Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Mineral Proteinate
2.2. Bird and Experimental Design
2.3. Chemical Analysis and Data Collection
2.4. Collection of Spleen, Liver, Eggshell, and Blood Samples
2.5. Statistical Analysis
3. Results
3.1. Laying Performance and Eggshell Quality
3.2. Hematological Analysis
3.3. Mineral Concentrations in Spleen, Liver, Eggshell, and Whole Blood
4. Discussion
4.1. Laying Performance and Eggshell Quality
4.2. Hematological Analysis
4.3. Mineral Concentrations in Spleen, Liver, Eggshell, and Blood Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefanello, C.; Santos, T.C.; Murakami, A.E.; Martins, E.N.; Carneiro, T.C. Productive performance, eggshell quality, and eggshell ultrastructure of laying hens fed diets supplemented with organic trace minerals. Poult. Sci. 2014, 93, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Washburn, K.G. Incidence, cause and prevention of eggshell breakage in commercial production. Poult. Sci. 1982, 61, 2005–2012. [Google Scholar] [CrossRef]
- Nys, Y.; Gautron, J.; McKee, M.D.; Garcia-Ruiz, J.M.; Hincke, M.T. Biochemical and functional characterization of eggshell matrix proteins in hens. World’s Poult. Sci. J. 2007, 57, 401–413. [Google Scholar] [CrossRef]
- Richards, J.D.; Zhao, J.; Harreil, R.J.; Atwell, C.A.; Dibner, J.J. Trace mineral nutrition in poultry and swine. Asian Aust. J. Anim. Sci. 2010, 23, 1527–1534. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhang, Y.N.; Wu, S.G.; Zhang, H.J.; Yue, H.Y.; Qi, G.H. Manganese supplementation enhances the synthesis of glycosaminoglycan in eggshell membrane: A strategy to improve eggshell quality in laying hens. Poult. Sci. 2014, 93, 380–388. [Google Scholar] [CrossRef]
- Qiu, J.L.; Zhou, Q.; Zhu, J.M.; Lu, X.T.; Liu, B.; Yu, D.Y.; Lin, G.; Ao, T.; Xu, J.M. Organic trace minerals improve eggshell quality by improving the eggshell ultrastructure of laying hens during the late laying period. Poult. Sci. 2020, 99, 1483–1490. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J. The replacement of inorganic mineral salts with mineral proteinates in poultry diet. World’s Poult. Sci. J. 2013, 69, 5–16. [Google Scholar] [CrossRef]
- Brugger, D.; Windisch, T.M. Environmental responsibilities of livestock feeding using trace mineral supplements. Anim. Nutr. 2015, 3, 113–118. [Google Scholar] [CrossRef]
- Wdedekind, K.J.; Horthin, A.E.; Baker, D.H. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 1992, 70, 178–187. [Google Scholar] [CrossRef]
- Aoyagi, S.; Baker, D.H. Nutritional evaluation of a copper-methionine complex for chicks. Poult. Sci. 1993, 72, 2309–2315. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Shin, K.S.; Rhee, A.R.; Han, J.; Paik, I.K. Effects of supplemental copper-soy proteinate on the performance, blood parameters, liver mineral content, and intestinal microflora of broiler chickens. J. Appl. Poult. Res. 2011, 20, 21–32. [Google Scholar] [CrossRef]
- Paik, I.K.; Lee, H.K.; Park, S.W. Effects of organic iron supplementation on the performance and iron content in the egg yolk of laying hens. J. Poult. Sci. 2009, 46, 198–202. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Kang, H.K.; Park, S.B.; Jeon, J.J.; Kim, H.S.; Park, K.T.; Kim, S.H.; Hong, E.C.; Kim, C.H. Effect of increasing levels of apparent metabolizable energy on laying hens in barn system. Asian Aust. J. Anim. Sci. 2018, 31, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Eisen, E.J.; Bohen, B.B.; McKean, H.E. The Haugh units as a measure of egg albumen quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Saxton, A.M. A macro for converting means separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; pp. 1243–1246. [Google Scholar]
- Mabe, I.; Rapp, C.; Bain, M.M.; Nys, Y. Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poult. Sci. 2003, 82, 1903–1913. [Google Scholar] [CrossRef]
- Fernandes, J.I.M.; Murakami, A.E.; Sakamoto, A.E.M.; Souza, L.M.G.; Malaguido, A.; Martins, E.N. Effects of organic mineral dietary supplementation on production performance and egg quality of white layers. Braz. J. Poult. Sci. 2008, 10, 59–65. [Google Scholar] [CrossRef]
- Swiatkiewicz, S.; Koreleski, J. The effect of zinc and manganese sources in the diet for laying hens on eggshell and bones quality. Vet. Med. 2008, 53, 553–563. [Google Scholar] [CrossRef]
- Kim, C.H.; Paik, I.K.; Kil, D.Y. Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biol. Trace Elem. Res. 2013, 151, 38–42. [Google Scholar] [CrossRef]
- Kim, C.H.; Paik, I.K.; Kil, D.Y.; Chang, M.B. Effects of dietary magnesium concentrations on performance and eggshell quality of laying hens. J. Anim. Vet. Adv. 2013, 12, 104–107. [Google Scholar]
- Zammani, A.; Rahmani, H.R.; Pourreza, J. Supplementation of a corn-soybean meal diet with manganese and zinc improves eggshell quality in laying hens. Pakistan J. Biol. Sci. 2010, 8, 1311–1317. [Google Scholar]
- Gheisari, A.A.; Sanei, A.; Samie, A.; Gheisari, M.M.; Toghyani, M. Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biol. Trace Elem. Res. 2011, 142, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Favero, A.; Vieira, S.L.; Angel, C.R.; Bess, F.; Cemin, H.S.; Ward, T.L. Reproductive performance of Cobb 500 breeder hens fed diets supplemented with zinc, manganese, and copper from inorganic and amino acid-complexed sources. J. Appl. Poult. Res. 2013, 22, 80–91. [Google Scholar] [CrossRef]
- Singh, A.K.; Ghosh, T.K.; Haldar, S. Effects of methionine chelate- or yeast proteinate-based supplement of copper, iron, manganese and zinc on broiler growth performance, their distribution in the tibia and excretion into the environment. Biol. Trace Elem. Res. 2015, 164, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Henry, P.R.; Ammerman, C.B.; Miles, R.D. Relative bioavailability of manganese-methionine complex for broiler chicks. Poult. Sci. 1989, 68, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.O.; Sherman, I.L.; Miller, L.C.; Robbins, K.R.; Halley, J.T. Relative biological availability of manganese from manganese proteinate, manganese sulfate, and manganese monoxide in broilers reared at elevated temperatures. Poult. Sci. 1995, 74, 702–707. [Google Scholar] [CrossRef]
- Hill, D.A.; Peo, E.R.; Lewis, A.J. Effect of zinc source and picolinic acid on zinc-65Zn uptake in an in-vitro continuous flow perfusion system for pigs and poultry intestinal segments. J. Nutr. 1987, 117, 1704–1707. [Google Scholar] [CrossRef]
- Hempe, J.M.; Cousins, R.J. Effect of EDTA and zinc-methionine complex on zinc absorption by rat intestine. J. Nutr. 1989, 119, 1179–1187. [Google Scholar] [CrossRef]
- Masoudi, A.; Chagi, M.; Bojaropour, M.; Mirzadeh, K. Effects of different level of date pits on performance, carcass characteristics and blood parameters of broiler chickens. J. Appl. Poult. Res. 2011, 39, 399–405. [Google Scholar] [CrossRef]
- Johnson, T.S.; Zuk, M. Parasites, morphology, and blood characters in male red jungle fowl during development. Condor 1998, 100, 749–752. [Google Scholar] [CrossRef]
- Hosienpour, N.; Norouzian, M.A.; Afzalzadeh, A.; Khadem, A.A.; Adadi Alamouti, A. Source copper may have regressive effects on serum cholesterol and urea nitrogen among male fattening lambs. Biol. Trace Elem. Res. 2014, 159, 147–151. [Google Scholar] [CrossRef]
- Bami, M.H.; Mohri, M.; Seifi, H.A.; Tabatabaee, A.A.A. Effects of parenteral supply of iron and copper on hematology, weight gain and health in neonatal dietary calves. Vet. Res. Commun. 2008, 32, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Noriuzian, M.A.; Malaki, M.; Khadem, A.A. Effects of parenteral administration of cobalt, copper and iron in late pregnancy on ewe hematology and lamb vigour. Iran. J. Appl. Anim. Sci. 2014, 4, 285–289. [Google Scholar]
- Idow, O.M.O.; Ajuwon, R.O.; Oso, A.O.; Akinioye, O.A. Effects of zinc supplementation on laying performance, serum chemistry and Zn residue in tibia bone, liver, excreta and egg shell of laying hens. Int. J. Poult. Sci. 2011, 10, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Dobrzanski, Z.; Korczynskr, M.; Chojnacka, K.; Gorecki, H.; Opalinski, S. Influence of organic forms of copper, manganese and iron on bioaccumulation of these metals and zinc in laying hens. J. Elemntol. 2008, 13, 309–319. [Google Scholar]
- Sahin, K.; Sahin, N.; Kucuk, O. Effect of chromium and ascorbic acid supplementation on digestion of nutrients, serum antioxidant status, and mineral concentration in laying hens reared at low ambient temperature. Biol. Trace Elem. Res. 2002, 87, 113–124. [Google Scholar] [CrossRef]
- Ao, T.; Pierce, J.L.; Power, R.; Pescatore, A.J.; Cantor, A.H.; Dawson, K.A.; Ford, M.J. Effects of feeding different forms of zinc and copper on the performance and tissue mineral content of chicks. Poult. Sci. 2009, 88, 2171–2175. [Google Scholar] [CrossRef]
Basal | Inorganic | Organic | |
---|---|---|---|
Ingredient (g/kg) | |||
Corn | 412.5 | 411.5 | 411.1 |
Wheat | 150.0 | 150.0 | 150.0 |
Soybean meal | 250.0 | 250.0 | 250.0 |
Corn distillers dried grains with soluble | 50.0 | 50.0 | 50.0 |
Canola meal | 20.0 | 20.0 | 20.0 |
Tallow | 5.0 | 5.0 | 5.0 |
Molasses | 5.0 | 5.0 | 5.0 |
Limestone | 97.0 | 97.0 | 97.0 |
Dicalcium phosphate | 7.0 | 7.0 | 7.0 |
Sodium chloride | 2.0 | 2.0 | 2.0 |
Vitamin premix 1 | 1.5 | 1.5 | 1.5 |
Inorganic mineral premix 2 | - | 1.0 | - |
Organic mineral premix 3 | - | - | 1.8 |
Total | 1000.0 | 1000.0 | 1000.0 |
Calculated composition 4 | |||
ME, MJ/kg | 11.32 | 11.32 | 11.32 |
Crude protein, g/kg | 186.0 | 186.0 | 186.0 |
Calcium, g/kg | 38.0 | 38.0 | 38.0 |
Available phosphate, g/kg | 3.3 | 3.3 | 3.3 |
Lysine, g/kg | 9.7 | 9.7 | 9.7 |
Methionine, g/kg | 3.1 | 3.1 | 3.1 |
Iron, mg/kg | 93.3 | 93.7 | 93.7 |
Copper, mg/kg | 13.2 | 13.3 | 13.3 |
Zinc, mg/kg | 24.6 | 25.2 | 25.2 |
Manganese, mg/kg | 22.8 | 23.7 | 23.7 |
Magnesium, g/kg | 2113 | 2125 | 2125 |
Analyzed composition 5 | |||
Iron, mg/kg | 92.3 | 92.2 | 93.1 |
Copper, mg/kg | 12.9 | 13.0 | 13.2 |
Zinc, mg/kg | 24.2 | 24.6 | 24.8 |
Manganese, mg/kg | 22.5 | 22.9 | 23.2 |
Magnesium, g/kg | 2115 | 2123 | 2120 |
Items | Dietary Treatment 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
Basal | Inorganic | Organic | Basal vs. Mineral | Inorganic vs. Organic | ||
Hen-day egg production, % | 83.2 | 85.4 | 83.9 | 0.835 | 0.19 | 0.22 |
Egg weight, g | 65.4 | 65.9 | 65.1 | 0.419 | 0.84 | 0.21 |
Feed intake, g | 124.4 | 126.5 | 124.6 | 1.723 | 0.42 | 0.25 |
Feed conversion ratio, g/g | 2.29 | 2.25 | 2.28 | 0.036 | 0.66 | 0.49 |
Broken and shell-less eggs, % | 0.55 a | 0.15 b | 0.14 b | 0.068 | <0.01 | 0.95 |
Items | Dietary Treatment 2 | SEM3 | p-Value | |||
---|---|---|---|---|---|---|
Basal | Inorganic | Organic | Basal vs. Mineral | Inorganic vs. Organic | ||
Eggshell strength, kg/cm2 | 3.40 b | 3.54 ab | 3.69 a | 0.045 | <0.01 | 0.12 |
Eggshell thickness, μm | 358.7 | 361.9 | 361.1 | 3.288 | 0.63 | 0.61 |
Eggshell color | ||||||
CIE L* | 52.9 | 54.8 | 54.5 | 0.799 | 0.10 | 0.79 |
CIE a* | 13.8 | 14.0 | 14.6 | 0.361 | 0.24 | 0.24 |
CIE b* | 20.1 | 20.3 | 20.4 | 0.149 | 0.20 | 0.62 |
Egg yolk color | 10.2 | 10.1 | 10.1 | 0.131 | 0.67 | 0.99 |
Haugh unit | 81.9 | 82.5 | 83.7 | 0.839 | 0.29 | 0.32 |
Items | Dietary Treatment 2 | SEM 3 | p-Value | |||
---|---|---|---|---|---|---|
Basal | Inorganic | Organic | Basal vs. Mineral | Inorganic vs. Organic | ||
White blood cell, K/μL | 4.00 | 6.82 | 9.92 | 2.071 | 0.32 | 0.28 |
Heterophil, K/μL | 0.39 | 1.20 | 1.40 | 0.533 | 0.18 | 0.90 |
Lymphocyte, K/μL | 3.24 | 4.70 | 7.49 | 1.311 | 0.25 | 0.77 |
Heterophil:Lymphocyte ratio | 0.13 | 0.28 | 0.19 | 0.048 | 0.32 | 0.25 |
Red blood cell, M/μL | 2.80 | 2.75 | 2.86 | 0.154 | 0.12 | 0.32 |
Hemoglobin, g/dL | 8.97 | 8.68 | 8.72 | 0.323 | 0.20 | 0.27 |
Hematocrit, % | 27.51 | 27.34 | 28.20 | 1.562 | 0.39 | 0.38 |
Items | Dietary Treatment 2 | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|
Basal | Inorganic | Organic | Basal vs. Mineral | Inorganic vs. Organic | |||
g/mg | |||||||
Liver | Iron | 301.7 b | 513.1 ab | 645.5 a | 95.89 | 0.04 | 0.35 |
Copper | 5.94 b | 6.04 ab | 6.86 a | 1.481 | 0.78 | 0.04 | |
Zinc | 95.2 | 152.6 | 150.5 | 22.03 | 0.11 | 0.95 | |
Manganese | 8.5 b | 18.8 a | 19.4 a | 2.844 | 0.01 | 0.90 | |
Magnesium | 543.3 | 708.5 | 677.8 | 73.49 | 0.12 | 0.77 | |
Spleen | Iron | 146.0 b | 255.2 a | 296.6 a | 24.38 | <0.01 | 0.25 |
Copper | 2.73 | 3.33 | 4.10 | 0.481 | 0.12 | 0.28 | |
Zinc | 58.4 | 98.5 | 100.4 | 17.26 | 0.08 | 0.94 | |
Manganese | 1.01 | 1.86 | 1.66 | 0.511 | 0.25 | 0.79 | |
Magnesium | 111.7 b | 177.0 ab | 227.5 a | 22.41 | <0.01 | 0.14 | |
Eggshell | Iron | 10.3 | 11.1 | 11.3 | 1.107 | 0.53 | 0.92 |
Copper | 2.41 b | 2.53 a | 2.61 a | 0.050 | 0.02 | 0.18 | |
Zinc | 4.22 b | 4.60 a | 4.84 a | 0.127 | <0.01 | 0.29 | |
Manganese | 2.38 b | 3.48 a | 3.63 a | 0.064 | <0.01 | 0.32 | |
Magnesium | 2.55 b | 2.85 ab | 3.00 a | 0.097 | <0.01 | 0.21 | |
Blood | Iron | 492.7 | 510.2 | 509.2 | 26.95 | 0.42 | 0.35 |
Copper | 1.38 | 1.46 | 1.52 | 0.142 | 0.36 | 0.32 | |
Zinc | 17.5 | 19.1 | 18.4 | 1.251 | 0.24 | 0.38 | |
Manganese | 2.02 | 2.70 | 3.10 | 0.465 | 0.28 | 0.58 | |
Magnesium | 125.8 | 135.4 | 145.1 | 4.431 | 0.35 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-H.; Jeong, S.H.; Lim, S.J.; Cheon, S.N.; Kim, K.; Chun, J.; Jeon, J. Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality. Animals 2022, 12, 2378. https://doi.org/10.3390/ani12182378
Kim C-H, Jeong SH, Lim SJ, Cheon SN, Kim K, Chun J, Jeon J. Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality. Animals. 2022; 12(18):2378. https://doi.org/10.3390/ani12182378
Chicago/Turabian StyleKim, Chan-Ho, So Hee Jeong, Se Jin Lim, Si Nae Cheon, Kihyun Kim, Julan Chun, and Junghwan Jeon. 2022. "Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality" Animals 12, no. 18: 2378. https://doi.org/10.3390/ani12182378
APA StyleKim, C. -H., Jeong, S. H., Lim, S. J., Cheon, S. N., Kim, K., Chun, J., & Jeon, J. (2022). Effect of Organic or Inorganic Mineral Premix in the Diet on Laying Performance of Aged Laying Hens and Eggshell Quality. Animals, 12(18), 2378. https://doi.org/10.3390/ani12182378