | 7.57 | 7.43 | 7.16 | 7.24 | 0.16 | 0.302 | 0.098 | 0.510 |
C20:0 | 0.16 | 0.17 | 0.12 | 0.14 | 0.01 | 0.073 | 0.076 | 0.911 |
C21:0 | 0.37 | 0.36 | 0.33 | 0.34 | 0.01 | 0.136 | 0.033 | 0.567 |
C22:0 | 1.17± | 1.14 | 0.99 | 1.13 | 0.05 | 0.065 | 0.221 | 0.079 |
C14:1n5 | 1.47 | 1.53 | 1.67 | 1.66 | 0.08 | 0.253 | 0.065 | 0.660 |
C15:1n5 | 0.28 | 0.23 | 0.26 | 0.21 | 0.02 | 0.043 | 0.038 | 0.842 |
C16:1n7 | 9.18 | 9.19 | 9.63 | 9.50 | 0.21 | 0.362 | 0.158 | 0.745 |
C17:1n7 | 0.25 | 0.21 | 0.27 | 0.22 | 0.02 | 0.102 | 0.785 | 0.817 |
C18:1n9 | 21.26 | 21.13 | 21.71 | 21.79 | 0.23 | 0.153 | 0.051 | 0.662 |
C20:1n9 | 0.10 | 0.13 | 0.12 | 0.15 | 0.02 | 0.285 | 0.131 | 0.868 |
C22:1n9 | 0.26 | 0.25 | 0.27 | 0.29 | 0.01 | 0.072 | 0.022 | 0.223 |
C18:2n | 5.75 | 5.36 | 5.94 | 5.82 | 0.17 | 0.142 | 0.322 | 0.441 |
C18:3n6 | 7.84 | 7.95 | 8.09 | 7.81 | 0.11 | 0.329 | 0.905 | 0.109 |
C20:2 | 1.04 | 1.00 | 0.95 | 0.97 | 0.04 | 0.444 | 0.173 | 0.462 |
C20:3n6 | 1.02 | 1.06 | 1.08 | 1.05 | 0.02 | 0.357 | 0.324 | 0.142 |
C20:4n6 | 4.24 | 4.22 | 4.28 | 4.32 | 0.04 | 0.353 | 0.122 | 0.473 |
C20:5n3 | 2.40 b | 2.51 b | 2.80 a | 2.55 b | 0.06 | 0.001 | 0.008 | 0.006 |
C22:2n6 | 0.99 | 1.08 | 1.00 | 1.05 | 0.03 | 0.135 | 0.408 | 0.495 |
C22:6n3 | 1.03 b | 1.23 ab | 1.32 a | 1.37 a | 0.07 | 0.015 | 0.002 | 0.296 |
SFA | 47.72 a | 47.35 a | 46.94 b | 46.74 b | 0.34 | <0.001 | <0.001 | 0.394 |
USFA | 57.10 b | 57.09 b | 59.39 a | 58.78 a | 0.34 | <0.001 | <0.001 | 0.394 |
MUFA | 32.79 | 32.68 | 33.93 | 33.83 | 0.32 | 0.019 | 0.007 | 0.987 |
PUFA | 24.31 b | 24.41 b | 25.46 a | 24.96 ab | 0.27 | 0.030 | 0.025 | 0.282 |
USFA/SFA | 1.20 b | 1.21 b | 1.27 a | 1.26 a | 0.02 | <0.001 | <0.001 | 0.375 |
Items | Groups | SEM | p | Contrast | ||||
---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | L | Q | |||
C6:0 | 4.25 | 3.91 | 3.99 | 3.95 | 0.11 | 0.136 | 0.095 | 0.180 |
C8:0 | 2.15 | 2.30 | 1.99 | 2.31 | 0.10 | 0.110 | 0.738 | 0.412 |
C10:0 | 5.16 | 5.16 | 4.94 | 5.08 | 0.15 | 0.706 | 0.506 | 0.637 |
C11:0 | 4.98 | 4.99 | 4.94 | 4.96 | 0.04 | 0.877 | 0.576 | 0.916 |
C14:0 | 14.86 a | 13.73 b | 13.39 b | 13.18 b | 0.18 | <0.001 | <0.001 | 0.023 |
C16:0 | 0.82 a | 0.78 ab | 0.75 b | 0.74 b | 0.01 | 0.013 | 0.002 | 0.272 |
C17:0 | 2.27 | 2.26 | 2.80 | 2.46 | 0.20 | 0.239 | 0.236 | 0.429 |
C18:0 | 4.64 | 4.54 | 4.31 | 4.47 | 0.11 | 0.212 | 0.137 | 0.256 |
C20:0 | 0.15 | 0.16 | 0.17 | 0.13 | 0.01 | 0.109 | 0.258 | 0.050 |
C21:0 | 0.18 | 0.17 | 0.11 | 0.12 | 0.02 | 0.046 | 0.015 | 0.662 |
C22:0 | 1.44 | 1.37 | 1.38 | 1.40 | 0.02 | 0.060 | 0.223 | 0.023 |
C14:1n5 | 1.37 | 1.36 | 1.43 | 1.39 | 0.03 | 0.481 | 0.347 | 0.628 |
C15:1n5 | 0.27 | 0.25 | 0.20 | 0.21 | 0.02 | 0.118 | 0.025 | 0.569 |
C16:1n7 | 9.90 b | 10.18 ab | 10.19 ab | 10.67 a | 0.18 | 0.047 | 0.009 | 0.576 |
C17:1n7 | 0.20 | 0.21 | 0.15 | 0.16 | 0.02 | 0.195 | 0.098 | 0.928 |
C18:1n | 17.85 | 17.97 | 18.33 | 17.83 | 0.17 | 0.193 | 0.704 | 0.091 |
C20:1n9 | 0.13 b | 0.15 ab | 0.19 a | 0.16 ab | 0.01 | 0.018 | 0.032 | 0.061 |
C22:1n9 | 0.32 | 0.35 | 0.36 | 0.31 | 0.01 | 0.060 | 0.737 | 0.011 |
C18:2n | 6.45 | 6.56 | 6.75 | 6.63 | 0.16 | 0.601 | 0.319 | 0.482 |
C18:3n6 | 9.84 | 9.79 | 9.96 | 9.74 | 0.13 | 0.689 | 0.845 | 0.535 |
C20:2 | 1.32 | 1.39 | 1.36 | 1.38 | 0.03 | 0.465 | 0.291 | 0.510 |
C20:3n6 | 1.43 | 1.36 | 1.45 | 1.35 | 0.04 | 0.216 | 0.383 | 0.677 |
C20:4n6 | 4.54 | 4.23 | 4.42 | 4.19 | 0.14 | 0.268 | 0.180 | 0.768 |
C20:5n3 | 2.13 b | 2.52 ab | 2.67 a | 2.47 ab | 0.38 | 0.108 | 0.134 | 0.777 |
C22:2n6 | 0.90 | 0.94 | 0.92 | 0.89 | 0.03 | 0.528 | 0.764 | 0.201 |
C22:6n3 | 1.01 b | 1.25b | 1.66 a | 1.58 a | 0.08 | <0.001 | <0.001 | 0.063 |
SFA | 40.90 a | 39.37 b | 38.78 b | 38.79 b | 0.38 | 0.003 | 0.001 | 0.058 |
USFA | 57.67 b | 58.5 ab | 60.05 a | 58.96 ab | 0.38 | 0.003 | 0.001 | 0.058 |
MUFA | 30.05 | 30.47 | 30.85 | 30.73 | 0.25 | 0.144 | 0.043 | 0.287 |
PUFA | 27.62 b | 28.03 ab | 29.19 a | 28.23 ab | 0.32 | 0.024 | 0.007 | 0.143 |
USFA: SFA | 1.41 b | 1.49 ab | 1.55 a | 1.52 a | 0.03 | 0.005 | 0.001 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Li, H.; Hou, G.; Wang, J.; Zhou, H.; Wang, D. Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals 2022, 12, 1661. https://doi.org/10.3390/ani12131661
Zhou L, Li H, Hou G, Wang J, Zhou H, Wang D. Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals. 2022; 12(13):1661. https://doi.org/10.3390/ani12131661
Chicago/Turabian StyleZhou, Luli, Hui Li, Guanyu Hou, Jian Wang, Hanlin Zhou, and Dingfa Wang. 2022. "Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler" Animals 12, no. 13: 1661. https://doi.org/10.3390/ani12131661
APA StyleZhou, L., Li, H., Hou, G., Wang, J., Zhou, H., & Wang, D. (2022). Effects of Vine Tea Extract on Meat Quality, Gut Microbiota and Metabolome of Wenchang Broiler. Animals, 12(13), 1661. https://doi.org/10.3390/ani12131661