Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. In Vitro Nutrient Digestion Kinetics of Feedstuffs for Pigs
2.1. Starch Digestion and Fermentation Kinetics
2.1.1. In Vitro Starch Digestion Kinetics
2.1.2. In Vivo Application of In Vitro Kinetics
2.2. Fiber Fermentation Kinetics
2.3. Protein Digestion Kinetics
3. Utilization of Selected Minerals in Pigs
3.1. Digestibility of Phosphorus in Pigs
3.2. Mineral Digestion Kinetics
3.2.1. Fiber and Mineral Digestibility
3.2.2. Nutrient Kinetics and Exogenous Enzymes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carus, M.; Dammer, L. The circular bioeconomy–concepts, opportunities, and limitations. Ind. Biotechnol. 2018, 14, 83–91. [Google Scholar] [CrossRef]
- Shurson, G.C.; Hung, Y.-T.; Jang, J.C.; Urriola, P.E. Measures matter—Determining the true nutri-physiological value of feed ingredients for swine. Animals 2021, 11, 1259. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; Hauschild, L.; Zhang, G.H.; Pomar, J.; Lovatto, P.A. Applying precision feeding techniques in growing-finishing pig operations. Rev. Bras. Zootecn. 2009, 38, 226–237. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th ed.; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Dourmad, J.-Y.; Jondreville, C. Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest. Sci. 2007, 112, 192–198. [Google Scholar] [CrossRef]
- Rodehutscord, M. Approaches for saving limited phosphate resources. Arch. Tierz. 2008, 51, 39–48. [Google Scholar]
- European Food Safety Authority (EFSA) FEEDAP (Additives and Products or Substances Used in Animal Feed) Panel. Scientific opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J. 2014, 12, 3668–3745. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) FEEDAP (Additives and Products or Substances Used in Animal Feed) Panel. Revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14, 4563–4663. [Google Scholar] [CrossRef]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective: Increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. BioScience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Cordell, D.; Neset, T.S.S. Phosphorus vulnerability: A qualitative framework for assessing the vulnerability of national and regional food systems to the multidimensional stressors of phosphorus scarcity. Glob. Environ. Chang. Policy Dimens. 2014, 24, 108–122. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Monteiro, S.C.; Lofts, S.; Boxall, A.B.A. Pre-assessment of environmental impact of zinc and copper used in animal nutrition. EFSA Supporting Publ. 2010, 7, 74E. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 101–110. [Google Scholar] [CrossRef]
- Imseng, M.; Wiggenhauser, M.; Müller, M.; Keller, A.; Frossard, E.; Wilcke, W.; Bigalke, M. The fate of Zn in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environ. Sci. Technol. 2019, 53, 4140–4149. [Google Scholar] [CrossRef]
- Commission Implementing Decision. Available online: https://ec.europa.eu/health/documents/community-register/2017/20170626136754/dec_136754_en.pdf (accessed on 18 September 2020).
- Voluntary Risk Assessment Reports—Copper and Copper Compounds. Available online: https://echa.europa.eu/copper-voluntary-risk-assessment-reports (accessed on 22 September 2020).
- De Lange, C.F.M.; Birkett, S.H. Characterization of useful energy content in swine and poultry feed ingredients. Can. J. Anim. Sci. 2005, 85, 269–280. [Google Scholar] [CrossRef]
- Wang, L.F.; Zijlstra, R.T. Prediction of bioavailable nutrients and energy. In Feed Evaluation Science; Moughan, P.J., Hendriks, W.H., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 337–386. [Google Scholar]
- Boisen, S.; Fernández, J.A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Urriola, P.E.; Stein, H.H. Evaluation of in vitro procedures to measure digestibility of fiber in distillers dried grains with solubles. J. Anim. Sci. 2010, 88 (E-Suppl. S2), 368–369. [Google Scholar]
- Decuypere, J.A.; Knockaert, P.; Henderickx, H.K. In Vitro and In Vivo protein digestion in pigs fed diets containing soybean protein isolates with different physical properties. J. Anim. Sci. 1981, 53, 1297–1308. [Google Scholar] [CrossRef]
- Wiesemüller, W.; Poppe, S. Protein digestion in pigs measured in vitro. Arch. Anim. Nutr. 1990, 40, 689–693. [Google Scholar] [CrossRef]
- Babinszky, L.; Van der Meer, J.M.; Boer, H.; Den Hartog, L.A. An in-vitro method for prediction of the digestible crude protein content in pig feeds. J. Sci. Food Agri. 1990, 50, 173–178. [Google Scholar] [CrossRef]
- Cone, J.W.; Van der Poel, A.F.B. Prediction of apparent ileal protein digestibility in pigs with a 2-step in-vitro method. J. Sci. Food Agri. 1993, 62, 393–400. [Google Scholar] [CrossRef]
- Boisen, S.; Fernández, J.A. Prediction of the apparent ileal digestibility of protein and amino-acids in feedstuffs and feed mixtures for pigs by in-vitro analyses. Anim. Feed Sci. Technol. 1995, 51, 29–43. [Google Scholar] [CrossRef]
- Beames, R.M.; Helm, J.H.; Eggum, B.O.; Boisen, S.; Bach Knudsen, K.E.; Swift, M.L. A comparison of methods for measuring the nutritive value for pigs of a range of hulled and hulless barley cultivars. Anim. Feed Sci. Technol. 1996, 62, 189–201. [Google Scholar] [CrossRef]
- Huang, G.; Sauer, W.C.; He, J.; Hwangbo, J.; Wang, X. The nutritive value of hulled and hulless barley for growing pigs. 1. Determination of energy and protein digestibility with the in vivo and in vitro method. J. Anim. Feed Sci. 2003, 12, 759–769. [Google Scholar] [CrossRef]
- Qiao, Y.; Lin, X.; Odle, J.; Whittaker, A.; Van Kempen, T.A.T.G. Refining in vitro digestibility assays: Fractionation of digestible and indigestible peptides. J. Anim. Sci. 2004, 82, 1669–1677. [Google Scholar] [CrossRef]
- Kies, A.K.; De Jonge, L.H.; Kemme, P.A.; Jongbloed, A.W. Interaction between protein, phytate, and microbial phytase. In vitro studies. J. Agric. Food Chem. 2006, 54, 1753–1758. [Google Scholar] [CrossRef]
- Pujol, S.; Torrallardona, D. Evaluation of in vitro methods to estimate the in vivo nutrient digestibility of barley in pigs. Livest. Sci. 2007, 109, 186–188. [Google Scholar] [CrossRef]
- Boisen, S. In vitro analyses for predicting standardised ileal digestibility of protein and amino acids in actual batches of feedstuffs and diets for pigs. Livest. Sci. 2007, 109, 182–185. [Google Scholar] [CrossRef]
- Chiang, C.; Croom, J.; Chuang, S.; Chiou, P.W.S.; Yu, B. A dynamic system simulating pigs’ stomach to evaluate the protein digestibility of pig diet. J. Chin. Soc. Anim. Sci. 2008, 37, 131–143. [Google Scholar]
- Wilfart, A.; Jaguelin-Peyraud, Y.; Simmins, H.; Noblet, J.; van Milgen, J.; Montagne, L. Kinetics of enzymatic digestion of feeds as estimated by a stepwise in vitro method. Anim. Feed Sci. Technol. 2008, 141, 171–183. [Google Scholar] [CrossRef]
- Meunier, J.P.; Manzanilla, E.G.; Anguita, M.; Denis, S.; Pérez, J.F.; Gasa, J.; Cardot, J.M.; Garcia, F.; Moll, X.; Alric, M. Evaluation of a dynamic in vitro model to simulate the porcine ileal digestion of diets differing in carbohydrate composition. J. Anim. Sci. 2008, 86, 1156–1163. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Evaluation of the apparent ileal digestibility (AID) of protein and amino acids in nursery diets by in vitro and in vivo methods. Asian-Aust. J. Anim. Sci. 2011, 24, 1007–1010. [Google Scholar] [CrossRef]
- Bryan, D.D.S.L.; Abbott, D.A.; Classen, H.L. Development of an in vitro protein digestibility assay mimicking the chicken digestive tract. Anim Nutr. 2018, 4, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Bryan, D.D.S.L.; Abbott, D.A.; Classen, H.L. Digestion kinetics of protein sources determined using an in vitro chicken model. Anim. Feed Sci. Technol. 2019, 248, 106–113. [Google Scholar] [CrossRef]
- Chen, H.; Wierenga, P.A.; Hendriks, W.H.; Jansman, A.J.M. In Vitro protein digestion kinetics of protein sources for pigs. Animal 2019, 13, 1154–1164. [Google Scholar] [CrossRef]
- Ton Nu, M.A.; Lupatsch, I.; Zannatta, J.S.; Schulze, H.; Zijlstra, R.T. Thermomechanical and enzyme-facilitated processing of soybean meal enhanced in vitro kinetics of protein digestion and protein and amino acid digestibility in weaned pigs. J. Anim. Sci. 2020, 98, skaa224. [Google Scholar] [CrossRef]
- Sun, T.; Lærke, H.N.; Jørgensen, H.; Bach Knudsen, K.E. The effect of extrusion cooking of different starch sources on the in vitro and in vivo digestibility in growing pigs. Anim. Feed Sci. Technol. 2006, 131, 67–86. [Google Scholar] [CrossRef]
- Van Kempen, T.A.T.G.; Regmi, P.R.; Matte, J.J.; Zijlstra, R.T. In vitro starch digestion kinetics, corrected for estimated gastric emptying, predict portal glucose appearance in pigs. J. Nutr. 2010, 140, 1227–1233. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Masoero, F. Plasma glucose response and glycemic indices in pigs fed diets differing in in vitro hydrolysis indices. Animal 2012, 6, 1068–1076. [Google Scholar] [CrossRef]
- Martens, B.M.J.; Gerrits, W.J.J.; Bruininx, M.A.M.; Schols, H.A. Amylopectin structure and crystallinity explains variation in digestion kinetics of starches across botanic sources in an in vitro pig model. J. Anim. Sci. Biotechnol. 2018, 9, 91. [Google Scholar] [CrossRef]
- Martens, B.M.J.; Flécher, T.; de Vries, S.; Schols, H.A.; Bruininx, E.M.A.M.; Gerrits, W.J.J. Starch digestion kinetics and mechanisms of hydrolysing enzymes in growing pigs fed processed and native cereal-based diets. Br. J. Nutr. 2019, 121, 1124–1136. [Google Scholar] [CrossRef]
- Martens, B.M.J.; Bruininx, E.M.A.M.; Gerrits, W.J.J.; Schola, H.A. The importance of amylase action in the porcine stomach to starch digestion kinetics. Anim. Feed Sci. Technol. 2020, 267, 114546. [Google Scholar] [CrossRef]
- Lombardi, P.; Musco, N.; Calabrò, S.; Tudisco, R.; Mastellone, V.; Vastolo, A.; Infascelli, F.; Cutrignelli, M.I. Different carbohydrate sources affect swine performance and post-prandial glycaemic response. Ital. J. Anim. Nutr. 2020, 19, 421–430. [Google Scholar] [CrossRef]
- Sandberg, A.-S.; Svanberg, U. Phytate hydrolysis by phytase in cereals; Effects on in vitro estimation of iron availability. J. Food Sci. 1991, 56, 1330–1333. [Google Scholar] [CrossRef]
- Liu, J.; Ledoux, R.; Veum, T.L. In Vitro procedure for predicting the enzymatic dephosphorylation of phytate in corn−soybean meal diets for growing swine. J. Agric. Food Chem. 1997, 45, 2612–2617. [Google Scholar] [CrossRef]
- Liu, J.; Ledoux, D.R.; Veum, T.L. In vitro prediction of phosphorus availability in feed ingredients for swine. J. Agric. Food Chem. 1998, 46, 2678–2681. [Google Scholar] [CrossRef]
- Newkirk, R.W.; Classen, H.L. In vitro hydrolysis of phytate in canola meal with purified and crude sources of phytase. Anim. Feed Sci. Technol. 1998, 72, 315–327. [Google Scholar] [CrossRef]
- Näsi, M.; Piironen, J.; Partanen, K. Efficacy of Trichoderma reesei phytase and acid phosphatase activity ratios in phytate phosphorus degradation in vitro and in pigs fed maize-soybean meal or barley-soybean meal diets. Anim. Feed Sci. Technol. 1999, 77, 125–137. [Google Scholar] [CrossRef]
- Rodriguez, E.; Porres, J.M.; Han, Y.; Lei, X.G. Different sensitivity of recombinant Aspergillus niger phytase (r-PhyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 1999, 365, 262–267. [Google Scholar] [CrossRef]
- Bohn, L.; Josefsen, L.; Meyer, A.S.; Rasmussen, S.K. Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. J. Agric. Food Chem. 2007, 55, 7547–7552. [Google Scholar] [CrossRef]
- Schlegel, P.; Ampuero Kragten, S.; Gutzwiller, A. Validation of an in vitro method for the estimation of apparent total tract digestibility of phosphorus in plant feed ingredients for pigs. Anim. Feed Sci. Technol. 2014, 198, 341–346. [Google Scholar] [CrossRef]
- Awati, A.; Williams, B.A.; Bosch, M.W.; Li, Y.C.; Verstegen, M.W.A. Use of the in vitro cumulative gas production technique for pigs: An examination of alterations in fermentation products and substrate losses at various time points. J. Anim. Sci. 2006, 84, 1110–1118. [Google Scholar] [CrossRef]
- Jha, R.; Bindelle, J.; Rossnagel, B.; Van Kessel, A.G.; Leterme, P. In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim. Feed Sci. Technol. 2011, 163, 185–193. [Google Scholar] [CrossRef]
- Jonathan, M.C.; van den Borne, J.J.G.C.; van Wiechen, P.; Souza da Silva, C.; Schols, H.A.; Gruppen, H. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 2012, 133, 889–897. [Google Scholar] [CrossRef]
- Jha, R.; Woyengo, T.A.; Li, J.; Bedford, M.R.; Vasanthan, T.; Zijlstra, R.T. Enzymes enhance degradation of the fiber–starch–protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 2015, 93, 1039–1051. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Chen, H.; Kim, S.W.; Jha, R. Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Anim. Feed Sci. Technol. 2018, 245, 77–90. [Google Scholar] [CrossRef]
- Zangaro, C.A.; Patterson, R.; Woyengo, T.A. Porcine in vitro digestion and fermentation characteristics of corn wet distillers’ grains and dried distillers grains with solubles without or with multi-enzyme. Anim. Feed Sci. Technol. 2019, 245, 114205. [Google Scholar] [CrossRef]
- Jha, R.; Zijlstra, R.T. Physico-chemical properties of purified starch affect their in vitro fermentation characteristics and are linked to in vivo fermentation characteristics in pigs. Anim. Feed Sci. Technol. 2019, 253, 74–80. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Tao, S.; Zhao, X.; Pi, Y.; Gerrits, W.J.J.; Johnston, L.J.; Zhang, S.; Yang, H.; Ling, L.; et al. Effect of dietary fiber fermentation on short-chain fatty acid production and microbial composition in vitro. J. Agric. Food Sci. 2020, 100, 4282–4291. [Google Scholar] [CrossRef]
- Van den Borne, J.J.G.C.; Schrama, J.W.; Heetkamp, M.J.W.; Verstegen, M.W.A.; Gerrits, W.J.J. Synchronising the availability of amino acids and glucose increases protein retention in pigs. Animal 2007, 1, 666–674. [Google Scholar] [CrossRef]
- Drew, M.D.; Schafer, T.C.; Zijlstra, R.T. Glycemic index of starch affects nitrogen retention in grower pigs. J. Anim. Sci. 2012, 90, 1233–1241. [Google Scholar] [CrossRef]
- Nguyen, N.; Fledderus, J.; Busink, R.; Smits, C.; Ramaekers, P.J.L.; Jaworski, N.W. Interaction between protein sources (wheat gluten and protein concentrate from soy and potato) and starch sources (pre-gelatinized and native pea starch) on weanling pig growth performance and diarrhea incidence. J. Anim. Sci. 2018, 96 (Suppl. S2), 141. [Google Scholar] [CrossRef]
- Tiwari, U.P.; Singh, A.K.; Jha, R. Fermentation characteristics of resistant starch, arabinoxylan, and β-glucan and their effects on the gut microbial ecology of pigs: A review. Anim. Nutr. 2019, 5, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, 33–50. [Google Scholar]
- Martens, B.M.J. Starch Digestion Kinetics in Pigs: The Impact of Starch Structure, Feed Processing, and Digesta Passage Behaviour. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 5 July 2019. [Google Scholar] [CrossRef]
- Van Kempen, T.; Pujol, S.; Tibble, S.; Balfagon, A. In vitro characterization of starch digestion and its implications for pigs. In Paradigms in Pig Science; Wiseman, J., Varley, M.A., McOrist, S., Kemp, B., Eds.; Nottingham University Press: Nottingham, UK, 2007; pp. 515–526. [Google Scholar]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- France, J.; Dhanoa, M.S.; Theodorou, M.K.; Lister, S.J.; Davies, D.R.; Isac, D. A model to interpret gas accumulation profiles associated with in vitro degradation of ruminant feeds. J. Theor. Biol. 1993, 163, 99–111. [Google Scholar] [CrossRef]
- Zijlstra, R.T.; Jha, R.; Woodward, A.D.; Fouhse, J.; van Kempen, T.A.T.G. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. J. Anim. Sci. 2012, 90, 49–58. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Masoero, F.; Moschini, M. New insight into the role of resistant starch in pig nutrition. Anim. Feed Sci. Technol. 2015, 201, 1–13. [Google Scholar] [CrossRef]
- Gregory, P.C.; McFadyen, M.; Rayner, D.V. Pattern of gastric emptying in the pig: Relation to feeding. Br. J. Nutr. 1990, 64, 45–58. [Google Scholar] [CrossRef]
- Collins, P.J.; Horowitz, M.; Cook, D.J.; Harding, P.E.; Shearman, D.J. Gastric emptying in normal subjects—A reproducible technique using a single scintillation camera and computer system. Gut 1983, 24, 1117–1125. [Google Scholar] [CrossRef]
- Van Citters, G.W.; Lin, H.C. Ileal brake: Neuropeptidergic control of intestinal transit. Curr. Gastroenterol. Rep. 2006, 8, 367–373. [Google Scholar] [CrossRef]
- Maljaars, P.W.J.; Peters, H.P.F.; Mela, D.J.; Masclee, A.A.M. Ileal brake: A sensible food target for appetite control. A review. Physiol. Behav. 2008, 95, 271–281. [Google Scholar] [CrossRef]
- Johnson, K.A.; Goody, R.S. The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry 2011, 50, 8264–8269. [Google Scholar] [CrossRef]
- Martens, B.M.J.; Noorloos, M.; de Vries, S.; Schols, H.A.; Bruininx, E.M.A.M.; Gerrirts, W.J.J. Whole digesta properties as influenced by feed processing explain variation in gastrointestinal transit times in pigs. Br. J. Nutr. 2019, 122, 1242–1254. [Google Scholar] [CrossRef]
- Singh, N. Functional and physicochemical properties of pulse starch. In Pulse Foods, 2nd ed.; Tiwari, B.K., McKenna, B., Gowen, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 87–112. [Google Scholar] [CrossRef]
- Baldwin, P.M. Starch granule-associated proteins and polypeptides: A review. Starch 2001, 53, 475–503. [Google Scholar] [CrossRef]
- Glore, S.R.; Van Treeck, D.; Knehans, A.W.; Guild, M. Soluble fiber and serum lipids (a literature review). J. Am. Diet Assoc. 1994, 94, 425–436. [Google Scholar] [CrossRef]
- Rainbird, A.L.; Low, A.G. Effect of various types of dietary fibre on gastric emptying in growing pigs. Br. J. Nutr. 1986, 55, 111–121. [Google Scholar] [CrossRef]
- Johansen, H.N.; Knudsen, K.E.; Sandström, B.; Skjøth, F. Effects of varying content of soluble dietary fibre from wheat flour and oat milling fractions on gastric emptying in pigs. Br. J. Nutr. 1996, 75, 339–351. [Google Scholar] [CrossRef]
- Regmi, P.R.; Matte, J.J.; van Kempen, T.; Zijlstra, R.T. Starch chemistry affects kinetics of glucose absorption and insulin response in swine. Livest. Sci. 2010, 134, 44–46. [Google Scholar] [CrossRef]
- Phillips, G.O.; Cui, S.W. An introduction: Evolution and finalisation of the regulatory definition of dietary fibre. Food Hydrocoll. 2011, 25, 139–143. [Google Scholar] [CrossRef]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 2015, 9, 1441–1452. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health. Adv. Nutr. Int. Rev. J. 2015, 6, 206–213. [Google Scholar] [CrossRef]
- Navarro, D.M.D.L.; Bruininx, E.M.A.M.; de Jong, L.; Stein, H.H. Effects of inclusion rate of high fiber dietary ingredients on apparent ileal, hindgut, and total tract digestibility of dry matter and nutrients in ingredients fed to growing pigs. Anim. Feed Sci. Technol. 2019, 248, 1–9. [Google Scholar] [CrossRef]
- Jaworski, N.W.; Stein, H.H. Disappearance of nutrients and energy in the stomach and small intestine, cecum, and colon of pigs fed corn-soybean meal diets containing distillers dried grains with solubles, wheat middlings, or soybean hulls. J. Anim. Sci. 2017, 95, 727–739. [Google Scholar] [CrossRef]
- Grabber, J.H.; Mertens, D.R.; Kim, H.; Funk, C.; Lu, F.; Ralph, J. Cell wall fermentation kinetics are impacted more by lignin content and ferulate cross-linking than by lignin composition. J. Sci. Food Agric. 2009, 89, 122–129. [Google Scholar] [CrossRef]
- Williams, B.A.; Bosch, M.W.; Boer, H.; Verstegen, M.W.A.; Tamminga, S. An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim. Feed Sci. Technol. 2005, 123, 445–462. [Google Scholar] [CrossRef]
- Regmi, P.R.; Metzler-Zebeli, B.U.; Gänzle, M.G.; van Kempen, T.A.T.G.; Zijlstra, R.T. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes Bifidobacteria in pigs. J. Nutr. 2011, 141, 1273–1280. [Google Scholar] [CrossRef]
- Regmi, P.R.; van Kempen, T.A.T.G.; Matte, J.J.; Zijlstra, R.T. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs. J. Nutr. 2011, 141, 398–405. [Google Scholar] [CrossRef]
- Fouhse, J.M.; Gänzle, M.G.; Regmi, P.R.; van Kempen, T.A.T.G.; Zijlstra, R.T. High amylose starch with low in vitro digestibility stimulates hindgut fermentation and has a bifidogenic effect in weaned pigs. J. Nutr. 2015, 145, 2464–2470. [Google Scholar] [CrossRef]
- Jha, R.; Owusu-Asiedu, A.; Simmins, P.H.; Pharazyn, A.; Zijlstra, R.T. Degradation and fermentation characteristics of wheat co-products from flour milling in the pig intestine, studied in vitro. J. Anim. Sci. 2012, 90 (E-Suppl. S4), 173–175. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Moschini, M.; Masoero, F. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum. Animal 2013, 7, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Gdala, J.; Johansen, H.N.; Bach Knudsen, K.E.; Knap, I.H.; Wagner, P.; Jørgensen, O.B. The digestibility of carbohydrates, protein and fat in the small and large intestine of piglets fed non-supplemented and enzyme supplemented diets. Anim. Feed Sci. Technol. 1997, 65, 15–33. [Google Scholar] [CrossRef]
- Williams, B.A.; Verstegen, M.W.A.; Tamminga, S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev. 2001, 14, 207–227. [Google Scholar] [CrossRef] [PubMed]
- Boirie, Y.; Dangin, M.; Gachon, P.; Vasson, M.-P.; Maubois, J.L.; Beaufrère, B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA 1997, 94, 14930–14935. [Google Scholar] [CrossRef]
- Dangin, M.; Boirie, Y.; Garcia-Rodenas, C.; Gachon, P.; Fauquant, J.; Callier, P.; Ballèvre, O.; Beaufrère, B. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E340–E348. [Google Scholar] [CrossRef]
- Bryan, D.D.S.L.; Van Kessel, A.G.; Classen, H.L. In vivo digestion characteristics of protein sources fed to broilers. Poult. Sci. 2019, 98, 3313–3325. [Google Scholar] [CrossRef]
- Liu, S.Y.; Selle, P.H.; Raubenheimer, D.; Cadogan, D.J.; Simpson, S.J.; Cowieson, A.J. An assessment of the influence of macronutrients on growth performance and nutrient utilisation in broiler chickens by nutritional geometry. Br. J. Nutr. 2017, 116, 2129–2138. [Google Scholar] [CrossRef]
- Truong, H.H.; Chrystal, P.V.; Moss, A.F.; Selle, P.H.; Liu, S.Y. Rapid protein disappearance rates along the small intestine advantage poultry performance and influence the post-enteral availability of amino acids. Br. J. Nutr. 2017, 118, 1031–1042. [Google Scholar] [CrossRef]
- Berrocoso, J.D.; García-Ruiz, A.; Page, G.; Jaworski, N.W. The effect of added oat hulls or sugar beet pulp to diets containing rapidly or slowly digestible protein sources on broiler growth performance from 0 to 36 days of age. Poult. Sci. 2020, 99, 6859–6866. [Google Scholar] [CrossRef]
- Pedersen, N.B.; Hanigan, M.; Zaefarian, F.; Cowieson, A.J.; Nielsen, M.O.; Storm, A.C. The influence of feed ingredients on CP and starch disappearance rate in complex diets for broiler chickens. Poult. Sci. 2021, 100, 101068. [Google Scholar] [CrossRef]
- Macelline, S.P.; Chrystal, P.V.; Liu, S.Y.; Selle, P.H. The dynamic conversion of dietary protein and amino acids into chicken-meat protein. Animals 2021, 11, 2288. [Google Scholar] [CrossRef]
- Breves, G.; Schröder, B. Comparative aspects of gastrointestinal phosphorus metabolism. Nutr. Res. Rev. 1991, 4, 125–140. [Google Scholar] [CrossRef]
- Schröder, B.; Breves, G.; Rodehutscord, M. Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch. Tierärztl. Wochenschr. 1996, 103, 209–214. [Google Scholar]
- Rodehutscord, M.; Rosenfelder, P. Update on phytate degradation pattern in the gastrointestinal tract of pigs and broiler chickens. In Phytate Destruction—Consequences for Precision Animal Nutrition; Walk, C.L., Kühn, I., Stein, H.H., Kidd, M.T., Rodehutscord, M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 15–32. [Google Scholar]
- Woyengo, T.A.; Nyachoti, C.M. Review: Anti-nutritional effects of phytic acid in diets for pigs and poultry—Current knowledge and directions for future research. Can. J. Anim. Sci. 2013, 93, 9–21. [Google Scholar] [CrossRef]
- Selle, P.H.; Ravindran, V. Phytate-degrading enzymes in pig nutrition. Livest. Sci. 2008, 113, 99–122. [Google Scholar] [CrossRef]
- Rosenfelder-Kuon, P.; Klein, N.; Zegowitz, B.; Schollenberger, M.; Kühn, I.; Thuringer, L.; Seifert, J.; Rodehutscord, M. Phytate degradation cascade in pigs as affected by phytase supplementation and rapeseed cake inclusion in corn–soybean meal-based diets. J. Anim. Sci. 2020, 98, skaa053. [Google Scholar] [CrossRef]
- Kemme, P.A.; Schlemmer, U.; Mroz, Z.; Jongbloed, A.W. Monitoring the stepwise phytate degradation in the upper gastrointestinal tract of pigs. J. Sci. Food Agric. 2006, 86, 612–622. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Schmucker, S.; Burbach, K.; Weiss, E.; Eklund, M.; Aumiller, T.; Capezzone, F.; Steuber, J.; Rodehutscord, M.; Hoelzle, L.E.; et al. Phytate degradation, intestinal microbiota, microbial metabolites and immune values are changed in growing pigs fed diets with varying calcium–phosphorus concentration and fermentable substrates. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Kühn, I.; Schollenberger, M.; Männer, K. Effect of dietary phytase level on intestinal phytate degradation and bone mineralization in growing pigs. J. Anim. Sci. 2016, 94, 264–267. [Google Scholar] [CrossRef]
- Mesina, V.G.R.; Lagos, L.V.; Sulabo, R.C.; Walk, C.L.; Stein, H.H. Effects of microbial phytase on mucin synthesis, gastric protein hydrolysis, and degradation of phytate along the gastrointestinal tract of growing pigs. J. Anim. Sci. 2019, 97, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.H. Procedures for determining digestibility of amino acids, lipids, starch, fibre, phosphorus, and calcium in feed ingredients fed to pigs. Anim. Prod. Sci. 2017, 57, 2317–2324. [Google Scholar] [CrossRef]
- Zhang, F.; Adeola, O. Techniques for evaluating digestibility of energy, amino acids, phosphorus, and calcium in feed ingredients for pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef]
- Fan, M.Z.; Sauer, W.C. Additivity of apparent ileal and fecal phosphorus digestibility values measured in single feed ingredients for growing-finishing pigs. Can. J. Anim. Sci. 2002, 82, 183–191. [Google Scholar] [CrossRef]
- Almeida, F.N.; Stein, H.H. Standardized total tract digestibility of phosphorus in blood products fed to weanling pigs. Rev. Colomb. Cienc. Pec. 2011, 24, 617–622. [Google Scholar]
- Son, A.R.; Kim, B.G. Effects of dietary cellulose on the basal endogenous loss of phosphorus in growing pigs. Asian-Aust. J. Anim. Sci. 2015, 28, 369–373. [Google Scholar] [CrossRef]
- Bikker, P.; van der Peet-Schwering, C.M.C.; Gerrits, W.J.J.; Sips, V.; Walvoort, C.; van Laar, H. Endogenous phosphorus losses in growing-finishing pigs and gestating sows. J. Anim. Sci. 2017, 95, 1637–1643. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Wang, L.F.; Zijlstra, R.T. Increasing inclusion of fermentable fiber decreases nutrient digestibility in grower pigs. J. Anim. Sci. 2020, 98 (Suppl. S3), 85. [Google Scholar] [CrossRef]
- Mosenthin, R.; Sauer, W.C.; Ahrens, F. Dietary pectin’s effect on ileal and fecal amino acid digestibility and exocrine pancreatic secretions in growing pigs. J. Nutr. 1994, 124, 1222–1229. [Google Scholar] [CrossRef]
- Metzler, B.U.; Mosenthin, R. A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. Asian-Aust. J. Anim. Sci. 2008, 21, 603–615. [Google Scholar] [CrossRef]
- Sommerfeld, V.; Santos, R.R. In vitro assays for evaluating phytate degradation in non-ruminants: Chances and limitations. J. Sci. Food Agric. 2021, 101, 3117–3122. [Google Scholar] [CrossRef]
- Li, D.; Lu, Q.; Zhang, H.; Zhuang, X.; Chen, L. Effects of digestive enzymes and digestive time on evaluating in vitro digestibility of phosphorus in common plant-origin feeds by bionic digestion system for growing pigs. Chin. J. Anim. Nutr. 2013, 25, 2051–2058. [Google Scholar]
- Rémésy, C.; Levrat, M.-A.; Gamet, L.C.; Demigné, C. Cecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. Am. J. Physiol. 1993, 264, G855–G862. [Google Scholar] [CrossRef]
- Baumgärtel, T.; Metzler, B.U.; Mosenthin, R.; Greiner, R.; Rodehutscord, M. Precaecal and postileal metabolism of P, Ca and N in pigs as affected by different carbohydrate sources fed at low level of P intake. Arch. Anim. Nutr. 2008, 62, 169–181. [Google Scholar] [CrossRef]
- Barszcz, M.; Taciak, M.; Tuśnio, A.; Čobanová, K.; Grešáková, L. The effect of organic and inorganic zinc source, used in combination with potato fiber, on growth, nutrient digestibility and biochemical blood profile in growing pigs. Livest. Sci. 2019, 227, 37–43. [Google Scholar] [CrossRef]
- Den Hartog, L.A.; Huisman, J.; Thielen, W.J.G.; Van Schayk, G.H.A.; Boer, H.; Van Weerden, E.J. The effect of including various structural polysaccharides in pig diets on ileal and faecal digestibility of amino acids and minerals. Livest. Prod. Sci. 1988, 18, 157–170. [Google Scholar] [CrossRef]
- Vanhoof, K.; De Schrijver, R. Availability of minerals in rats and pigs fed non-purified diets containing inulin. Nutr. Res. 1996, 16, 1017–1022. [Google Scholar] [CrossRef]
- Liu, J.B.; Shen, X.Y.; Zhai, H.X.; Chen, L.; Zhang, H.F. Dietary sources of phosphorus affect postileal phosphorus digestion in growing pigs. J. Anim. Sci. 2017, 95, 4490–4498. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Fouhse, J.M.; Vasanthan, T.; Zijlstra, R.T. Cereal grain fiber composition modifies phosphorus digestibility in grower pigs. J. Anim. Sci. 2022, 100, skac181. [Google Scholar] [CrossRef]
- Metzler-Zebeli, B.U.; Gänzle, M.G.; Mosenthin, R.; Zijlstra, R.T. Oat β-glucan and dietary calcium and phosphorus differentially modify intestinal expression of proinflammatory cytokines and monocarboxylate transporter 1 and cecal morphology in weaned pigs. J. Nutr. 2012, 142, 668–674. [Google Scholar] [CrossRef] [PubMed]
- González-Vega, J.C.; Walk, C.L.; Stein, H.H. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pig. J. Anim. Sci. 2015, 93, 4808–4818. [Google Scholar] [CrossRef]
- Mejicanos, G.A.; Kim, J.W.; Nyachoti, C.M. Tail-end dehulling of canola meal improves apparent and standardized total tract digestibility of phosphorus when fed to growing pigs. J. Anim. Sci. 2018, 96, 1430–1440. [Google Scholar] [CrossRef]
- Lestienne, I.; Besançon, P.; Caporiccio, B.; Lullien-Péllerin, V.; Tréche, S. Iron and zinc availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. J. Agric. Food Chem. 2005, 53, 3240–3247. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Zebeli, B.U.; Hooda, S.; Mosenthin, R.; Gänzle, M.G.; Zijlstra, R.T. Bacterial fermentation affects net mineral flux in the large intestine of pigs fed diets with viscous and fermentable nonstarch polysaccharides. J. Anim. Sci. 2010, 88, 3351–3362. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, M.; Gómez, R.; Fierro, S.; Barrera, M.A.; Morales, A.; Araiza, B.A.; Zijlstra, R.T.; Sánchez, J.E.; Sauer, W.C. Ileal digestibility of amino acids, phosphorus, phytate and energy in pigs fed sorghum-based diets supplemented with phytase and pancreatin. J. Anim. Physiol. Anim. Nutr. 2011, 95, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Nortey, T.N.; Patience, J.F.; Simmins, P.H.; Trottier, N.L.; Zijlstra, R.T. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. J. Anim. Sci. 2007, 85, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Widyaratne, G.P.; Patience, J.F.; Zijlstra, R.T. Effect of xylanase supplementation of diets containing wheat distiller’s dried grains with solubles on energy, amino acid and phosphorus digestibility and growth performance of grower-finisher pigs. Can. J. Anim. Sci. 2009, 89, 91–95. [Google Scholar] [CrossRef]
- Widyaratne, G.P.; Zijlstra, R.T. Nutritional value of wheat and corn distiller’s dried grain with solubles: Digestibility and digestible contents of energy, amino acids and phosphorus, nutrient excretion and growth performance of grower-finisher pigs. Can. J. Anim. Sci. 2007, 87, 103–114. [Google Scholar] [CrossRef]
- Blank, R.; Naatjes, M.; Baum, C.; Köhling, K.; Ader, P.; Roser, U.; Susenbeth, A. Effects of formic acid and phytase supplementation on digestibility and use of phosphorus and zinc in growing pigs. J. Anim. Sci. 2012, 90, 212–214. [Google Scholar] [CrossRef]
- Kraler, M.; Schedle, K.; Domig, K.J.; Heine, D.; Michlmayr, H.; Kneifel, W. Effects of fermented and extruded wheat bran on total tract apparent digestibility of nutrients, minerals and energy in growing pigs. Anim. Feed Sci. Technol. 2014, 197, 121–129. [Google Scholar] [CrossRef]
- Bournazel, M.; Lessire, M.; Duclos, M.J.; Magnin, M.; Même, N.; Peyronnet, C.; Recoules, E.; Quinsac, A.; Labussière, E.; Narcy, A. Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase. Animal 2018, 12, 34–42. [Google Scholar] [CrossRef]
- Blaabjerg, K.; Carlsson, N.-G.; Hansen-Møller, J.; Poulsen, H.D. Effect of heat-treatment, phytase, xylanase and soaking time on inositol phosphate degradation in vitro in wheat, soybean meal and rapeseed cake. Anim. Feed Sci. Technol. 2010, 162, 123–134. [Google Scholar] [CrossRef]
- Blaabjerg, K.; Jørgensen, H.; Tauson, A.-H.; Poulsen, H.D. The presence of inositol phosphates in gastric pig digesta is affected by time after feeding a nonfermented or fermented liquid wheat- and barley-based diet. J. Anim. Sci. 2011, 89, 3153–3162. [Google Scholar] [CrossRef]
- Morales, G.A.; Saenz de Rodrigañez, M.; Márquez, L.; Díaz, M.; Moyano, F.J. Solubilisation of protein fractions induced by Escherichia coli phytase and its effects on in vitro fish digestion of plant proteins. Anim. Feed Sci. Technol. 2013, 181, 54–64. [Google Scholar] [CrossRef]
- Leske, K.L.; Coon, C.N. A bioassay to determine the effect of phytase on phytate phosphorus hydrolysis and total phosphorus retention of feed ingredients as determined with broilers and laying hens. Poult. Sci. 1999, 78, 1151–1157. [Google Scholar] [CrossRef]
- Truong, H.H.; Bold, R.M.; Liu, S.Y.; Selle, P.H. Standard phytase inclusion in maize-based broiler diets enhances digestibility coefficients of starch, amino acids and sodium in four small intestinal segments and digestive dynamics of starch and protein. Anim. Feed Sci. Technol. 2015, 209, 240–248. [Google Scholar] [CrossRef]
- Selle, P.H.; Cowieson, A.J.; Ravindran, V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livest. Sci. 2009, 124, 126–141. [Google Scholar] [CrossRef]
- Siener, R.; Heynck, H.; Hesse, A. Calcium-binding capacities of different brans under simulated gastrointestinal pH conditions. In vitro study with 45Ca. J. Agric. Food Chem. 2001, 49, 4397–4401. [Google Scholar] [CrossRef]
- McCuaig, L.W.; Davies, M.I.; Motzok, I. Intestinal alkaline phosphatase and phytase of chicks: Effect of dietary magnesium, calcium, phosphorus and thyroactive casein. Poult. Sci. 1972, 51, 526–530. [Google Scholar] [CrossRef]
- Davies, N.T.; Nightingale, R. The effects of phytate on intestinal absorption and secretion of zinc, and whole-body retention of Zn, copper, iron and manganese in rats. Br. J. Nutr. 1975, 34, 243–258. [Google Scholar] [CrossRef]
- Windisch, W.; Kirchgessner, M. Zinc absorption and excretion in adult rats at zinc deficiency induced by dietary phytate additions: I. Quantitative zinc metabolism of 65Zn-labelled adult rats at zinc deficiency. J. Anim. Physiol. Anim. Nutr. 1999, 82, 106–115. [Google Scholar] [CrossRef]
- Wolters, M.G.E.; Schreuder, H.A.W.; van den Heuvel, G.; van Lonkhuijsen, H.A.W.; Hermus, R.J.J.; Voragen, A.G.J. A continuous in vitro method for estimation of the bioavailability of minerals and trace elements in foods: Application to breads varying in phytic acid content. Br. J. Nutr. 1993, 69, 849–861. [Google Scholar] [CrossRef]
- Champagne, E.T.; Phillippy, B.Q. Effects of pH on calcium, zinc, and phytate solubilities and complexes following in vitro digestions of soy protein isolate. J. Food Sci. 1989, 54, 587–592. [Google Scholar] [CrossRef]
- Schlegel, P.; Nys, Y.; Jondreville, C. Zinc availability and digestive zinc solubility in piglets and broilers fed diets varying in their phytate contents, phytase activity and supplemented zinc source. Animal 2010, 4, 200–209. [Google Scholar] [CrossRef]
- Jongbloed, A.W.; Mroz, Z.; van der Weij-Jongbloed, R.; Kemme, P.A. The effects of microbial phytase, organic acids and their interaction in diets for growing pigs. Livest. Prod. Sci. 2000, 67, 113–122. [Google Scholar] [CrossRef]
- Gerrits, W.J.J.; Schop, M.T.A.; de Vries, S.; Dijkstra, J. ASAS-NANP symposium: Digestion kinetics in pigs: The next step in feed evaluation and a ready-to-use modeling exercise. J. Anim. Sci. 2021, 99, skab020. [Google Scholar] [CrossRef]
In Vitro Model | Feedstuff | Items | Reference | |
---|---|---|---|---|
Enzymes | Sample Points (min) | |||
Pepsin (24 h); trypsin (24 h) | 1440 (24 h) | Soybean protein isolate | CP | [21] |
Pepsin (48 h) or pepsin (24 h) and trypsin (48 h) | 2880 (48 h) | SBM | CP, AA | [22] |
Pepsin (90 min); pancreatin, amylase (60 min) | 60 | 7 feedstuffs, 16 diets | CP | [23] |
Pepsin (90 min); pancreatin, α-amylase (60 min) | 60 | 5 common feedstuffs | CP | [24] |
Pepsin (6 h), pancreatin (18 h) | 1080 (18 h) | 15 common feedstuffs | CP, AA | [25] |
Pepsin, pancreatin, Viscozyme | – | Barley, hulled and hull-less | Gross energy, CP | [26] |
Pepsin (6 h); pancreatin (18 h); cellulase (24 h) | 1440 (24 h) | Barley, hulled and hull-less | [27] | |
Pepsin (24 h); pancreatin (96 h) | 5760 (96 h) | Animal protein | Protein, peptides | [28] |
Pepsin without/with phytase | 0, 30, 60, 120, 180, 240 | SBM extract | CP | [29] |
Pepsin (6 h), pancreatin (18 h) | 1080 (18 h) | Barley, 7 samples year A, 11 samples year B | OM, CP, AA | [30] |
Pepsin (6 h), pancreatin (18 h) | 1080 (18 h) | Ingredients, diets | CP, AA | [31] |
Pepsin | 10, 30, 60, 120, 240 | Grower diet | CP | [32] |
Pepsin (120 min); pancreatin, protease, amylase, lipase (240 min); Viscozyme (8 h) | Pepsin: 5, 10, 20, 30, 60, 120; pancreatin, protease, amylase, lipase: 10, 20, 30, 60, 90, 120, 180, 240; Viscozyme: 10, 20, 30, 60, 120, 180, 240, 480 | Wheat, barley, wheat bran, SBM | OM, nitrogen, starch | [33] |
Pepsin (240 min); pancreatin (240 min) | 240 | Fibrous diets | OM, CP, starch | [34] |
Pepsin (75 min); pancreatin (210 min) | 210 | Nursery diets | CP, AA | [35] |
Pepsin (30 min); pancreatin (180 min) | 0, 15, 30, 45, 60, 90, 120, 150, 180 | SBM, corn gluten meal, corn DDGS, porcine meal, fish meal, casein | CP | [36] |
Pepsin (30 min); pancreatin (180 min) | 0, 15, 30, 45, 60, 90, 120, 150, 180 | SBM, corn gluten meal, corn DDGS, fish meal, canola meal, meat and bone meal, feather meal, blood meal | CP | [37] |
Pepsin (90 min); pancreatin; bile solution | 0, 30, 60, 90, 120, 150, 180, 210 | SBM, wheat gluten, rapeseed meal, whey powder, dried porcine plasma protein, yellow meal worm larvae, black soldier fly larvae | Low-molecular-weight peptides (<500 Da), nitrogen | [38] |
Pepsin; pancreatin; bile extract | 0, 30, 60, 120, 240, 360 | SBM, SBM; thermomechanical, enzyme-facilitated | CP | [39] |
In Vitro Model | Feedstuff | Items | Reference | |
---|---|---|---|---|
Enzymes | Sample Points (min) | |||
Pepsin (30 min); pancreatin, amylase, amyloglucosidase, invertase | 20, 120, 150, 180, 210, 240, 300, 360, 420, 480 | Barley, extruded barley, field pea, extruded field pea, potato starch and wheat bran mixture, extruded potato starch and wheat bran mixture | Starch, glucose | [40] |
Pepsin (120 min); pancreatin, protease, amylase, lipase (240 min); Viscozyme (8 h) | Pepsin: 5, 10, 20, 30, 60, 120; pancreatin, protease, amylase, lipase: 10, 20, 30, 60, 90, 120, 180, 240; Viscozyme: 10, 20, 30, 60, 120, 180, 240, 480 | Wheat, barley, wheat bran, SBM | OM, N, starch | [33] |
Pepsin (240 min); pancreatin (240 min) | 240 | Fibrous diets | OM, CP, starch | [34] |
Pepsin (30 min incubation); pancreatin; amyloglucosidase; invertase | 0, 15, 30, 60, 120, 240, 360, 480 | Rice starch (<50 g/kg DM amylose), rice starch (196 g/kg DM amylose), pea starch (284 g/kg DM amylose), corn starch (632 g/kg DM amylose) | Glucose | [41] |
Pepsin (30 min incubation); pancreatin; amyloglucosidase; invertase | 0, 15, 30, 60, 90, 0, 120, 180 | Corn-, pea-, rice-starch-, and white-bread-based diet | Starch | [42] |
Pepsin (30 min), pancreatin, amyloglucosidase, invertase | 0, 15, 30, 60, 120, 240, 360 | 15 different starches; one additionally sieved in 5 fractions | Starch, glucose | [43] |
Pepsin (30 min), pancreatin, amyloglucosidase, invertase | 0, 15, 30, 60, 120, 240, 360 | 9 diets differing in starch source (barley, corn, high-amylose corn); form (isolated starch, ground cereal, extruded cereal) | Starch, glucose | [44] |
Pepsin (15 min), enzymes extracted from stomach digesta, enzymes porcine saliva | 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5, 180, 202.5, 225 | 3 diets with only starch from barley origin (isolated barley starch, ground barley, extruded barley) | Glucose, maltodextrin | [45] |
Pepsin (30 min); pancreatin, amyloglucosidase, invertase | 0, 20, 120 | Corn- barley-, faba-bean-, pea-based diet | Glucose | [46] |
In Vitro Model | Feedstuff | Items | Reference | |
---|---|---|---|---|
Enzymes | Sample Points (min) | |||
Phytase | 0–1020 | Wheat bran, whole flour of rye, whole flour of oats | InsP6-InsP3 | [47] |
Pepsin; exogenous phytase (0, 250, 500 FYT/kg) (75 min); pancreatin | 60, 120, 180, 240, 300 | Corn-SBM diet | P | [48] |
Pepsin, acid phosphatase (75 min); pancreatin | 0, 240 | Alfalfa meal, barley, canola meal, corn, grain sorghum, oat, rice bran, SBM, wheat, wheat bran, fish meal, meat and bone meal, spray-dried blood meal, dry whey | P | [49] |
Phytase | 0–1380 (23 h) | Canola meal | InsP6 | [50] |
[15 min incubation, pH 6.0]; phytase; phosphatase or mixture of equal dose | 0, 60, 120, 180, 240, 300, 360 | Barley, corn, SBM | Orthophosphate | [51] |
Pepsin without/with trypsin | 1, 5, 30, 120 | SBM | P | [52] |
Phytase | 0–1260 | Wheat phytate globoids, wheat bran | InsP6 to InsP2 | [53] |
[60 min soaking phase]; β-glucanase; endo-xylanase; pepsin | 0, 60 | Corn, barley, wheat, potato protein concentrate, rapeseed expeller, soybean expeller | P | [54] |
In Vitro Model | Feedstuff | Item | Reference | ||
---|---|---|---|---|---|
Basis of Assay | Enzymes | Sample Points (h) | |||
Undigested ingredients | Fecal inocula | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 48 | Inulin, lactulose, molasses-free sugar beet pulp, wheat starch | Gas production | [55] |
Digested ingredients | Pepsin (120 min), pancreatin (240 min); fecal inocula | 0, 2, 5, 8, 12, 18, 24, 36, 48 | Wheat shorts, wheat millrun, wheat middlings, wheat bran | Gas production | [56] |
Undigested ingredients | Fecal inoculum | 0–72 | Guar gum, konjac glucomannan, cellulose, retrograded tapioca starch, retrograded corn starch, oat β-glucan, inulin, oligofructose, HM citrus pectin, alginate, xanthan gum, soy pectin | Gas production | [57] |
Digested ingredients | Pepsin (120 min), pancreatin (240 min); fecal inocula; Trichoderma-based carbohydrase (cellulase, xylanase) and/or protease Bacillus spp. | 0, 2, 5, 8, 12, 18, 24, 36, 48, 72 | Wheat DDGS, corn DDGS | Gas production | [58] |
Digested ingredients | Pepsin (120 min), pancreatin (240 min); fecal inocula, xylanase, mannanase | 0, 2, 5, 8, 12, 18, 24, 36, 48 | Corn DDGS | Gas production | [59] |
Digested ingredients | Pepsin, xylanase, glucanase, cellulase, mannanase, invertase, protease, amylase (120 min), pancreatin (240 min); fecal inocula; | 0, 2, 5, 8, 12, 18, 24, 36, 48, 72 | Corn wet distillers, corn DDGS Corn DDGS | Gas production | [60] |
Undigested ingredients | Fecal inocula | 0, 2, 5, 8, 12, 18, 24, 36, 48, 72 | Rice starch (<45 g/kg DM amylose), rice starch (176 g/kg DM amylose), pea starch (256 g/kg DM amylose), corn starch (569 g/kg DM amylose) | Gas production | [61] |
Undigested ingredients | Fecal inocula | 0, 8, 16, 24, 32, 40, 48, 56 | Wheat bran, soybean hulls, oat bran, corn bran, sugar beet pulp | Gas production | [62] |
Digestion Kinetics | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
In Vitro Model | Classification according to Sample Time (min) | |||||||||
Basis of Assay | Enzymes | Sample Points (min) | Equation | Nutrient | Fast | Moderately Fast | Moderately Slow | Slow | Resistant | |
Starch digestion kinetics | ||||||||||
Undigested ingredients | Amyloglucosidase; invertase; pancreatin; pullulanase; α-amylase | 0, 20, 120 | – | Glucose | 0–20 | – | – | 20–120 | >120; not further hydrolyzed | [67] |
Undigested ingredients | Pepsin (30 min incubation); pancreatin; amyloglucosidase; invertase | 0, 15, 30, 60, 120, 240, 360, 480 | Chapman-Richards modified by [69] | Glucose | 0–20 | – | – | 20–120 | >120; not further hydrolyzed | [41] 1 |
Undigested ingredients | Pepsin (30 min incubation); pancreatin; amyloglucosidase; invertase | 0, 15, 30, 60, 120, 240, 360, 480 | Chapman-Richards modified by [69] | Starch hydrolyzed; glucose release | 0–20 | – | – | 20–120 | >120; not hydrolyzed | [68] |
– | – | – | – | Starch hydrolysis in pigs | 20 (digesta enters small intestine) | – | – | Difference starch fast hydrolyzed, and starch hydrolyzed at ileum | Not hydrolyzed at ileum | [68] |
Protein digestion kinetics | ||||||||||
Undigested ingredients | Pepsin (90 min, pH 3.5); pancreatin; bile solution (pH 6.8) | 0, 30, 60, 90, 120, 150, 180, 210 | [70]; data fitted using linear equation | Nitrogen; low-molecular-weight peptides (<500 Da) | 0–30 | – | – | 30–240 | 100–CPfast–CPslow | [38] |
Undigested ingredients | Pepsin (pH 3.5); pancreatin; bile extract (pH 6.8) | 0, 30, 60, 120, 240, 360 | Gompertz equation | Nitrogen | 0–30 min | – | – | 30–240 min | 100–CPfast–CPslow | [39] |
Fiber fermentation kinetics | ||||||||||
Digested ingredients | Pepsin (120 min); pancreatin (240 min); fecal inocula | 0, 2, 5, 8, 12, 18, 24, 36, 48, 72 | [71] | Gas, CO2 | L, 2.24; Gf, 236 | L, 2.38; Gf, 226 | L, 2.39; Gf, 239 | L, 2.67; Gf, 219 | – | [61] |
Initial BW (kg) | Diet Composition | Nutrient Composition of Diet (g/kg, as-Fed) | CAID (%) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Ingredients | Fiber Source | Exogenous Enzymes | CP | P | InsP6-P | Ca/Zn | CF | NDF | ADF | CP | P | InsP6 | Ca | Zn | ||
22 | Sorghum, SBM | – | – | 183 | 5.9 | 1.9 | 6.0 | – | – | – | 0.73 | 0.40 | 0.01 | – | – | [141] |
– | Pancreatin | 0.72 | – | – | – | – | ||||||||||
– | Phytase | 0.72 | 0.52 | 0.36 | – | – | ||||||||||
– | Pancreatin, phytase | 0.71 | – | – | – | – | ||||||||||
28 1 | Corn, SBM | – | – | 208 | 3.9 | 2.6 | 5.1 | 19 | – | – | 0.78 a | 0.29 aB | 0.31 b | 0.55 aB | – | [113] |
Phytase | 210 | 4.0 | 2.7 | 4.8 | 19 | – | – | 0.78 a | 0.62 aA | 0.92 a | 0.69 aA | – | ||||
Rapeseed cake | – | 178 | 4.9 | 3.5 | 6.1 | 31 | – | – | 0.71 b | 0.23 bA | 0.30 b | 0.47 bA | – | |||
Phytase | 181 | 4.8 | 3.4 | 5.7 | 30 | – | – | 0.72 b | 0.57 bB | 0.92 a | 0.63 bB | – | ||||
28 | Soy protein concentrate, fish meal | β-glucan, hull-less barley | – | 246 | 7.4 | 3.2 | 8.5 | – | 260 | 23 | – | 0.07 b | 0.29 | 0.40 | – | [135] |
Amylose, hull-less barley | – | 210 | 7.7 | 2.7 | 7.8 | – | 145 | 23 | – | 0.16 b | 0.41 | 0.37 | – | |||
Hull-less barley | – | 211 | 7.3 | 1.7 | 8.4 | – | 119 | 20 | – | 0.37 a | 0.26 | 0.53 | – | |||
Hulled barley | – | 203 | 7.6 | 2.0 | 7.5 | – | 139 | 43 | – | 0.32 a | 0.13 | 0.41 | – | |||
Wheat | – | 235 | 8.0 | 2.9 | 8.7 | – | 119 | 29 | – | 0.31 a | 0.19 | 0.38 | – |
Initial BW (kg) | Diet Composition | Nutrient Composition of Diet (g/kg, as-Fed) | CAID (%) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Ingredients | Fiber Source | Exogenous Enzymes | CP | P | InsP6-P | Ca/Zn | CF | NDF | ADF | CP | P | InsP6 | Ca | Zn | ||
40 | Corn, barley, meat meal tankage | – | – | 172 | 7.5 | – | 8.3 | 31 | 116 | 42 | 0.71 a | 0.28 | – | 0.33 | – | [132] |
Pectin | – | 165 | 7.1 | – | 8.0 | 30 | 110 | 40 | 0.70 ab | 0.25 | – | 0.26 | – | |||
Cellulose | – | 164 | 7.1 | – | 7.9 | 58 | 156 | 83 | 0.70 ab | 0.28 | – | 0.28 | – | |||
Straw meal | – | 165 | 7.2 | – | 7.9 | 50 | 148 | 64 | 0.67 b | 0.26 | – | 0.33 | – | |||
85 | Barley, corn starch, wheat, SBM | – | – | – | 5.2 | – | 10.2/0.2 | – | – | – | – | 0.37 | – | 0.49 | 0.19 | [133] |
Inulin | – | – | 5.2 | – | 10.2/0.2 | – | – | – | – | 0.34 | – | 0.44 | 0.25 | |||
36 1 | Wheat, SBM | – | – | – | 6.4 | 2.7 | 7.4 | – | – | – | – | 0.54 a | – | 0.63 a | – | [142] |
Wheat millrun (200 g/kg) | – | – | 6.4 | 3.6 | 7.1 | – | – | – | – | 0.41 b | – | 0.54 b | – | |||
Xylanase | – | – | 0.46 | – | 0.52 | – | ||||||||||
Phytase | – | – | 0.43 | – | 0.55 | – | ||||||||||
Xylanase and phytase | – | – | 0.48 | – | 0.48 | – | ||||||||||
Wheat millrun (400 g/kg) | – | – | 6.2 | 4.5 | 6.8 | – | – | – | – | 0.35 c | – | 0.45 c | – | |||
Xylanase | – | – | 0.38 | – | 0.41 | – | ||||||||||
Phytase | – | – | 0.40 | – | 0.46 | – | ||||||||||
Xylanase and phytase | – | – | 0.44 | – | 0.51 | – | ||||||||||
36 | Corn, SBM, corn starch | – | – | 191 | 2.8 | 1.5 | 8.7 | 29 | 96 | – | 0.73 a | 0.26 | 0.60 | 0.59 a | – | [130] |
Lignocellulose | – | 149 | 2.1 | 1.2 | 6.8 | 200 | 311 | – | 0.65 ab | 0.25 | 0.60 | 0.62 a | – | |||
Corn starch | – | 147 | 2.2 | 1.2 | 6.6 | 212 | 70 | – | 0.74 a | 0.15 | 0.18 | 0.62 a | – | |||
Pectin | – | 147 | 2.3 | 1.1 | 6.9 | 219 | 73 | – | 0.48 b | 0.17 | 0.64 | 0.31 b | – | |||
57 | Corn starch | SBM | – | 84.5 | 1.8 | – | 2.1 | – | – | – | – | 0.31 c | – | – | – | [134] |
– | 126 | 2.3 | – | 2.7 | – | – | – | – | 0.38 b | – | – | – | ||||
– | 167 | 3.0 | – | 3.4 | – | – | – | – | 0.41 a | – | – | – | ||||
Canola meal | – | 85.4 | 3.0 | – | 3.4 | – | – | – | – | 0.23 | – | – | – | |||
– | 124 | 4.1 | – | 4.9 | – | – | – | – | 0.25 | – | – | – | ||||
– | 165 | 5.3 | – | 6.4 | – | – | – | – | 0.27 | – | – | – | ||||
Corn DDGS | – | 82.2 | 3.2 | – | 3.1 | – | – | – | – | 0.55 | – | – | – | |||
– | 119 | 4.1 | – | 4.3 | – | – | – | – | 0.55 | – | – | – | ||||
– | 162 | 5.4 | – | 5.6 | – | – | – | – | 0.54 | – | – | – | ||||
Corn | SBM | – | 164 | 3.4 | – | 4.1 | – | – | – | – | 0.18 c | – | – | – | ||
– | 158 | 4.5 | – | 5.3 | – | – | – | – | 0.31 b | – | – | – | ||||
– | 162 | 5.6 | – | 7.1 | – | – | – | – | 0.39 a | – | – | – | ||||
55 2 | Corn starch, sugar, bovine plasma protein | – | – | 151 | 2.9 | – | 1.8 | – | – | – | 0.76 | 0.87 | – | 0.74 | – | [124] |
Acacia gum (25 g/kg) | – | 163 | 3.0 | – | 2.6 | – | – | – | 0.82 | 0.86 | – | 0.76 | – | |||
Acacia gum (50 g/kg) | – | 155 | 2.9 | – | 2.7 | – | – | – | 0.79 | 0.82 | – | 0.72 | – | |||
Acacia gum (75 g/kg) | – | 162 | 3.1 | – | 2.2 | – | – | – | 0.77 | 0.83 | – | 0.76 | – |
Initial BW (kg) | Diet Composition | Nutrient Composition (g/kg, as-Fed) | CATTD (%) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Ingredients | Fiber Source | Exogenous Enzymes | CP | P | InsP6-P | Ca/Zn/Cu | CF | NDF | ADF | CP | P | InsP6 | Ca | Zn | ||
29 | Wheat | – | – | – | – | – | – | – | – | – | – | 0.19 b | – | – | – | [143] |
– | Xylanase | – | – | – | – | – | – | – | – | 0.20 ab | – | – | – | |||
Wheat DDGS | – | – | – | – | – | – | – | – | – | 0.49 a | – | – | – | |||
Xylanase | – | – | – | – | – | – | – | – | 0.48 ab | – | – | – | ||||
8 | Corn starch casein | – | – | 204 | 3.3 | 0.5 | 6.1 | 12 | – | – | – | 0.42 b | – | 0.49 a | – | [136] |
– | – | 205 | 7.3 | 2.0 | 11 | 14 | – | – | – | 0.51 a | – | 0.46 b | – | |||
Oat β-glucan | – | 220 | 3.3 | 1.3 | 6.0 | 14 | – | – | – | 0.27 b | – | 0.50 a | – | |||
– | 216 | 8.3 | 2.8 | 9.6 | 13 | – | – | – | 0.65 a | – | 0.16 b | – | ||||
19 (Exp. 1) 2 | Corn starch, sucrose, casein, fish meal | – | – | 182 | 5.1 | – | 7.7 | – | 31 | 3.9 | – | 0.66 bB | – | 0.54 bB | – | [137] |
Phytase | 191 | 4.9 | – | 7.3 | – | 26 | 3.4 | – | 0.78 bA | – | 0.79 bA | – | ||||
Corn, casein, fish meal | Corn germ | – | 259 | 6.6 | 1.6 | 6.4 | – | 194 | 40 | – | 0.68 aB | – | 0.62 aB | – | ||
Phytase | 270 | 7.0 | 1.6 | 7.0 | – | 211 | 60 | – | 0.75 aA | – | 0.71 aA | – | ||||
19 (Exp. 2) | Corn starch, sucrose, casein, fish meal | – | 190 | 4.8 | – | 7.1 | – | 12 | 0.9 | – | 0.55 bB | – | 0.40 bB | – | ||
Cellulose | – | 187 | 4.9 | – | 7.2 | – | 63 | 37 | – | 0.65 a | – | 0.57 a | – | |||
Corn, casein, fish meal, SB oil (10 g/kg) | – | – | 237 | 6.4 | 1.3 | 7.4 | – | 71 | 24 | – | 0.76 A | – | 0.84 A | – | ||
Corn, casein, fish meal, SB oil (70 g/kg) | – | – | 243 | 6.0 | 1.2 | 6.8 | – | 81 | 24 | – | 0.77 | – | 0.83 | – | ||
25 | Corn starch, sucrose, dextrose | Non-dehulled CM | – | 232 | 3.5 | – | 2.9 | – | 117 | – | – | 0.32 b | – | 0.51 a | – | [138] |
Dehulled CM | – | 244 | 3.6 | – | 2.3 | – | 79 | – | – | 0.42 a | – | 0.55 a | – | |||
Coarse CM | – | 232 | 3.2 | – | 2.2 | – | 117 | – | – | 0.25 c | – | 0.37 b | – | |||
phytase | 153 | 4.7 | – | 6.0 | – | 131 | 73 | – | 0.46 a | – | 0.51 | – | ||||
11 | Wheat, barley, SBM, lupine, corn starch, ZnSO4 | Lignocellulose | – | 182 | 5.0 | 2.0 | NA/0.1/0.2 | 42 | 108 | 53 | 0.82 | 0.46 b | 0.89 a | – | 0.31 aB | [131] |
Wheat, barley, SBM, lupine, corn starch, ZnGly | – | 183 | 5.2 | 1.8 | NA/0.1/0.2 | 40 | 107 | 56 | 0.83 | 0.45 b | 0.87 a | – | 0.28 bB | |||
Wheat, barley, SBM, lupine, ZnSO4 | Potato fiber | – | 184 | 5.1 | 1.7 | NA/0.1/0.2 | 40 | 114 | 55 | 0.82 | 0.47 a | 0.86 b | – | 0.36 aA | ||
Wheat, barley, SBM, lupine, ZnGly | – | 182 | 5.1 | 17 | NA/0.1/0.2 | 40 | 109 | 58 | 0.82 | 0.50 a | 0.87 b | – | 0.32 bA | |||
28 1 | Corn, SBM | – | – | 208 | 3.9 | 2.6 | 5.1 | 19 | – | – | 0.89 a | 0.33 aB | 0.99 | 0.50 aB | – | [113] |
– | Phytase | 210 | 4.0 | 2.7 | 4.8 | 19 | – | – | 0.89 a | 0.64 aA | 0.99 | 0.68 aA | – | |||
Rapeseed cake | – | 178 | 4.9 | 3.5 | 6.1 | 31 | – | – | 0.82 b | 0.24 bB | 0.99 | 0.42 bB | – | |||
Phytase | 181 | 4.8 | 3.4 | 5.7 | 30 | – | – | 0.82 b | 0.52 bA | 0.99 | 0.58 A | – | ||||
28 | Soy protein concentrate, fish meal | β-glucan, hull-less barley | – | 246 | 7.4 | 32 | 8.5 | – | 260 | 23 | – | 0.47 b | 0.97 a | 0.48 ab | – | [135] |
Amylose, hull-less barley | – | 210 | 7.7 | 2.7 | 7.8 | – | 145 | 23 | – | 0.52 ab | 0.99 ab | 0.45 ab | – | |||
Hull-less barley | – | 211 | 7.3 | 1.7 | 8.4 | – | 119 | 20 | – | 0.54 a | 0.96 ab | 0.50 ab | – | |||
Hulled barley | – | 203 | 7.6 | 2.0 | 7.5 | – | 139 | 43 | – | 0.49 ab | 0.90 b | 0.36 b | – | |||
Wheat | – | 235 | 8.0 | 2.9 | 8.7 | – | 119 | 29 | – | 0.52 ab | 0.97 ab | 0.55 a | – |
Initial BW (kg) | Diet Composition | Nutrient Composition (g/kg, as-Fed) | CATTD (%) | Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Ingredients | Fiber Source | Exogenous Enzymes | CP | P | InsP6-P | Ca/Zn/Cu | CF | NDF | ADF | CP | P | InsP6 | Ca | Zn | ||
40 | Corn, barley, meat meal tankage | – | – | 172 | 7.5 | – | 8.3 | 31 | 116 | 42 | 0.85 | 0.42 | – | 0.43 a | – | [132] |
Pectin | – | 165 | 7.1 | – | 8.0 | 30 | 110 | 40 | 0.83 | 0.46 | – | 0.39 ab | – | |||
Cellulose | – | 164 | 7.1 | – | 7.9 | 58 | 156 | 83 | 0.82 | 0.42 | – | 0.35 b | – | |||
Straw meal | – | 165 | 7.2 | – | 7.9 | 50 | 148 | 64 | 0.83 | 0.44 | – | 0.39 ab | – | |||
85 | Barley, wheat, corn starch, SBM | – | – | – | 5.2 | – | 10.2/0.2 | – | – | – | – | 0.32 | – | 0.39 | 0.05 | [133] |
Inulin | – | – | 5.2 | – | 10.2/0.2 | – | – | – | – | 0.29 | – | 0.37 | 0.11 | |||
65 | Wheat | – | – | – | – | – | – | – | – | – | – | 0.15 b | – | – | – | [144] |
Corn DDGS | – | – | – | – | – | – | – | – | – | 0.56 a | – | – | – | |||
Wheat/corn DDGS | – | – | – | – | – | – | – | – | – | 0.55 a | – | – | – | |||
Wheat DDGS | – | – | – | – | – | – | – | – | – | 0.53 a | – | – | – | |||
36 1 | Wheat, SBM | – | – | – | 6.4 | 2.7 | 7.4 | – | – | – | – | 0.60 a | – | 0.62 a | – | [142] |
Wheat millrun (200 g/kg) | – | – | 6.4 | 3.6 | 7.1 | – | – | – | – | 0.45 bB | – | 0.54 b | – | |||
Xylanase | – | – | 0.48 | – | 0.55 | – | ||||||||||
Phytase | – | – | 0.52 A | – | 0.56 | – | ||||||||||
Xylanase and phytase | – | – | 0.60 A | – | 0.57 | – | ||||||||||
Wheat millrun (400 g/kg) | – | – | 6.2 | 4.5 | 6.8 | – | – | – | – | 0.43 c | – | 0.45 c | – | |||
Xylanase | – | – | 0.44 | – | 0.45 | – | ||||||||||
Phytase | – | – | 0.46 A | – | 0.50 | – | ||||||||||
Xylanase and phytase | – | – | 0.54 A | – | 0.48 | – | ||||||||||
36 | Corn, SBM, corn starch | – | – | 191 | 2.8 | 1.5 | 8.7 | 29 | 96 | – | 0.87 a | 0.28 a | – | 0.60 a | – | [130] |
Lignocellulose | – | 149 | 2.1 | 1.2 | 6.8 | 200 | 311 | – | 0.75 b | 0.24 ab | – | 0.61 a | – | |||
Corn starch | – | 147 | 2.2 | 1.2 | 6.6 | 212 | 70 | – | 0.89 a | 0.23 ab | – | 0.56 a | – | |||
Pectin | – | 147 | 2.3 | 1.1 | 6.9 | 219 | 73 | – | 0.76 b | 0.15 b | – | 0.30 b | – | |||
– | 216 | 8.3 | 2.8 | 9.6 | 13 | – | – | – | 0.65 a | – | 0.16 b | – | ||||
35–40 2 | Wheat, barley, SBM | – | – | 194 | 3.6 | – | NA/0.05 | – | – | – | – | 0.40 b | – | – | 0.28 a | [145] |
+formic acid | – | – | 192 | 3.6 | – | NA/0.04 | – | – | – | – | 0.33 b | – | – | 0.12 b | ||
Wheat, barley, SBM | – | Phytase (500 FTU) | 197 | 3.7 | – | NA/0.04 | – | – | – | – | 0.52 a | – | – | 0.26 a | ||
+formic acid | – | Phytase (500 FTU) | 196 | 3.7 | – | NA/0.04 | – | – | – | – | 0.60 a | – | – | 0.27 a | ||
35–40 | Wheat, barley, SBM | – | – | 194 | 3.6 | – | NA/0.05 | – | – | – | – | 0.41 b | 0.27 ab | |||
+formic acid | – | – | 192 | 3.6 | – | NA/0.04 | – | – | – | – | 0.39 b | 0.20 b | ||||
Wheat, barley, SBM | – | Phytase (1000 FTU) | 195 | 3.6 | – | NA/0.04 | – | – | – | – | 0.62 a | – | – | 0.32 a | ||
+formic acid | – | Phytase (1000 FTU) | 191 | 3.6 | – | NA/0.04 | – | – | – | – | 0.67 a | – | – | 0.35 a | ||
33 | Potato starch, beet pulp | Wheat bran | – | 137 | 3.3 | – | 5.0 | 42 | – | – | 0.80 | 0.43 b | – | 0.59 b | – | [146] |
Wheat bran, fermented | – | 135 | 3.3 | – | 5.1 | 42 | – | – | 0.82 | 0.58 a | – | 0.65 a | – | |||
Wheat bran, extruded | – | 139 | 3.5 | – | 5.1 | 37 | – | – | 0.82 | 0.38 b | – | 0.51 c | – | |||
57 | Corn starch | SBM | – | 84.5 | 1.8 | – | 2.1 | – | – | – | – | 0.35 c | – | – | – | [134] |
– | 126 | 2.3 | – | 2.7 | – | – | – | – | 0.42 b | – | – | – | ||||
– | 167 | 3.0 | – | 3.4 | – | – | – | – | 0.45 a | – | – | – | ||||
Canola meal | – | 85.4 | 3.0 | – | 3.4 | – | – | – | – | 0.27 | – | – | – | |||
– | 124 | 4.1 | – | 4.9 | – | – | – | – | 0.29 | – | – | – | ||||
– | 165 | 5.3 | – | 6.4 | – | – | – | – | 0.30 | – | – | – | ||||
Corn DDGS | – | 82.2 | 3.2 | – | 3.1 | – | – | – | – | 0.65 | – | – | – | |||
– | 119 | 4.1 | – | 4.3 | – | – | – | – | 0.67 | – | – | – | ||||
– | 162 | 5.4 | – | 5.6 | – | – | – | – | 0.66 | – | – | – | ||||
Corn | SBM | – | 164 | 3.4 | – | 4.1 | – | – | – | – | 0.27 c | – | – | – | ||
– | 158 | 4.5 | – | 5.3 | – | – | – | – | 0.43 b | – | – | – | ||||
– | 162 | 5.6 | – | 7.1 | – | – | – | – | 0.50 a | – | – | – | ||||
79 | Corn starch, sucrose, dextrose | Non-dehulled CM | – | 191 | 3.6 | – | 2.9 | – | 99 | – | – | 0.31 ab | – | 0.44 a | – | |
Dehulled CM | – | 203 | 3.7 | – | 2.5 | – | 54 | – | – | 0.39 a | – | 0.28 b | – | |||
Coarse CM | – | 205 | 3.5 | – | 2.5 | – | 88 | – | – | 0.23 b | – | 0.44 a | – | |||
36 3 | Corn, SBM | Rapeseed meal | – | 154 | 4.7 | – | 4.4 | – | 105 | 51 | – | 0.30 | – | 0.50 | – | [147] |
Phytase | 146 | 4.4 | – | 6.2 | – | 105 | 51 | – | 0.43 a | – | 0.51 | – | ||||
Dehulled rapeseed meal | – | 146 | 4.4 | – | 4.0 | – | 78 | 29 | – | 0.26 | – | 0.50 | – | |||
Phytase | 145 | 4.3 | – | 5.8 | – | 78 | 29 | – | 0.45 a | – | 0.53 | – | ||||
Dehulled rapeseed meal, rapeseed hulls (45 g/kg) | – | 147 | 4.5 | – | 4.4 | – | 100 | 53 | – | 0.24 | – | 0.48 | – | |||
Phytase | 147 | 4.6 | – | 5.8 | – | 100 | 53 | – | 0.46 a | – | 0.53 | – | ||||
Dehulled rapeseed meal, rapeseed hulls (90 g/kg) | – | 152 | 4.6 | – | 4.2 | – | 131 | 73 | – | 0.25 | – | 0.51 | – | |||
Phytase | 153 | 4.7 | – | 6.0 | – | 131 | 73 | – | 0.46 a | – | 0.51 | – | ||||
55 | Corn, SBM | – | – | 152 | 3.7 | 1.9 | 3.9 | – | 125 | 59 | 0.74 | 0.02 Bb | 0.09 | 0.45 a | – | [115] |
– | – | 151 | 6.8 | 1.8 | 7.5 | – | 124 | 52 | 0.75 | 0.21 Ba | 0.14 | 0.35 b | – | |||
Corn | Field pea | – | 138 | 3.8 | 1.8 | 4.1 | – | 92 | 53 | 0.69 | 0.05 Ab | 0.13 | 0.43 a | – | ||
– | 133 | 6.6 | 1.8 | 7.5 | – | 96 | 58 | 0.74 | 0.24 Aa | 0.10 | 0.36 b | – | ||||
55 4 | Corn starch, sugar, bovine plasma protein | – | – | 151 | 2.9 | – | 1.8 | – | – | – | 0.95 | 0.88 | – | 0.74 | – | [124] |
Acacia gum (25 g/kg) | – | 163 | 3.0 | – | 2.6 | – | – | – | 0.95 a | 0.86 | – | 0.71 | – | |||
Acacia gum (50 g/kg) | – | 155 | 2.9 | – | 2.7 | – | – | – | 0.95 b | 0.83 | – | 0.79 | – | |||
Acacia gum (75 g/kg) | – | 162 | 3.1 | – | 2.2 | – | – | – | 0.94 c | 0.81 | – | 0.78 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heyer, C.M.E.; Jaworski, N.W.; Page, G.I.; Zijlstra, R.T. Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs. Animals 2022, 12, 2053. https://doi.org/10.3390/ani12162053
Heyer CME, Jaworski NW, Page GI, Zijlstra RT. Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs. Animals. 2022; 12(16):2053. https://doi.org/10.3390/ani12162053
Chicago/Turabian StyleHeyer, Charlotte M. E., Neil W. Jaworski, Greg I. Page, and Ruurd T. Zijlstra. 2022. "Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs" Animals 12, no. 16: 2053. https://doi.org/10.3390/ani12162053
APA StyleHeyer, C. M. E., Jaworski, N. W., Page, G. I., & Zijlstra, R. T. (2022). Effect of Fiber Fermentation and Protein Digestion Kinetics on Mineral Digestion in Pigs. Animals, 12(16), 2053. https://doi.org/10.3390/ani12162053