Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Performance Parameters
2.3. Collection of Samples
2.4. Histological Procedures
2.5. Chemical Analyses
2.6. Statistical Analyses
3. Results
3.1. Performance Parameters
3.2. Apparent Ileal Digestibility
3.3. Tibia Mineralization
3.4. Histological Findings in the Intestinal Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodehutscord, M.; Rosenfelder, P. Update on phytate degradation pattern in the gastrointestinal tract of pigs and broiler chickens. In Phytate Destruction. Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 15–32. [Google Scholar]
- Pallauf, J.; Rimbach, G. Nutritional significance of phytic acid and phytase. Arch. Tierernahr. 1997, 50, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Angel, C.R.; Powers, W.J.; Applegate, T.J.; Tamim, N.M.; Christman, M.C. Influence of Phytase on Water-Soluble Phosphorus in Poultry and Swine Manure. J. Environ. Qual. 2005, 34, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Cowieson, A.J.; Wilcock, P.; Bedford, M.R. Super-dosing effects of phytase in poultry and other monogastrics. World’s Poult. Sci. J. 2011, 67, 225–235. [Google Scholar] [CrossRef]
- Rodehutscord, M. Interactions between minerals and phytate degradation in poultry—Challenges for phosphorus digestibility assays. In Phytate Destruction. Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 167–177. [Google Scholar]
- Dilger, R.N.; Adeola, O. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing chicks fed conventional and low phytate soybean meals. Poult. Sci. 2006, 85, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Zeller, E.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Hydrolysis of phytate and formation of inositol phosphate isomers without or with supplemented phytases in different segments of the digestive tract of broilers. J. Nutr. Sci. 2015, 4, E1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutherfurd, S.M.; Chung, T.K.; Moughan, P.J. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 2002, 44, 598–606. [Google Scholar] [CrossRef]
- Cowieson, A.J.; Acamovic, T.; Bedford, M.R. The effect of phytase and phytic acid on endogenous losses from broiler chickens. Br. Poult. Sci. 2004, 45, 101–108. [Google Scholar] [CrossRef]
- Dersjant-Li, Y.; Awati, A.; Schulze, H.; Partridge, G. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric. 2015, 95, 878–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.K. Significance of phytic acid and supplemental phytase in chicken nutrition: A review. World’s Poult. Sci. J. 2008, 64, 557–580. [Google Scholar] [CrossRef]
- Kies, A.K.; Kemme, P.A.; Sebek, L.B.J.; van Diepen, J.T.M.; Jongbloed, A.W. Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. J. Anim. Sci. 2006, 84, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Bedford, M.R.; Santos, T.T.; Paiva, D.; Bradley, J.R.; Wladecki, H.; Honaker, C.; McElroy, A.P. Extra-phosphoric effects of superdoses of a novel microbial phytase. Poult. Sci. 2013, 92, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Nagalakshmi, D.; Raju, M.V.L.N.; Rama Rao, S.V.; Bedford, M.R. Effect of phytase superdosing, myo-Inositol and available phosphorus concentrations on performance and bone mineralisation in broilers. Anim. Nutr. 2017, 3, 247–251. [Google Scholar] [CrossRef]
- Lu, H.; Cowieson, A.J.; Wilson, J.W.; Ajuwon, K.M.; Adeola, O. Extra-phosphoric effects of super dosing phytase on growth performance of pigs is not solely due to release of myo-inositol. J. Anim. Sci. 2019, 97, 3898–3906. [Google Scholar] [CrossRef] [PubMed]
- Walters, H.G.; Coelho, M.; Coufal, C.D.; Lee, J.T. Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. J. Appl. Poult. Res. 2019, 28, 1210–1225. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Short, F.; Gorton, P.; Wiseman, J.; Boorman, K. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Rutherfurd, S.M.; Chung, T.K.; Thomas, D.V.; Zou, M.L.; Moughan, P.J. Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poult. Sci. 2012, 91, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Walk, C.L.; Santos, T.T.; Bedford, M.R. Influence of superdoses of a novel microbial phytase on growth performance, tibia ash, and gizzard phytate and inositol in young broilers. Poult. Sci. 2014, 93, 1172–1177. [Google Scholar] [CrossRef]
- Beeson, L.A.; Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Hydrolysis of phytate to its lower esters can influence the growth performance and nutrient utilization of broilers with regular or super doses of phytase. Poult. Sci. 2017, 96, 2243–2253. [Google Scholar] [CrossRef] [PubMed]
- Karami, M.; Karimi, A.; Sadeghi, A.A.; Zentek, J.; Goodarzi Boroojeni, F. Effects of phytase and benzoic acid supplementation on growth performance, nutrient digestibility, tibia mineralization and serum traits in male broiler chickens. Livest. Sci. 2020, 242, 104258. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Künzel, S.; Schollenberger, M.; Kühn, I.; Rodehutscord, M. Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poult. Sci. 2018, 97, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Wyatt, C.L.; Lee, J.T. Evaluation of increasing levels of phytase in diets containing variable levels of amino acids on male broiler performance and processing yields. J. Appl. Poult. Res. 2019, 28, 253–262. [Google Scholar] [CrossRef]
- Walk, C.L.; Bedford, M.R.; Olukosi, O.A. Effect of phytase on growth performance, phytate degradation and gene expression of myo-inositol transporters in the small intestine, liver and kidney of 21 day old broilers. Poult. Sci. 2018, 97, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Onyango, E.M.; Bedford, M.R.; Adeola, O. Efficacy of an evolved Escherichia coli phytase in diets for broiler chicks. Poult. Sci. 2005, 84, 248–255. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V.; Partridge, G.G. Beneficial effects of xylanase and/or phytase inclusions on ileal amino acid digestibility energy utilisation mineral retention and growth performance in wheat-based broiler diets. Anim. Feed Sci. Technol. 2009, 153, 303–313. [Google Scholar] [CrossRef]
- Manobhavan, M.; Elangovan, A.V.; Sridhar, M.; Shet, D.; Ajith, S.; Pal, D.T.; Gowda, N.K.S. Effect of super dosing of phytase on growth performance, ileal digestibility and bone characteristics in broilers fed corn-soya-based diets. J. Anim. Physiol. Anim. Nutr. 2016, 100, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Morel, P.C.H.; Partridge, G.G.; Hruby, M.; Sands, J.S. Influence of an E.coli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrations of phytic acid. Poult. Sci. 2006, 85, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Angel, R.; Plumstead, P.W.; Enting, H. Effects of limestone particle size, phytate, calcium source, and phytase on standardized ileal calcium and phosphorus digestibility in broilers. Poult. Sci. 2021, 100, 900–909. [Google Scholar] [CrossRef] [PubMed]
- El-Hack, M.E.A.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-Sagan, A.A.; Alkhateeb, M.; et al. Black soldier fly (Hermetia illucens) Meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V.R.; Caldwell, A.; Bryden, W.L. Phytate and phytase: Consequences for protein utilisation. Nutr. Res. Rev. 2000, 13, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J.; Bedford, M.R.; Selle, P.H.; Ravindran, V. Phytate and microbial phytase: Implications for endogenous nitrogen losses and nutrient availability. World’s Poult. Sci. J. 2009, 65, 401–418. [Google Scholar] [CrossRef]
- Konietzny, U.; Greiner, R. Phytic acid: Nutritional impact. In Encyclopedia of Food Science and Nutrition; Caballero, B., Trugo, L., Finglas, P., Eds.; Elsevier: London, UK, 2003; pp. 4555–4563. [Google Scholar]
- Cowieson, A.J.; Ruckebusch, J.P.; Sorbara, J.O.B.; Wilson, J.W.; Guggenbuhl, P.; Roos, F.F. A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim. Feed Sci. Technol. 2017, 225, 182–194. [Google Scholar] [CrossRef]
- Borda-Molina, D.; Zuber, T.; Siegert, W.; Camarinha-Silva, A.; Feuerstein, D.; Rodehutscord, M. Effects of protease and phytase supplements on small intestinal microbiota and amino acid digestibility in broiler chickens. Poult. Sci. 2019, 98, 2906–2918. [Google Scholar] [CrossRef]
- Moter, V.; Stein, H.H. Effect of feed intake on endogenous losses and amino acid and energy digestibility by growing pigs. J. Anim. Sci. 2004, 82, 3518–3525. [Google Scholar] [CrossRef] [PubMed]
- Rodehutscord, M.; Kapocius, M.; Timmler, R.; Dieckmann, A. Linear regression approach to study amino acid digestibility in broiler chickens. Br. Poult. Sci. 2004, 45, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Cabahug, S.; Ravindran, G.; Bryden, W.L. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 1999, 78, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Veum, T.L. Phosphorus and calcium nutrition and metabolism. In Phosphorus and Calcium Utilization and Requirements in Farm Animals; Vitti, D.M.S.S., Kebreab, E., Eds.; CAB International: Oxfordshire, UK, 2010; pp. 94–111. [Google Scholar]
- Ptak, A.; Józefiak, D.; Kierończyk, B.; Rawski, M.; Żyła, K.; Świątkiewicz, S. Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch. Anim. Breed. 2013, 56, 1028–1038. [Google Scholar] [CrossRef]
- Paiva, D.; Walk, C.; McElroy, A. Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poult. Sci. 2014, 93, 2752–2762. [Google Scholar] [CrossRef]
- Wu, Y.B.; Ravindran, V.; Thomas, D.G.; Birtles, M.J.; Hendriks, W.H. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolizable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br. Poult. Sci. 2004, 45, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Ziarat, M.M.; Kermanshahi, H.; Mogaddam, H.N.; Heravi, R.M. Performance of an Escherichia coli phytase expressed in Lactococcus lactis on nutrient retention, bone traits and intestinal morphology in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2020, 104, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; Naeini, S.Z.; Ruiz-Feria, C.A. Growth performance, digestibility, immune response and intestinal morphology of male broilers fed phosphorus deficient diets supplemented with microbial phytase and organic acids. Livest. Sci. 2013, 157, 506–513. [Google Scholar] [CrossRef]
- Smulikowska, S.; Czerwinski, J.; Mieczkowska, A. Effect of an organic acid blend and phytase added to a rapeseed cake containing diet on performance, intestinal morphology, caecal microfloral activity and thyroid status of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010, 94, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lillehoj, H.S. Avian gut-associated immune system: Implication in coccidial vaccine development. Poult. Sci. 1993, 72, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Bedford, M.R.; Walk, C.L. Reduction of phytate to tetrakisphosphate (IP4) to trisphosphate (IP3), or perhaps even lower, does not remove its antinutritive properties. In Phytate Destruction. Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 45–51. [Google Scholar]
Treatment 1 | HPF | LP | LP + 500 | LP + 1000 | LP + 3000 | |
---|---|---|---|---|---|---|
Ingredients (%) | ||||||
Corn | 54.04 | 54.04 | 54.04 | 54.04 | ||
Corn starch | 57.34 | |||||
Soybean meal | 26.13 | 26.13 | 26.13 | 26.13 | ||
Hermetia illucens meal | 37.60 | |||||
Sunflower meal | 12.00 | 12.00 | 12.00 | 12.00 | ||
Soybean oil | 0.80 | 3.87 | 3.87 | 3.87 | 3.87 | |
Limestone | 1.51 | 1.93 | 1.93 | 1.93 | 1.93 | |
Monocalcium-phosphate | 1.10 | 0.21 | 0.21 | 0.21 | 0.21 | |
Premix 2 | 1.20 | 1.20 | 1.20 | 1.20 | 1.20 | |
L-Lysine–HCL | 0.13 | 0.13 | 0.13 | 0.13 | ||
DL-Methionine | 0.15 | 0.09 | 0.09 | 0.09 | 0.09 | |
L-Tryptophan | 0.04 | 0.04 | 0.04 | 0.04 | ||
Titanium dioxide | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | |
Tixosil 3 | 0.06 | 0.05 | 0.04 | |||
Natuphos® E 5000 G | 0.01 | 0.02 | 0.06 | |||
Calculated composition | ||||||
ME 4 | MJ/kg | 12.35 | 12.35 | 12.35 | 12.35 | 12.35 |
Crude protein | % | 22.27 | 22.27 | 22.27 | 22.27 | 22.27 |
Crude fiber | % | 4.51 | 4.48 | 4.48 | 4.48 | 4.48 |
Crude ash | % | 5.65 | 5.21 | 5.21 | 5.21 | 5.21 |
Ether extract | % | 2.83 | 6.74 | 6.74 | 6.74 | 6.74 |
Lysine | % | 1.81 | 1.20 | 1.20 | 1.20 | 1.20 |
Methionine | % | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
Tryptophan | % | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
Threonine | % | 0.80 | 0.84 | 0.84 | 0.84 | 0.84 |
Calcium | % | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Phosphorus | % | 0.70 | 0.50 | 0.50 | 0.50 | 0.50 |
Phytase activity | FTU/kg | - | - | 500 | 1000 | 3000 |
Analyzed composition | ||||||
Dry matter | g/kg | 901.2 | 897.5 | 900.3 | 898.1 | 897.6 |
Crude protein | g/kg | 231.2 | 223.5 | 224.2 | 225.6 | 224.4 |
Crude fiber | g/kg | 40.6 | 46.5 | 47.3 | 48.4 | 46.8 |
Crude ash | g/kg | 55.8 | 52.7 | 51.9 | 52.0 | 51.8 |
Ether extract | g/kg | 30.5 | 66.5 | 67.1 | 65.9 | 66.9 |
Starch | g/kg | 534.0 | 382.2 | 380.4 | 376.4 | 378.2 |
Total sugars | g/kg | 49.5 | 51.2 | 51.0 | 50.9 | 50.2 |
Calcium | g/kg | 9.2 | 8.8 | 8.9 | 8.6 | 8.7 |
Phosphorus | g/kg | 7.5 | 4.5 | 4.4 | 4.6 | 4.5 |
Sodium | g/kg | 1.8 | 1.9 | 2.0 | 1.9 | 1.9 |
Phytase activity | FTU/kg | <60 | <60 | 575 | 1227 | 3502 |
Phytate phosphorus | g/kg | <0.1 | 2.82 | 2.77 | 2.73 | 2.73 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Groups 1 | HPF | LP | LP + 500 | LP + 1000 | LP + 3000 | SEM | Linear 2 | Quadratic 3 | |
Replicates 4 | 14 | 14 | 14 | 14 | 14 | ||||
Initial body weight (g) | 44.1 | 44.1 | 44.0 | 44.1 | 44.0 | 0.23 | 1.000 | ||
Final body weight (g) | 418 d | 600 c | 679 b | 693 b | 772 a | 15.7 | <0.001 | <0.001 | <0.001 |
Body weight gain (g) | 374 d | 556 c | 635 b | 649 b | 728 a | 11.02 | <0.001 | <0.001 | <0.001 |
Feed intake (g) | 500 c | 848 b | 906 ab | 920 ab | 978 a | 12.05 | <0.001 | <0.001 | <0.001 |
Feed conversion ratio 5 | 1.338 c | 1.530 a | 1.428 a | 1.418 ab | 1.348 bc | 0.016 | <0.001 | <0.001 | <0.001 |
EPEF 6 | 134 b | 158 b | 213 a | 211 a | 252 a | 7.29 | <0.001 | <0.001 | 0.525 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Groups 1 | HPF | LP | LP + 500 | LP + 1000 | LP + 3000 | SEM | Linear 2 | Quadratic 3 | |
Replicates 4 | 3 | 6 | 12 | 12 | 12 | ||||
Nutrients (%) | |||||||||
Gross energy | 78.27 a | 64.27 c | 66.52 bc | 71.29 b | 68.86 bc | 0.72 | <0.001 | 0.925 | 0.006 |
Crude protein | 66.25 c | 72.12 bc | 76.74 ab | 80.43 a | 78.67 ab | 0.76 | <0.001 | <0.001 | 0.004 |
Crude ash | 41.24 ab | 38.13 b | 43.12 ab | 44.21 a | 46.75 a | 0.65 | <0.001 | <0.001 | 0.438 |
Calcium | 59.48 | 55.04 | 56.74 | 58.13 | 58.45 | 0.55 | 0.219 | 0.242 | 0.231 |
Phosphorus | 65.48 a | 37.46 c | 41.11 c | 54.58 b | 60.12 b | 1.56 | <0.001 | <0.001 | <0.001 |
Amino acids (%) | |||||||||
Alanine | 77.16 ab | 73.12 b | 78.35 ab | 81.83 a | 79.58 ab | 0.93 | 0.017 | 0.017 | 0.810 |
Arginine | 83.88 b | 85.94 ab | 87.62 ab | 89.85 a | 89.01 a | 0.60 | 0.013 | 0.003 | 0.221 |
Aspartic acid | 80.98 | 79.64 | 77.53 | 83.46 | 83.50 | 0.88 | 0.160 | 0.066 | 0.180 |
Cysteine | 53.75 b | 47.76 b | 56.60 b | 68.06 a | 71.38 a | 1.98 | <0.001 | <0.001 | 0.090 |
Glutamic acid | 78.43 c | 83.30 b | 85.49 ab | 88.79 a | 87.82 ab | 0.74 | <0.001 | <0.001 | 0.019 |
Glycine | 60.86 b | 63.58 b | 68.08 ab | 74.87 a | 74.61 a | 1.38 | 0.001 | <0.001 | 0.546 |
Histidine | 72.68 b | 72.45 b | 76.55 ab | 84.09 a | 82.99 a | 1.20 | <0.001 | <0.001 | 0.883 |
Isoleucine | 81.90 | 74.32 | 77.75 | 79.43 | 79.69 | 0.97 | 0.198 | 0.407 | 0.205 |
Leucine | 76.64 ab | 74.89 b | 77.18 ab | 82.62 a | 81.28 a | 0.82 | 0.003 | 0.001 | 0.778 |
Lysine | 76.51 b | 80.39 ab | 82.41 ab | 86.22 a | 82.88 ab | 0.81 | 0.011 | 0.006 | 0.032 |
Methionine | 85.64 a | 76.79 b | 86.69 a | 88.30 a | 87.45 a | 1.00 | <0.001 | 0.001 | 0.764 |
Phenylalanine | 80.51 c | 80.55 bc | 81.62 abc | 85.81 ab | 86.01 a | 0.69 | 0.001 | <0.001 | 0.612 |
Proline | 75.44 | 78.91 | 76.35 | 80.08 | 79.86 | 0.86 | 0.477 | 0.174 | 0.975 |
Serine | 75.6 ab | 72.32 b | 72.53 b | 80.47 a | 80.01 a | 0.98 | 0.001 | 0.001 | 0.108 |
Threonine | 69.12 ab | 64.56 b | 67.09 ab | 75.20 a | 73.57 ab | 1.18 | 0.004 | 0.003 | 0.366 |
Tyrosine | 81.19 | 76.37 | 75.27 | 81.25 | 82.49 | 0.92 | 0.130 | 0.034 | 0.019 |
Valine | 61.23 b | 68.91 ab | 76.43 a | 72.97 a | 71.64 a | 1.26 | 0.009 | 0.038 | 0.005 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Groups 1 | HPF | LP | LP + 500 | LP + 1000 | LP + 3000 | SEM | Linear 2 | Quadratic 3 | |
Replicates 4 | 14 | 14 | 14 | 14 | |||||
Tibia weight (as is) (g) | 4.07 b | 4.48 b | 5.60 a | 5.58 a | 5.94 a | 0.14 | <0.001 | <0.001 | 0.179 |
Tibia weight (dried) (g) | 1.63 b | 1.80 b | 2.35 a | 2.28 a | 2.40 a | 0.06 | <0.001 | <0.001 | 0.045 |
Tibia dry matter (%) | 39.79 | 40.5 | 42.3 | 40.9 | 40.5 | 0.41 | 0.406 | 0.545 | 0.117 |
Crude ash 5 (g/kg) | 356 a | 294 b | 353 a | 378 a | 387 a | 5.21 | <0.001 | <0.001 | <0.001 |
Phosphorus (g/kg) | 34.3 bc | 25.1 d | 31.8 c | 39.9 ab | 41.0 a | 0.99 | <0.001 | <0.001 | <0.001 |
Calcium (g/kg) | 108 bc | 91.2 c | 114 ab | 123 ab | 133 a | 2.99 | <0.001 | <0.001 | 0.047 |
p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|
Treatment Groups 1 | HPF | LP | LP + 500 | LP + 1000 | LP + 3000 | SEM | Linear 2 | Quadratic 3 | |
Jejunum | |||||||||
Replicates | 9 | 10 | 10 | 9 | 11 | ||||
Villus length/BW 4,5 (μm/kg) | 2594 a | 1667 b | 1393 b | 1551 b | 1395 b | 44.5 | <0.001 | 0.102 | 0.201 |
Crypt depth/BW (μm/kg) | 309 a | 253 b | 213 c | 203 c | 177 c | 5.75 | <0.001 | <0.001 | <0.001 |
Villus/crypt ratio | 8.36 a | 6.65 b | 6.57 b | 7.69 ab | 7.81 ab | 0.17 | 0.001 | 0.009 | 0.019 |
Cecum | |||||||||
Replicates | 12 | 12 | 11 | 12 | 12 | ||||
Crypt depth/BW (μm/kg) 5 | 537 a | 470 a | 384 ab | 394 ab | 321 b | 15.3 | 0.002 | 0.001 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Vallespín, B.; Männer, K.; Ader, P.; Zentek, J. Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens. Animals 2022, 12, 1955. https://doi.org/10.3390/ani12151955
Martínez-Vallespín B, Männer K, Ader P, Zentek J. Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens. Animals. 2022; 12(15):1955. https://doi.org/10.3390/ani12151955
Chicago/Turabian StyleMartínez-Vallespín, Beatriz, Klaus Männer, Peter Ader, and Jürgen Zentek. 2022. "Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens" Animals 12, no. 15: 1955. https://doi.org/10.3390/ani12151955
APA StyleMartínez-Vallespín, B., Männer, K., Ader, P., & Zentek, J. (2022). Evaluation of High Doses of Phytase in a Low-Phosphorus Diet in Comparison to a Phytate-Free Diet on Performance, Apparent Ileal Digestibility of Nutrients, Bone Mineralization, Intestinal Morphology, and Immune Traits in 21-Day-Old Broiler Chickens. Animals, 12(15), 1955. https://doi.org/10.3390/ani12151955