Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aim and Literature Search Strategy
2.2. Study Selection
2.3. Data Extraction
3. Results
Database Review
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lampman, T.J.; Lund, E.M.; Lipowitz, A.J. Cranial cruciate disease: Current status of diagnosis, surgery, and risk for disease. Vet. Comp. Orthop. Traumatol. 2003, 16, 122–126. [Google Scholar]
- Witsberger, T.H.; Villamil, J.A.; Schultz, L.G.; Hahn, A.W.; Cook, J.L. Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. J. Am. Vet. Med. Assoc. 2008, 232, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Livet, V.; Baldinger, A.; Viguier, É.; Taroni, M.; Harel, M.; Carozzo, C.; Cachon, T. Comparison of outcomes associated with tibial plateau levelling osteotomy and a modified technique for tibial tuberosity advancement for the treatment of cranial cruciate ligament disease in dogs: A randomized clinical study. Vet. Comp. Orthop. Traumatol. 2019, 32, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.V.; Weeren, R.; Paek, M. Extended long-term radiographic and functional comparison of tibial plateau leveling osteotomy vs tibial tuberosity advancement for cranial cruciate ligament rupture in the dog. Vet. Surg. 2020, 49, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Slocum, B.; Slocum, T.D. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet. Clin. North Am. Small Anim. Pract. 1993, 23, 777–795. [Google Scholar] [CrossRef]
- Montavon, P.M. Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle. In Proceedings of the 1st World Orthopaedic Veterinary Congress, Munich, Germany, 5–8 September 2002; Volume 152. [Google Scholar]
- Tepic, S.; Damur, D.M.; Montavon, P.M. Biomechanics of the stifle joint. In Proceedings of the 1st World Orthopaedic Veterinary Congress, Munich, Germany, 5–8 September 2002; Volume 152, pp. 189–190. [Google Scholar]
- Apelt, D.; Kowaleski, M.P.; Boudrieau, R.J. Effect of tibial tuberosity advancement on cranial tibial subluxation in canine cranial cruciate-deficient stifle joints: An in vitro experimental study. Vet. Surg. 2007, 36, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Kipfer, N.M.; Tepic, S.; Damur, D.M.; Guerrero, T.; Hässig, M.; Montavon, P.M. Effect of tibial tuberosity advancement on femorotibial shear in cranial cruciate-deficient stifles. Vet. Comp. Orthop. Traumatol. 2008, 21, 385–390. [Google Scholar]
- Hoffmann, D.E.; Kowaleski, M.P.; Johnson, K.A.; Evans, R.B.; Boudrieau, R.J. Ex vivo biomechanical evaluation of the canine cranial cruciate ligament-deficient stifle with varying angles of stifle joint flexion and axial loads after tibial tuberosity advancement. Vet. Surg. 2011, 40, 311–320. [Google Scholar] [CrossRef]
- Etchepareborde, S.; Brunel, L.; Bollen, G.; Balligand, M. Preliminary experience of a modified maquet technique for repair of cranial cruciate ligament rupture in dogs. Vet. Comp. Orthop. Traumatol. 2011, 24, 223–227. [Google Scholar] [CrossRef]
- Samoy, Y.; Verhoeven, G.; Bosmans, T.; Van der Vekens, E.; de Bakker, E.; Verleyen, P.; Van Ryssen, B. TTA rapid: Description of the technique and short term clinical trial results of the first 50 cases. Vet. Surg. 2015, 44, 474–484. [Google Scholar] [CrossRef]
- Ness, M.G. The Modified Maquet Procedure (MMP) in Dogs: Technical Development and Initial Clinical Experience. J. Am. Anim. Hosp. Assoc. 2016, 52, 242–250. [Google Scholar] [CrossRef]
- Medeiros, R.M.; Silva, M.A.; Teixeira, P.P.; Dias, L.G.; Chung, D.G.; Zani, C.C.; Feliciano, M.A.; Da Conceicao, M.E.; Machado, M.R.; Rocha, A.G.; et al. Use of castor bean polymer in developing a new technique for tibial tuberosity advancement for cranial cruciate ligament rupture correction in dogs. Vet. Med. 2016, 61, 382–388. [Google Scholar] [CrossRef]
- Zhalniarovich, Y.; Sobolewski, A.; Waluś, G.; Adamiak, Z. Evaluation, Description of the Technique, and Clinical Outcomes After Tibial Tuberosity Advancement with Cranial Fixation (TTA CF) for Cranial Cruciate Ligament Rupture in 22 Dogs. Top. Companion Anim. Med. 2018, 33, 65–72. [Google Scholar] [CrossRef]
- Trisciuzzi, R.; Fracassi, L.; Martin, H.A.; Monopoli Forleo, D.; Amat, D.; Santos-Ruiz, L.; De Palma, E.; Crovace, A.M. 41 Cases of Treatment of Cranial Cruciate Ligament Rupture with Porous TTA: Three Years of Follow Up. Vet. Sci. 2019, 6, 18. [Google Scholar] [CrossRef]
- Chong, W.L. Tibial Diaphyseal Fracture Rates Following Tibial Tuberosity Advancement Rapid (TTAR) and Traditional Tibial Tuberosity Advancement (tTTA). Vet. Evid. 2019, 4. [Google Scholar] [CrossRef]
- Pillard, P.; Livet, V.; Cabon, Q.; Bismuth, C.; Sonet, J.; Remy, D.; Fau, D.; Carozzo, C.; Viguier, E.; Cachon, T. Evaluation of a new method to determine the tibial tuberosity advancement distance required to reduce the patellar tendon-tibial plateau angle to 90° with the modified Maquet technique in dogs. Am. J. Vet. Res. 2017, 78, 517–528. [Google Scholar] [CrossRef]
- Bielecki, M.J.; Schwandt, C.S.; Scharvogel, S. Effect of tibial subluxation on the measurements for tibial tuberosity advancement in dogs with cranial cruciate ligament deficiency: An ex vivo study. Vet. Comp. Orthop. Traumatol. 2014, 27, 470–477. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Serrani, D.; Picavet, P.P.; Marti, J.; Bouvy, B.; Balligand, M.; Witte, P.G. veterinary sciences Tibial Plateau Leveling Following Tibial Tuberosity Advancement: A Case Series. Vet. Sci. 2022, 9, 16. [Google Scholar] [CrossRef]
- Kapler, M.W.; Marcellin-Little, D.J.; Roe, S.C. Planned wedge size compared to achieved advancement in dogs undergoing the modified Maquet procedure. Vet. Comp. Orthop. Traumatol. 2015, 28, 379–384. [Google Scholar] [CrossRef]
- Della Valle, G.; Caterino, C.; Aragosa, F.; Micieli, F.; Costanza, D.; Di Palma, C.; Piscitelli, A.; Fatone, G. Outcome after Modified Maquet Procedure in dogs with unilateral cranial cruciate ligament rupture: Evaluation of recovery limb function by use of force plate gait analysis. PLoS ONE 2021, 16, e0256011. [Google Scholar] [CrossRef]
- Cook, J.L.; Evans, R.; Conzemius, M.G.; Lascelles, B.D.; McIlwraith, C.W.; Pozzi, A.; Clegg, P.; Innes, J.; Schulz, K.; Houlton, J.; et al. Proposed definitions and criteria for reporting time frame, outcome, and complications for clinical orthopedic studies in veterinary medicine. Vet. Surg. 2010, 39, 905–908. [Google Scholar] [CrossRef]
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Flemyng, E., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef]
- Knebel, J.; Eberle, D.; Steigmeier-Raith, S.; Reese, S.; Meyer-Lindenberg, A. Outcome after Tibial Plateau Levelling Osteotomy and Modified Maquet Procedure in Dogs with Cranial Cruciate Ligament Rupture. Vet. Comp. Orthop. Traumatol. 2020, 33, 189–197. [Google Scholar] [CrossRef]
- Terreros, A.; Daye, R.M. Prospective Evaluation of a Citrate-Based Biomaterial Wedge for a Modified Maquet Procedure in the Treatment of Cranial Cruciate Ligament Rupture in Dogs. Vet. Comp. Orthop. Traumatol. 2021, 34, 137–143. [Google Scholar] [CrossRef]
- Ramirez, J.; Barthélémy, N.; Noël, S.; Claeys, S.; Etchepareborde, S.; Farnir, F.; Balligand, M. Complications and outcome of a new modified Maquet technique for treatment of cranial cruciate ligament rupture in 82 dogs. Vet. Comp. Orthop. Traumatol. 2015, 28, 339–346. [Google Scholar] [PubMed]
- Freitas, I.B.; Hespanha, A.C.; Marques, D.R.; Monteiro, J.F.; Eggert, M.; Becker, A.; Ibañez, J.F. A report of the Maquet procedure for the management of cranial cruciate ligament rupture in a dog: A case report. Semin. Agrar. 2017, 38, 1661–1666. [Google Scholar] [CrossRef]
- Custodio Marques, D.R. Complications Associated with the Maquet Procedure–Two Case Reports in Dog’s. SOJ Vet. Sci. 2017, 3, 1–3. [Google Scholar] [CrossRef]
- Lefebvre, M.D.; Broux, O.R.; Barthélémy, N.P.; Hamon, M.; Moyse, E.V.; Bouvy, B.M.; Balligand, M.H. Risk factors for tibial damage associated with the modified Maquet technique in 174 stifles. Vet. Surg. 2018, 47, 30–35. [Google Scholar] [CrossRef]
- De Barros, L.P.; Ribeiro, L.R.R.; Pereira, L.C.d.P.C.; Ferreira, F.L.M.; da Conceição, M.E.B.A.M.; Dias, L.G.G.G. Prospective clinical assessment of tibial tuberosity advancement for the treatment of cranial cruciate ligament rupture in dogs. Acta Cir. Bras. 2018, 33, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Valiño-Cultelli, V.; Varela-López, Ó.; González-Cantalapiedra, A. Does prgf work? A prospective clinical study in dogs with a novel polylactic acid scaffold injected with prgf using the modified maquet technique. Animals 2021, 11, 2404. [Google Scholar] [CrossRef] [PubMed]
- Valiño-Cultelli, V.; Varela-López, Ó.; González-Cantalapiedra, A. Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals 2021, 11, 1271. [Google Scholar] [CrossRef] [PubMed]
- Arican, M.; Parlak, K.; Sahin, H. Evaluation and application of the TTA-rapid method in dogs with cranial cruciate ligament rupture. Acta Vet. Beogr. 2017, 67, 238–253. [Google Scholar] [CrossRef]
- Butterworth, S.J.; Kydd, D.M. TTA-Rapid in the treatment of the canine cruciate deficient stifle: Short-and medium-term outcome. J. Small Anim. Pract. 2017, 58, 35–41. [Google Scholar] [CrossRef]
- Dyall, B.; Schmökel, H. Tibial tuberosity advancement in small-breed dogs using TTA rapid implants: Complications and outcome. J. Small Anim. Pract. 2017, 58, 314–322. [Google Scholar] [CrossRef]
- Heremans, J.; de Bakker, E.; Van Ryssen, B.; Samoy, Y. Therapeutic ultrasound as an aid in tibial fracture management in a dog. Vlaams Diergeneeskd Tijdschr. 2017, 86, 29–34. [Google Scholar] [CrossRef]
- Roydev, R.; Goranov, N. Long-Term Clinical and Goniometric Follow-Up of TTA Rapid Surgery in Dogs with Cranial Cruciate Ligament Rupture. Acta Vet. Eurasia 2021, 47, 154–161. [Google Scholar] [CrossRef]
- Bernardi-Villavicencio, C.; Jimenez-Socorro, A.N.; Rojo-Salvador, C.; Robles-Sanmartin, J.; Rodriguez-Quiros, J. Short-term outcomes and complications of 65 cases of porous TTA with flange: A prospective clinical study in dogs. BMC Vet. Res. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Morato, G.O.; Rocha, A.G.; Chung, D.G.; da Conceição, M.E.; Minto, B.W.; Filho, J.G.; Dias, L.G. Lyophilized and gamma-sterilized allogeneic bone implant used as a spacer for advancement of a modified tibial tuberosity in the treatment of cranial cruciate ligament disease in dogs. PLoS ONE 2019, 14, e0220291. [Google Scholar] [CrossRef]
- Medeiros, R.M.; Silva, M.A.; Teixeira, P.P.; Chung, D.G.; Conceição, M.E.; Chierice, G.O.; Padilha Filho, J.G.; Dias, L.G. Long-term assessment of a modified tibial tuberosity advancement technique in dogs. Arq. Bras. Med. Vet. Zootec. 2018, 70, 1053–1059. [Google Scholar] [CrossRef]
- Retallack, L.M.; Daye, R.M. A modified Maquet-tibial tuberosity advancement technique for treatment of canine cranial cruciate ligament disease: Short term outcome and complications. Vet. Surg. 2018, 47, 44–51. [Google Scholar] [CrossRef]
- Adamiak, Z.; Sobolewski, A.; Walus, G.; Zhalniarovich, Y.; Glodek, J. Single-stage Bilateral Tibial Tuberosity Advancement with Cranial Fixation in an English Bulldog—A Case Report. Top. Companion Anim. Med. 2018, 33, 63–64. [Google Scholar] [CrossRef]
- Zhalniarovich, Y.; Sobolewski, A.; Waluś, G.; Adamiak, Z. Tibial Diaphyseal Fracture as a Major Complication of Tibial Tuberosity Advancement with Cranial Fixation (TTA CF)—A Case Report. Top. Companion Anim. Med. 2019, 34, 14–17. [Google Scholar] [CrossRef]
- Lorenz, N.D.; Pettitt, R. Cranial tibial plating in the management of failed tibial tuberosity advancement in four large breed dogs. Vet. Comp. Orthop. Traumatol. 2014, 27, 236–242. [Google Scholar] [CrossRef]
- Garcia Querol, E. CTWO vs. FUSION-TTA as a Surgical Treatment to Repair the Cranial Cruciate Ligament Rupture in Dogs; Universitat Autònoma de Barcelona: Barcelona, Spain, 2020. [Google Scholar]
- McCartney, W.; Ober, C.; Benito, M.; MacDonald, B. Comparison of tension band wiring and other tibial tuberosity advancement techniques for cranial cruciate ligament repair: An experimental study. Acta Vet. Scand. 2019, 61, 44. [Google Scholar] [CrossRef]
- Torrington, A.; Hopmans, J.; Al, E. Tibial tuberosity advancement 2: Current data from multicenter clinical trial. In Proceedings of the Kyon Symposium, Boston, MA, USA, 24–26 April 2015. [Google Scholar]
- Millet, M.; Bismuth, C.; Labrunie, A.; Marin, B.; Filleur, A.; Pillard, P.; Sonet, J.; Cachon, T.; Etchepareborde, S. Measurement of the patellar tendon-tibial plateau angle and tuberosity advancement in dogs with cranial cruciate ligament rupture. Vet. Comp. Orthop. Traumatol. 2013, 26, 469–478. [Google Scholar]
- Cadmus, J.; Palmer, R.H.; Duncan, C. The Effect of Preoperative Planning Method on Recommended Tibial Tuberosity Advancement Cage Size. Vet. Surg. 2014, 43, 995–1000. [Google Scholar] [CrossRef]
- Burns, C.G.; Boudrieau, R.J. Modified tibial tuberosity advancement procedure with tuberosity advancement in excess of 12 mm in four large breed dogs with cranial cruciate ligament-deficient joints. Vet. Comp. Orthop. Traumatol. 2008, 21, 250–255. [Google Scholar] [CrossRef]
- Skinner, O.T.; Kim, S.E.; Lewis, D.D.; Pozzi, A. In vivo femorotibial subluxation during weight-bearing and clinical outcome following tibial tuberosity advancement for cranial cruciate ligament insufficiency in dogs. Vet. J. 2013, 196, 86–91. [Google Scholar] [CrossRef]
- Jin, D.W.; Peck, J.N.; Tano, C.A.; Morgan, M.J. Discrepancy between true distance of tibial tuberosity advancement and cage size: An ex vivo study. Vet. Surg. 2019, 48, 186–191. [Google Scholar] [CrossRef]
- Voss, K.; Damur, D.M.; Guerrero, T.; Haessig, M.; Montavon, P.M. Force plate gait analysis to assess limb function after tibial tuberosity advancement in dogs with cranial cruciate ligament disease. Vet. Comp. Orthop. Traumatol. 2008, 21, 243–249. [Google Scholar]
- Lafaver, S.; Miller, N.A.; Stubbs, W.P.; Taylor, R.A.; Boudrieau, R.J. Tibial tuberosity advancement for stabilization of the canine cranial cruciate ligament-deficient stifle joint: Surgical technique, early results, and complications in 101 dogs. Vet. Surg. 2007, 36, 573–586. [Google Scholar] [CrossRef]
- Pozzi, A.; Litsky, A.S.; Field, J.; Apelt, D.; Meadows, C.; Johnson, K.A. Pressure distributions on the medial tibial plateau after medial meniscal surgery and tibial plateau levelling osteotomy in dogs. Vet. Comp. Orthop. Traumatol. 2008, 21, 8–14. [Google Scholar] [CrossRef]
- Bergh, M.S.; Sullivan, C.; Ferrell, C.L.; Troy, J.; Budsberg, S.C. Systematic review of surgical treatments for cranial cruciate ligament disease in dogs. J. Am. Anim. Hosp. Assoc. 2014, 50, 315–321. [Google Scholar] [CrossRef]
- Beer, P.; Bockstahler, B.; Schnabl-Feichter, E. Tibial plateau leveling osteotomy and tibial tuberosity advancement—A systematic review. Tierarztl Prax Ausg. K Kleintiere—Heimtiere 2018, 46, 223–235. [Google Scholar] [CrossRef]
Authors | Study Design | GRADE | N. Stifles | Surgical Technique | Measurement Technique | Meniscal Tears at Surgery | Meniscectomy | Meniscal Release | Late Meniscal Tears | PTA Post | Year |
---|---|---|---|---|---|---|---|---|---|---|---|
Lorenz et al. | Case series | Very Low | 1 | MMP | - | 1 | - | - | - | - | 2014 |
Kapler et al. | Retrospective study | Very Low | 38 | MMP | Orthomed and Modified Tibial Tuberosity Advancement Measurement Method | - | - | - | - | 95.9° (86.7°–108.2°) | 2015 |
Ness et al. | Clinical trial | Moderate | 26 | MMP | Orthomed | - | NO | NO | - | - | 2016 |
Knebel et al. | Prospective, randomised, controlled study | High | 35 | MMP | Orthomed | 22 | 22 | NO | 2 | - | 2020 |
Terreros et al. | Prospective clinical study | Moderate | 15 | MMP | Tibial Plateau Method | 4 | 4 | 4 | - | 93.4° ± 2.1° | 2020 |
Della Valle et al. | Prospective clinical study | Moderate | 35 | MMP | Orthomed | 27 | 27 | 6 | 0 | 89.7° ± 2.3° | 2021 |
Serrani et al. | Retrospective study | Low | 4 | MMP | - | - | NO | NO | NO | 95.75° | 2022 |
Etchepareborde et al. | Retrospective study | Very Low | 20 | MMT | Transparency (Kyon) | 8 | 8 | NO | 2 | - | 2011 |
Ramirez et al. | Retrospective study | Moderate | 84 | MMT | Transparency (Kyon) | 39 | 39 | NO | 3 | - | 2015 |
Marques et al. | Case report | Very Low | 1 | MMT | Orthomed | NO | NO | NO | NO | - | 2017 |
Marques et al. | Case series | Very Low | 2 | MMT | - | NO | NO | NO | NO | - | 2017 |
Lefebvre et al. | Retrospective study | Moderate | 174 | MMT | - | - | - | - | - | - | 2017 |
Retallack et al. | Retrospective clinical cohort study | Moderate | 35 | MMT | - | 21 | 21 | 14 | NO | - | 2017 |
De Barros et al. | Prospective clinical study | Very Low | 21 | MMT | Software? | - | - | - | - | - | 2018 |
Valino-Cultelli et al. | Prospective randomised study | High | 24 | MMT | Tibial Plateau Method | - | - | - | - | - | 2021 |
Valino-Cultelli et al. | Prospective clinical study | High | 53 | MMT | Tibial Plateau Method | - | - | - | - | - | 2021 |
Serrani et al. | Case series | Low | 1 | MMT | Tibial Plateau Method | NO | NO | NO | 1 | 83° | 2022 |
Samoy et al. | Prospective clinical study | High | 50 | TTA Rapid | Common tangent Method | 21 | 21 | 29 | 0 | - | 2015 |
Arican et al. | Prospective study | High | 17 | TTA Rapid | Template and Common tangent Method | NO | NO | NO | - | - | 2017 |
Butterworth et al. | Retrospective study | Moderate | 152 | TTA Rapid | Tibial Axis Method | 44 | 44 | NO | 9 | - | 2017 |
Dyall et al. | Retrospective study | Low | 48 | TTA Rapid | Anatomical Landmark Method and Common tangent Method | 19 | 19 | NO | 2 | 90.8° ± 2.9° | 2017 |
Heremans et al. | Case report | Very Low | 1 | TTA Rapid | - | NO | NO | NO | NO | - | 2017 |
Livet et al. | Prospective randomised study | High | 13 | TTA Rapid | Long Axis Method | 4 | 4 | NO | 2 | 91.1° (89.1–92.9°) | 2019 |
Roydev et al. | Retrospective study | Low | 10 | TTA Rapid | Common Tangent Method | 5 | 5 | 5 | 1 | - | 2021 |
Serrani et al. | Retrospective study | Low | 1 | TTA Rapid | - | 1 | 1 | NO | NO | 96° | 2022 |
Trisciuzzi et al. | Retrospective study | Low | 41 | Porous TTA | Common Tangent Method and Tibial Plateau Angle Inclination Method | - | - | - | - | - | 2019 |
Villavicencio et al. | Prospective study | High | 65 | Porous TTA | Common Tangent Method | - | - | - | - | - | 2020 |
Mendeiros et al. | Prospective clinical study | High | 42 | mTTA | Transparency | - | - | - | - | - | 2016 |
Morato et al. | Prospective study | High | 16 | mTTA | - | 5 | 5 | - | - | - | 2019 |
Serrani et al. | Retrospective study | Low | 1 | mTTA | - | NO | NO | - | - | 94° | 2022 |
Zhalniarovich et al. | Prospective study | High | 22 | TTA CF | Common Tangent Method | 5 | 5 | NO | NO | - | 2018 |
Adamiak et al. | Case report | Very Low | 2 | TTA CF | Common Tangent Method | NO | NO | NO | NO | - | 2018 |
Zhalniarovich et al. | Case report | Very Low | 1 | TTA CF | - | - | - | - | - | - | 2019 |
Authors | N. Stifles | Surgical Technique | Recovery Assessment | Perioperative Recovery | Recovery Short-Term | Recovery Mid-Term | Recovery Long-Term | Year |
---|---|---|---|---|---|---|---|---|
Lorenz et al. | 1 | MMP | Clinical and Radiographical | 0.00% | - | - | - | 2014 |
Kapler et al. | 48 | MMP | PL-TPA | 52.60% | - | - | - | 2015 |
Ness et al. | 26 | MMP | Clinical and Radiographical | 92.00% | - | 84.70% | - | 2016 |
Knebel et al. | 35 | MMP | Clinical, Radiographical, and Gait Analysis | 48.40% | 77.40% | 80.60% | - | 2020 |
Terreros et al. | 15 | MMP | Clinical, Radiographical, and Owners survey | 76.92% | - | 92.30% | - | 2020 |
Della Valle et al. | 35 | MMP | Clinical, Radiographical, and Gait Analysis | - | 54.30% | - | - | 2021 |
Serrani et al. | 4 | MMP | Clinical and Radiographical | 0% | - | - | - | 2022 |
Etchepareborde et al. | 20 | MMT | Clinical and Radiographical | 80.00% | 100.00% | - | - | 2011 |
Ramirez et al. | 84 | MMT | Clinical, Radiographical, and Owners Survey | - | 100.00% | - | 91.00% | 2015 |
Marques et al. | 1 | MMT | Clinical | 100.00% | 100.00% | 100.00% | - | 2017 |
Marques et al. | 2 | MMT | Clinical and Radiographical | - | 100.00% | - | - | 2017 |
Lefbvre et al. | 174 | MMT | Radiographical | - | - | - | - | 2017 |
Retallack et al. | 35 | MMT | Clinical and Radiographical | - | - | - | - | 2017 |
De Barros et al. | 21 | MMT | Clinical and Owners Survey | - | - | 81.00% | - | 2018 |
Valino-Cultelli et al. | 24 | MMT | Clinical and Radiographical | 72.20% | 100.00% | - | - | 2021 |
Valino-Cultelli et al. | 53 | MMT | Clinical and Radiographical | 74.30% | 97.10% | - | - | 2021 |
Serrani et al. | 1 | MMT | Clinical and Radiographical | 0.00% | 0.00% | 0.00% | 0.00% | 2022 |
Samoy et al. | 50 | TTA Rapid | Clinical and Radiographical | - | 96.00% | - | - | 2015 |
Arican et al. | 17 | TTA Rapid | Clinical and Radiographical | 82.35% | 82.35% | - | - | 2017 |
Butterworth et al. | 152 | TTA Rapid | Clinical, Radiographical, and Owners survey | - | 99.00% | 97.00% | - | 2017 |
Dyall et al. | 48 | TTA Rapid | Clinical, Radiographical, and Owners survey | 94.00% | - | 95.30% | 95.30% | 2017 |
Heremans et al. | 1 | TTA Rapid | Clinical and Radiographical | 0.00% | 100.00% | 100.00% | - | 2017 |
Livet et al. | 13 | TTA Rapid | Clinical, Radiographical, Gait Analysis, and Owners Survey | - | 100.00% | 100.00% | - | 2019 |
Roydev et al. | 10 | TTA Rapid | Clinical, Radiographical, Gait Analysis, and ROM | 70.00% | 70.00% | 90.00% | 100.00% | 2021 |
Serrani et al. | 1 | TTA Rapid | Clinical and Radiographical | 0.00% | 0.00% | 0.00% | 0.00% | 2022 |
Trisciuzzi et al. | 41 | Porous TTA | Clinical, Radiographical and Baropodometric score | 73.00% | - | 100.00% | - | 2019 |
Villavicencio et al. | 65 | Porous TTA | Clinical and Radiographical | 87.69% | 100.00% | - | - | 2020 |
Mendeiros et al. | 42 | mTTA | Clinical and Radiographical | 56.41% | 95.00% | - | 100.00% | 2016 |
Morato et al. | 16 | mTTA | Clinical and Radiographical | 100.00% | 100.00% | - | - | 2019 |
Serrani et al. | 1 | mTTA | Clinical and Radiographical | 0.00% | 0.00% | - | - | 2022 |
Zhalniarovich et al. | 22 | TTA CF | Clinical, Radiographical, and Owners Survey | 100.00% | 95.45% | 95.45% | 95.45% | 2018 |
Adamiak et al. | 2 | TTA CF | Clinical and Radiographical | 100.00% | 100.00% | 100.00% | - | 2018 |
Zhalniarovich et al. | 1 | TTA CF | Clinical and Radiographical | 0.00% | 100.00% | 100.00% | - | 2019 |
Authors | N. Stifles | Surgical Technique | Minor Complications | Details | Major Complications | Details | Year |
---|---|---|---|---|---|---|---|
Lorenz et al. | 1 | MMP | - | - | 100% | Tibial tuberosity fracture (1) | 2014 |
Kapler et al. | 48 | MMP | - | - | 6.25% | Crest fracture (1); tibial fracture (1); Implant motion (1) | 2015 |
Ness et al. | 26 | MMP | 15.40% | Cranial displacement of the distal end of the tibial tuberosity (4) | 7.70% | Tibial diaphyseal fractures (2) | 2016 |
Knebel et al. | 35 | MMP | - | - | 14.30% | Implant removal due to seroma formation (2); implant breakage or loosening (1); tibial fracture (1); wound complications (1) | 2020 |
Terreros et al. | 15 | MMP | 60% | Incisional redness (4), cortical hinge fractures (6) | 20.00% | Deep (1) and superficial (2) surgical site infections | 2020 |
Della Valle et al. | 35 | MMP | 65.70% | Cortical hinge fissures (22); Seroma (1) | 8.57% | Surgical site infection (1); tibial tuberosity fracture (2) | 2021 |
Serrani et al. | 4 | MMP | 0% | - | 100% | Surgical site infection and implant loosening (1); implant complications (1); distal tibial crest fracture (2); | 2022 |
Etchepareborde et al. | 20 | MMT | 5.00% | Tibial crest fracture (1) | - | - | 2011 |
Ramirez et al. | 84 | MMT | 9.52% | Cortical hinge fissures (5); Bandage soares (2), lameness of unknown origin (1) | 30.95% | Cortical hinge fractures (5); cortical hinge fissures (16); fracture of tibial diaphysis (1), wound dehiscence (2), septic arthritis (1); wound secondary to cerclage wire (1) | 2015 |
Marques et al. | 1 | MMT | 0.00% | - | 0.00% | - | 2017 |
Marques et al. | 2 | MMT | 0.00% | - | 100.00% | Fissure of tibial crest (1); fracture of tibial crest (1) | 2017 |
Lefbvre et al. | 174 | MMT | 39.65% | Fissures (56); fractures of cortical hinge and tuberosity (13) | 9.20% | Fissures of cortical hinge (8); Fractures of cortical hinge (6); Fractures tibial shaft (2) | 2017 |
Retallack et al. | 35 | MMT | 20.00% | Tibial crest fractures (7) | 5.71% | Surgical site infections (2) | 2017 |
De Barros et al. | 21 | MMT | 0.00% | - | 4.76% | Seroma (1) | 2018 |
Valino-Cultelli et al. | 24 | MMT | 8.33% | Fracture of the distal cortical of the tibial crest (1); mass on the incision region (1) | 12.50% | Tension band wiring rupture with or without tibial crest displacement (3) | 2021 |
Valino-Cultelli et al. | 53 | MMT | 9.40% | Fracture of the distal cortical of the tibial crest (4); mass on the incision region (1) | 9.40% | Tension band wiring rupture with or without tibial crest displacement (4); implant rupture (1) | 2021 |
Serrani et al. | 1 | MMT | 0.00% | - | 0.00% | - | 2022 |
Samoy et al. | 50 | TTA Rapid | 32.00% | Thickened patellar ligament (12); fracture of the distal cortex (4) | 4.00% | Tibial crest fractures (2) | 2015 |
Arican et al. | 17 | TTA Rapid | 25.00% | - | 23.50% | Tibial crest fractures (4) | 2017 |
Butterworth et al. | 152 | TTA Rapid | 71.05% | Fissures (104); fracture of tibial crest (1); drill bit broke (3); | 5.92% | Fissures (3); surgical site infections (3); fractures of tibia surgically treated (3) | 2017 |
Dyall et al. | 48 | TTA Rapid | 6.25% | Fissures (2); mild tissue swelling (1) | 10.42% | Fissures (2); non-displaced tibial fractures (2); incisional infection (1) | 2017 |
Heremans et al. | 1 | TTA Rapid | 0.00% | - | 100.00% | Fracture of the tibial tuberosity and a fissure of the proximal tibia (1) | 2017 |
Livet et al. | 13 | TTA Rapid | 23.08% | Distal tibial crest fractures (2); implant loosening (1) | 23.08% | Patellar desmitis (1); implant loosening (1); distal tibial crest fracture (1) | 2019 |
Roydev et al. | 10 | TTA Rapid | 20.00% | Seroma (1); distal tibial fissure (1) | 10.00% | Avulsion of tibial crest (1) | 2021 |
Serrani et al. | 1 | TTA Rapid | 0.00% | - | 0.00% | - | 2022 |
Trisciuzzi et al. | 41 | Porous TTA | 19.51% | Fracture of tibial tuberosity (6); surgical wound dehiscence (2) | 2.44% | Fracture of tibial tuberosity (1) | 2019 |
Villavicencio et al. | 65 | Porous TTA | 66.15% | distal tibial tuberosity fractures (15), of which 2 with avulsion; distal tibial tuberosity fissures (8), of which 1 with avulsion; lameness after trauma or resting (12); superficial infection (3); implant ruptures (2); dermatitis (2); fissure between screws (1) | 1.50% | Infection and implant removal (1) | 2020 |
Mendeiros et al. | 42 | mTTA | 4.76% | - | 9.52% | Suture dehiscence and superficial infection (1); screw loosening and tibial tuberosity displacement (1); implant failures (2) | 2016 |
Morato et al. | 16 | mTTA | 37.50% | Fractures of tibial crest (6) | 6.25% | Surgical site infection (1) | 2019 |
Serrani et al. | 1 | mTTA | 0.00% | - | 100.00% | Distal tibial crest fractures (1) | 2022 |
Zhalniarovich et al. | 22 | TTA CF | 27.00% | Fissures through Maquet hole (6) | 0.00% | - | 2018 |
Adamiak et al. | 2 | TTA CF | 0.00% | - | 0.00% | - | 2018 |
Zhalniarovich et al. | 1 | TTA CF | 0.00% | - | 100.00% | Tibial crest and diaphysis fracture (1) | 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragosa, F.; Caterino, C.; Della Valle, G.; Fatone, G. Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review. Animals 2022, 12, 2114. https://doi.org/10.3390/ani12162114
Aragosa F, Caterino C, Della Valle G, Fatone G. Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review. Animals. 2022; 12(16):2114. https://doi.org/10.3390/ani12162114
Chicago/Turabian StyleAragosa, Federica, Chiara Caterino, Giovanni Della Valle, and Gerardo Fatone. 2022. "Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review" Animals 12, no. 16: 2114. https://doi.org/10.3390/ani12162114
APA StyleAragosa, F., Caterino, C., Della Valle, G., & Fatone, G. (2022). Tibial Tuberosity Advancement Techniques (TTAT): A Systematic Review. Animals, 12(16), 2114. https://doi.org/10.3390/ani12162114