Stepwise Method and Factor Scoring in Multiple Regression Analysis of Cashmere Production in Liaoning Cashmere Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Methods and Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Wang, F.; Gao, G.; Yan, X.; Liu, H.; Liu, Z.; Wang, Z.; He, L.; Lv, Q.; Wang, Z.; et al. Genome-Wide Association Study of Body Weight Traits in Inner Mongolia Cashmere Goats. Front. Veter-Sci. 2021, 8, 752746. [Google Scholar] [CrossRef] [PubMed]
- Di, R.; Vahidi, S.M.F.; Ma, Y.H.; He, X.H.; Zhao, Q.J.; Han, J.L.; Guan, W.J.; Chu, M.X.; Sun, W.; Pu, Y.P. Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Anim. Genet. 2011, 42, 428–431. [Google Scholar] [CrossRef]
- McGregor, B.; An, M.; Jiang, Y. Fleece metrology of Liaoning cashmere goats. Small Rumin. Res. 1991, 4, 61–71. [Google Scholar] [CrossRef]
- Bai, W.L.; Yin, R.H.; Jiang, W.Q.; Luo, G.B.; Yin, R.L.; Li, C.; Zhao, Z.H. Molecular Characterization of Prolactin cDNA and Its Expression Pattern in Skin Tissue of Liaoning Cashmere Goat. Biochem. Genet. 2012, 50, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, Y.; Qin, Y.; Cai, W.; Zhang, X.; Xu, Y.; Dou, X.; Wang, Z.; Han, D.; Wang, J.; et al. Association analysis of single-nucleotide polymorphism in prolactin and its receptor with productive and body conformation traits in Liaoning cashmere goats. Arch. Anim. Breed. 2022, 65, 145–155. [Google Scholar] [CrossRef]
- Nixon, A.J.; Gurnseyb, M.P.; Betteridgec, K.; Mitchellc, R.J.; Welchc, R.A.S. Seasonal hair follicle activity and fibre growth in some New Zealand Cashmere-bearing goats (Caprus hircus). Proc. Zool. Soc. Lond. 2010, 224, 589–598. [Google Scholar] [CrossRef]
- Sebolai, B.; Nsoso, S.J.; Podisi, B.; Mokhutshwane, B.S. The estimation of live weight based on linear traits in indigenous Tswana goats at various ages in Botswana. Trop. Anim. Health Prod. 2012, 44, 899–904. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied regression analysis. 2nd ed. J. Am. Stat. Assoc. 1981, 76, 1012. [Google Scholar]
- Mack, G.A.; Gunst, R.F.; Mason, R.L. Regression Analysis and Its Application: A Data-Oriented Approach. Technometrics 1981, 23, 309. [Google Scholar] [CrossRef]
- Eyduran, E.; Topal, M.; Sonmez, A.Y. Use of factor scores in multiple regression analysis for estimation of body weight by several body measurements in Brown trouts (Salmo trutta fario). Int. J. Agric. Biol. 2010, 12, 611–615. [Google Scholar]
- Gujarati, D.N. Basic Econometrics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Allynand Bacon Pearson Education Company Boston: Boston, MA, USA, 2001. [Google Scholar]
- Keskin, S.; Daskiran, I.; Kor, A. Factor analysis scores in a multiple linear regression model for the prediction of carcass weight in akkeci kids. J. Appl. Anim. Res. 2007, 31, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Kleinbaum, D.G.; Kupper, L.L. Applied regression analysis and multivariable methods. Technometrics 1998, 31, 117–118. [Google Scholar]
- Tinsley, H.E.A.; Brown, S.D.; Ebrary, I. Handbook of Applied Multivariate Statistics and Mathematical Modeling; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- National Research Council (U.S.). Committee on Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Johnson, R.A.; Wichern, D.W. Applied multivariate statistical analysis. Adv. J. Food Sci. Technol. 1992, 41, 425–430. [Google Scholar]
- Khan, M.A.; Tariq, M.M.; Eyduran, E.; Tatliyer, A.; Rafeeq, M.; Abbas, F. Estimating body weight from several body measurements in Harnai sheep without multicollinearity problem. J. Anim. Plant Sci. 2014, 24, 120–126. [Google Scholar]
- Pimentel, E.C.G.; Queiroz, S.A.; Carvalheiro, R.; Fries, L.A. Use of ridge regression for the prediction of early growth performance in crossbred calves. Genet. Mol. Biol. 2007, 30, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Sharma, P.; Davesharma, S. Applied Multivariates Techniques; John Wiley& Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Çelik, Ş.; Şengül, T.; Söğüt, B.; Inci, H.; Şengül, A.Y.; Kayaokay, A.; Ayaşan, T. Analysis of variables affecting carcass weight of white turkeys by regression analysis based on factor analysis scores and ridge regression. Braz. J. Poult. Sci. 2018, 20, 273–280. [Google Scholar] [CrossRef]
- Cankaya, S.; Altop, A.; Kul, E.; Erener, G. Faktör analiz skorları kullanılarak karayaka kuzularında canlı ağırlık tahmini. Anadolu Tarım Bilimleri Derg. 2009, 24, 98–102. [Google Scholar]
- Onk, K.; Sari, M.; Gurcan, I.S. Estimation of live weights at the beginning and the end of grazing season in Tuj lambs via scores of factor analysis. Ank. Univ. Vet. Fakültesi Derg. 2018, 65, 261–266. [Google Scholar]
- Tahtali, Y. Use of factor scores in multiple regression analysis for estimation of body weight by certain body measurements in Romanov Lambs. PeerJ 2019, 7, e7434. [Google Scholar] [CrossRef] [Green Version]
- Yakubu, A. Fixing collinearity instability in the estimation of body weight from morpho-biometrical traits of West African Dwarf goats. Trakia J. Sci. 2009, 7, 61–66. [Google Scholar]
- Ogah, D.M.; Alaga, A.A.; Momah, M.O. Use of factor analysis scores in multiple regression model for estimation of body weight from some body measurement in muscovy duck. Int. J. Poult. Sci. 2009, 8, 1107–1111. [Google Scholar] [CrossRef] [Green Version]
- Sangun, L.; Cankaya, S.; Kayaalp, G.T.; Akar, M. Use of factor analysis scores in multiple regression model for estimation of body weight from some body measurements in lizard fish. J. Anim. Vet. Adv. 2009, 8, 47–50. [Google Scholar]
- Eyduran, E.; Karakus, K.; Karakus, S. Usage of factor scores for determining relationships among body weight and some body measurements. Bulg. J. Agric. Sci. 2009, 15, 373–377. [Google Scholar]
- Topal, M.; Macit, M. Prediction of body weight from body measurements in Morkaraman sheep. J. Appl. Anim. Res. 2004, 25, 97–100. [Google Scholar]
Parameter | n | Mean | Standard Deviation (SD) | Coefficient of Variation (CV) % |
---|---|---|---|---|
Body slanting length (BSL) | 200 | 49.51 | 0.81 | 1.63 |
Body height (BH) | 200 | 42.46 | 1.62 | 3.82 |
Chest circumference (CC) | 200 | 79.88 | 1.33 | 1.67 |
Pipe circumference (PC) | 200 | 4.25 | 0.08 | 1.94 |
Chest depth (CD) | 200 | 19.12 | 0.99 | 5.17 |
Chest width (CW) | 200 | 17.8 | 0.92 | 5.16 |
Hip breadth (HB) | 200 | 11.74 | 0.79 | 6.76 |
Body weight (BW) | 200 | 46.26 | 2.62 | 5.66 |
Cashmere yield (CY) | 200 | 566.37 | 32.93 | 5.81 |
Traits | CY (Y) | BSL (X1) | BH (X2) | CC (X3) | PC (X4) | CD (X5) | CW (X6) | HB (X7) | BW (X8) |
---|---|---|---|---|---|---|---|---|---|
CY (Y) | — | ||||||||
BSL (X1) | 0.413 ** | — | |||||||
BH (X2) | 0.326 ** | 0.148 * | — | ||||||
CC (X3) | 0.633 ** | 0.488 ** | 0.338 ** | — | |||||
PC (X4) | 0.512 ** | 0.352 ** | 0.219 ** | 0.658 ** | — | ||||
CD (X5) | 0.427 ** | 0.340 ** | 0.041 | 0.454 ** | 0.491 ** | — | |||
CW (X6) | 0.571 ** | 0.254 ** | 0.319 ** | 0.460 ** | 0.338 ** | 0.309 ** | — | ||
HB (X7) | 0.681 ** | 0.299 ** | 0.343 ** | 0.581 ** | 0.486 ** | 0.326 ** | 0.628 ** | — | |
BW (X8) | 0.734 ** | 0.339 ** | 0.173 * | 0.537 ** | 0.382 ** | 0.328 ** | 0.480 ** | 0.529 ** | — |
Traits | Correlation Coefficient | Direct Impact | Indirect Effects | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sum | BSL (X1) | BH (X2) | CC (X3) | PC (X4) | CD (X5) | CW (X6) | HB (X7) | BW (X8) | |||
BSL (X1) | 0.413 | 0.071 | 0.343 | 0.013 | 0.036 | 0.023 | 0.03 | 0.02 | 0.074 | 0.147 | |
BH (X2) | 0.326 | 0.088 | 0.239 | 0.011 | 0.025 | 0.014 | 0.004 | 0.025 | 0.085 | 0.075 | |
CC (X3) | 0.633 | 0.074 | 0.559 | 0.035 | 0.03 | 0.042 | 0.039 | 0.036 | 0.144 | 0.233 | |
PC (X4) | 0.512 | 0.064 | 0.449 | 0.025 | 0.019 | 0.049 | 0.043 | 0.027 | 0.121 | 0.165 | |
CD (X5) | 0.427 | 0.087 | 0.34 | 0.024 | 0.004 | 0.034 | 0.031 | 0.024 | 0.081 | 0.142 | |
CW (X6) | 0.571 | 0.079 | 0.493 | 0.018 | 0.028 | 0.034 | 0.022 | 0.027 | 0.156 | 0.208 | |
HB (X7) | 0.681 | 0.248 | 0.432 | 0.021 | 0.03 | 0.043 | 0.031 | 0.028 | 0.05 | 0.229 | |
BW (X8) | 0.734 | 0.433 | 0.301 | 0.024 | 0.015 | 0.04 | 0.024 | 0.029 | 0.038 | 0.131 |
Traits | Coefficients | Std. Error | T-Value | p | Tol | VIF |
---|---|---|---|---|---|---|
(Constant) | −386.562 | 104.548 | −3.697 | 0.000 | ||
BSL | 2.899 | 1.862 | 1.557 | 0.121 | 0.738 | 1.355 |
BH | 1.781 | 0.883 | 2.016 | 0.045 | 0.811 | 1.233 |
CC | 1.830 | 1.571 | 1.165 | 0.246 | 0.379 | 2.637 |
PC | 25.707 | 21.996 | 1.169 | 0.244 | 0.507 | 1.974 |
CD | 2.889 | 1.578 | 1.831 | 0.069 | 0.684 | 1.462 |
CW | 2.836 | 1.888 | 1.502 | 0.135 | 0.553 | 1.808 |
HB | 10.290 | 2.402 | 4.284 | 0.000 | 0.458 | 2.184 |
BW | 5.443 | 0.633 | 8.592 | 0.000 | 0.605 | 1.654 |
Factor Score Coefficients | Rotated Factor Loadings and Communalities | ||||
---|---|---|---|---|---|
Variables | Factor1 | Factor2 | Factor1 | Factor2 | Communality |
BSL | 0.561 | −0.357 | 0.654 | 0.124 | 0.443 |
BH | 0.419 | 0.628 | −0.124 | 0.745 | 0.570 |
CC | 0.833 | −0.113 | 0.684 | 0.488 | 0.706 |
PC | 0.715 | −0.285 | 0.716 | 0.282 | 0.592 |
CD | 0.585 | −0.535 | 0.793 | 0.010 | 0.629 |
CW | 0.702 | 0.333 | 0.284 | 0.723 | 0.604 |
HB | 0.796 | 0.257 | 0.404 | 0.732 | 0.699 |
BW | 0.741 | 0.043 | 0.511 | 0.539 | 0.552 |
Variance | 4.464 | 1.089 | 5.553 | ||
Variance% | 49.596 | 12.095 | 61.691 |
Traits | Coefficients | Std. Error | T-Value | p | Tol | VIF |
---|---|---|---|---|---|---|
(Constant) | 566.365 | 1.154 | 490.613 | <0.001 | ||
Factor1 | 18.816 | 1.157 | 16.259 | <0.001 | 1.0 | 1.0 |
Factor2 | 21.730 | 1.157 | 18.777 | <0.001 | 1.0 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Zhang, B.; Qin, Z.; Chen, Y.; Shan, X.; Sun, L.; Jiang, H. Stepwise Method and Factor Scoring in Multiple Regression Analysis of Cashmere Production in Liaoning Cashmere Goats. Animals 2022, 12, 1886. https://doi.org/10.3390/ani12151886
Meng Y, Zhang B, Qin Z, Chen Y, Shan X, Sun L, Jiang H. Stepwise Method and Factor Scoring in Multiple Regression Analysis of Cashmere Production in Liaoning Cashmere Goats. Animals. 2022; 12(15):1886. https://doi.org/10.3390/ani12151886
Chicago/Turabian StyleMeng, Yang, Boqi Zhang, Zhiyun Qin, Yang Chen, Xuesong Shan, Limin Sun, and Huaizhi Jiang. 2022. "Stepwise Method and Factor Scoring in Multiple Regression Analysis of Cashmere Production in Liaoning Cashmere Goats" Animals 12, no. 15: 1886. https://doi.org/10.3390/ani12151886
APA StyleMeng, Y., Zhang, B., Qin, Z., Chen, Y., Shan, X., Sun, L., & Jiang, H. (2022). Stepwise Method and Factor Scoring in Multiple Regression Analysis of Cashmere Production in Liaoning Cashmere Goats. Animals, 12(15), 1886. https://doi.org/10.3390/ani12151886