Improvement in the Immunity- and Vitamin D3-Activity-Related Gene Expression of Coccidiosis-Challenged Ross 708 Broilers in Response to the In Ovo Injection of 25-Hydroxyvitamin D3 †
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Egg Incubation, and Coccidial Infection
2.2. Tissue Collection, Total RNA Isolation, Reverse Transcription, and Quantitative Real-Time PCR
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, H.L. Measurement of the chicken kidney 25-hydroxyvitamin D3 1-hydroxylase and 25-hydroxyvitamin D3 24-hydroxylase. Methods Enzymol. 1980, 67, 445–449. [Google Scholar] [PubMed]
- Booth, B.E.; Tsai, H.C.; Morris, R.C., Jr. Vitamin D status regulates 25-hydroxyvitamin D3-1 alpha-hydroxylase and its responsiveness to parathyroid hormone in the chick. J. Clin. Investig. 1985, 75, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.; Bar, A.; Sherwood, L.M.; Hurwitz, S. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Endocrinology 1993, 132, 2639–2644. [Google Scholar] [CrossRef] [PubMed]
- De Matos, R. Calcium metabolism in birds. Vet. Clin. N. Am. Exot. Anim. Pract. 2008, 11, 59–82. [Google Scholar] [CrossRef]
- Yarger, J.G.; Quarles, C.L.; Hollis, B.W.; Gray, R.W. Safety of 25-hydroxycholecalciferol as a source of cholecalciferol in poultry rations. Poult. Sci. 1995, 74, 1437–1446. [Google Scholar] [CrossRef]
- Vignale, K.; Greene, E.S.; Caldas, J.V.; England, J.; Boonsinchai, N.; Sodsee, P.; Pollock, E.D.; Dridi, S.; Coon, C.N. 25-Hydroxycholecalciferol enhances male broiler breast meat yield through the mTOR pathway. J. Nutr. 2015, 145, 855–863. [Google Scholar] [CrossRef]
- Hutton, K.C.; Vaughn, M.A.; Litta, G.; Turner, B.J.; Starkey, J.D. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens. J. Anim. Sci. 2014, 92, 3291–3299. [Google Scholar] [CrossRef]
- Morris, A.; Shanmugasundaram, R.; Lilburn, M.S.; Selvaraj, R.K. 25-Hydroxycholecalciferol supplementation improves growth performance and decreases inflammation during an experimental lipopolysaccharide injection. Poult. Sci. 2014, 93, 1951–1956. [Google Scholar] [CrossRef]
- Chou, S.H.; Chung, T.K.; Yu, B. Effects of supplemental 25-hydroxycholecalciferol on growth performance, small intestinal morphology, and immune response of broiler chickens. Poult. Sci. 2009, 88, 2333–2341. [Google Scholar] [CrossRef]
- Morris, A.; Shanmugasundaram, R.; McDonald, J.; Selvaraj, R.K. Effect of in vitro and in vivo 25-hydroxyvitamin D treatment on macrophages, T cells, and layer chickens. J. Anim. Sci. 2015, 93, 2894–2903. [Google Scholar] [CrossRef] [Green Version]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Endocrinol. Metab. Clin. N. Am. 2010, 39, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, R.; Selvaraj, R.K. Vitamin D-1alpha-hydroxylase and vitamin D-24-hydroxylase mRNA studies in chickens. Poult. Sci. 2012, 91, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Behboudi, S.; Villanueva, A.I.; Brisbin, J.T.; Ashkar, A.A.; Sharif, S. Vitamin D3 modulates the function of chicken macrophages. Res. Vet. Sci. 2015, 100, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.J. In ovo vaccination and chick quality. Int. Hatch. Prac. 2011, 19, 7–13. [Google Scholar]
- Williams, C.J. In ovo vaccination for disease prevention. Int. Poult. Prod. 2007, 15, 7–9. [Google Scholar]
- Peebles, E.D. In ovo applications in poultry: A review. Poul. Sci. 2018, 97, 2322–2338. [Google Scholar] [CrossRef]
- Mousstaaid, A.; Fatemi, S.A.; Elliott, K.E.C.; Alqhtani, A.H.; Peebles, E.D. Effects of the in ovo injection of L-ascorbic acid on broiler hatching performance. Animals 2022, 12, 1020. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Alqhtani, A.H.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Levy, A.W.; Peebles, E.D. Improvement in the performance and inflammatory reaction of Ross 708 broilers in response to the in ovo injection of 25-hydroxyvitamin D3. Poult. Sci. 2021, 100, 138–146. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Alqhtani, A.H.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorous-restricted diets: I. performance, carcass characteristics, and incidence of woody breast myopathy. Poult. Sci. 2021, 100, 10122. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Durojaye, O.; Zhang, H.; Turner, B.; Peebles, E.D. The effects of in ovo-injected vitamin D3 sources on the eggshell temperature and early post-hatch performance of Ross 708 broilers. Poult. Sci. 2020, 99, 1357–1362. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Durojaye, O.; Zhang, H.; Turner, B.; Peebles, E.D. Effects of source and level of in ovo-injected vitamin D3 on the hatchability and serum 25-hydroxycholecalciferol concentrations of Ross 708 broilers. Poult. Sci. 2020, 99, 3877–3884. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.; Hester, P.Y.; Gerard, P.D.; Zhai, W.; Peebles, E.D. Effects of commercial in ovo injection of 25-hydroxycholecalciferol on bone development and mineralization in male and female broilers. Poult. Sci. 2014, 93, 2734–2739. [Google Scholar] [CrossRef] [PubMed]
- Yair, R.; Shahar, R.; Uni, Z. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers. Poult. Sci. 2015, 94, 2695–2707. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, T.; Shakeri, M.; Zaghari, M.; Kohram, H. Growth performance parameters, bone calcification and immune response of in ovo injection of 25-hydroxycholecalciferol and vitamin K3 in male Ross 308 broilers. Theriogenology 2017, 90, 260–265. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Zhang, H.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently fed commercial or calcium and phosphorous-restricted diets: II. Immunity and small intestine morphology. Poult. Sci. 2021, 100, 101240. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently challenged with coccidiosis. I. performance, meat yield and intestinal lesion. Poult. Sci. 2021, 100, 101382. [Google Scholar] [CrossRef]
- Fatemi, S.A.; Elliott, K.E.C.; Bello, A.; Macklin, K.S.; Peebles, E.D. Effects of the in ovo injection of vitamin D3 and 25-hydroxyvitamin D3 in Ross 708 broilers subsequently challenged with coccidiosis: II. Immunological and inflammatory responses and small intestine histomorphology. Animals 2022, 12, 1027. [Google Scholar] [CrossRef]
- Poudel, S.; Zhang, L.; Tabler, G.T.; Lin, J.; Zhai, W. Effects of riboflavin and Bacillus subtills on internal organ development and intestinal health of Ross 708 male broilers with or without coccidial challenge. Poult. Sci. 2021, 100, 100973. [Google Scholar] [CrossRef]
- Poudel, S.; Tabler, G.T.; Lin, J.; Zhai, W.; Zhang, L. Riboflavin and Bacillus subtilis effects on growth performance and woody-breast of Ross 708 broilers with or without Eimeria spp. challenge. J. Anim. Sci. Technol. 2022, 64, 443. [Google Scholar] [CrossRef]
- Zhou, Z.; Wanga, Z.; Cao, L.; Hua, S.; Zhang, Z.; Qin, B.; Guo, Z.; Nie, K. Upregulation of chicken TLR4, TLR15 and MyD88 in heterophils and monocyte-derived macrophages stimulated with Eimeria tenella in vitro. Exp. Parasitol. 2013, 133, 427–433. [Google Scholar] [CrossRef]
- Fatemi, S.A. Effects of dietary 25-hydroxycholecalciferol and vitamin D3 on performance, meat yield, bone characteristics, innate immune response and gene expression of Ross 308 broilers grown on reused or fresh litter. Master’s Dissertation, University of Alberta, Edmonton, AB, Canada, 2016. [Google Scholar]
- Poudel, S.; Li, T.; Chen, S.; Zhang, X.; Cheng, W.-H.; Sukumaran, A.T.; Kiess, A.S.; Zhang, L. Prevalence, antimicrobial resistance, and molecular characterization of Campylobacter isolated from broilers and broiler meat raised without antibiotics. Microbiol. Spectr. 2022, 10, e0025122. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer. Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Al-Zghoul, M.B.; Saleh, K.M.; Ababneh, M.M.K. Effects of pre-hatch thermal manipulation and post-hatch acute heat stress on the mRNA expression of interleukin-6 and genes involved in its induction pathways in 2 broiler chicken breeds. Poult. Sci. 2019, 98, 1805–1819. [Google Scholar] [CrossRef] [PubMed]
- Brisbin, J.T.; Gong, J.; Parvizi, P.; Sharif, S. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clin. Vaccine Immunol. 2010, 17, 1337–1343. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Li, J.; Yang, X.; Jia, Z.; Ma, C.; Pan, X.; Ma, D. Activation of ChTLR15/ChNF-κB-ChNLRP3/ChIL-1β signaling transduction pathway mediated inflammatory responses to E. tenella infection. Vet. Res. 2021, 52, 15. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Morris, A.; Selvaraj, R.K. Effect of 25-hydroxycholecalciferol supplementation on turkey performance and immune cell parameters in a coccidial infection model. Poult. Sci. 2019, 98, 1127–1133. [Google Scholar] [CrossRef]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef]
- Fetterer, R.H.; Miska, K.B.; Jenkins, M.C.; Barfield, R.C. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein. J. Parasitol. 2004, 90, 1321–1328. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, J.; Chu, F.; Zhu, J.; Jin, T. Inflammatory Role of TLR-MyD88 Signaling in Multiple Sclerosis. Front. Mol. Neurosci. 2020, 12, 314. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Selvaraj, R.K. Regulatory T cell properties of chicken CD4+ CD25+ Cells. J. Immunol. 2011, 186, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; Selvaraj, R.K. In vitro 25-hydroxycholecalciferol treatment of lipopolysaccharide-stimulated chicken macrophages increases nitric oxide production and mRNA of interleukin-1 beta and 10 during a coccidia challenge. J. Anim. Sci. 2014, 93, 2894–2903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.Y.; Richard, A.F. ‘Yin-Yang’ functions of transforming growth factor-beta and T regulatory cells in immune regulation. Immunol. Rev. 2007, 220, 199–213. [Google Scholar] [CrossRef]
- Sojka, D.K.; Huang, Y.H.; Fowell, D.J. Mechanisms of regulatory T-cell suppression—A diverse arsenal for a moving target. Immunology. 2008, 124, 13–22. [Google Scholar] [CrossRef]
- Nemere, I.; Dormanen, M.C.; Hammond, M.W.; Okamura, W.H.; Norman, A.W. Identification of a specific binding protein for 1 alpha, 25-dihydroxyvitamin D3 in basal-lateral membranes of chick intestinal epithelium and relationship to transcaltachia. J. Biol. Chem. 1994, 269, 23750–23756. [Google Scholar] [CrossRef]
- Norman, A.W. Studies on the vitamin D endocrine system. Avian. J. Nutr. 1987, 117, 797–807. [Google Scholar] [CrossRef]
- Elaroussi, M.A.; Prahl, J.M.; DeLuca, H.F. The avian vitamin D receptors: Primary structures and their origins. Proc. Natl. Acad. Sci. USA 1994, 91, 11596–11600. [Google Scholar] [CrossRef]
- Thaxton, J.P.; Puvadolpirod, S. Model of physiological stress in chickens. 5. Qualitative evaluation. Poult. Sci. 2000, 79, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Yarru, L.P.; Settivari, R.S.; Antoniou, E.; Ledoux, D.R.; Rottinghaus, G.E. Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks. Poult. Sci. 2009, 88, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Peighambari, S.M.; Julian, R.J.; Gyles, C.L. Experimental Escherichia coli respiratory infection in broilers. Avian. Dis. 2000, 44, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H. The hepatic and duodenal activities of some drug metabolizing enzymes in chickens: Influence of infection with Escherichia coli endotoxin and coccidiosis. Eur. J. Drug Metab. Pharm. 1997, 22, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Lynagh, G.R.; Bailey, M.; Kaiser, P. Interleukin-6 is produced during both murine and avian Eimeria infections. Vet. Immunol. Immunopathol. 2000, 76, 89–102. [Google Scholar] [CrossRef]
- Hong, Y.H.; Lillehoj, H.S.; Lillehoj, E.P.; Lee, S.H. Changes in immune-related gene expression and intestinal lymphocyte subpopulations following Eimeria maxima infection of chickens. Vet. Immunol. Immunopathol. 2006, 114, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zou, W.; Wang, X.; Dai, G.; Zhang, T.; Zhang, G.; Xie, K.; Wang, J.; Shi, H. Research Note: Correlation analysis of interleukin-6, interleukin-8, and C-C motif chemokine ligand 2 gene expression in chicken spleen and cecal tissues after Eimeria tenella infection in vivo. Poult. Sci. 2020, 99, 1326–1331. [Google Scholar] [CrossRef]
Gene Symbol | Accession No | Type | Orientation | Sequence (5′ to 3′) | Length (nt) | Amplicon Size (bp) | Reference |
---|---|---|---|---|---|---|---|
RNA 18S | M59389.1 | Housekeeping | Forward | GCCAACAGAGAGAAGATGACAC | 22 | 140 | - |
Reverse | GTAACACCATCACCAGAGTCCA | 22 | |||||
GAPDH | NM204305 | Housekeeping | Forward | GTAAACCATGTAGTTCAGATCGATGA | 26 | 72 | - |
Reverse | GCCGTCCTCTCTGGCAAAG | 19 | |||||
IL-2 | AY386204 | Immunity-related | Forward | AGTCTTACAGGTCTAAATCACACC | 24 | 102 | - |
Reverse | CACAAAGTTGGTCAGTTCATGG | 22 | |||||
IL-6 | AB559572 | Immunity-related | Forward | GCGAGAACAGCATGGAGATG | 20 | 143 | Al-Zghoul et al. [35] |
Reverse | GTAGGTCTGAAAGGCGAACAG | 21 | |||||
IL-10 | AJ621614 | Immunity-related | Forward | AGCAGATCAAGGAGACGTTC | 20 | 103 | - |
Reverse | ATCAGCAGGTACTCCTCGAT | 20 | |||||
IFN-γ | AJ001678 | Immunity-related | Forward | GTGAAGAAGGTGAAAGATATCATGGA | 26 | 71 | - |
Reverse | GCTTTGCGCTGGATTCTCA | 19 | |||||
TGF-β4 | M31160.1 | Immunity-related | Forward | GGGGTCTTCAAGCTGAGCGT | 20 | 119 | Brisbin et al. [36] |
Reverse | TTGGCAATGCTCTGCATGTC | 20 | |||||
TLR-4 | AY064697 | Immunity-related | Forward | AGTCTGAAATTGCTGAGCTCAAAT | 24 | 190 | - |
Reverse | GCGACGTTAAGCCATGGAAG | 20 | |||||
TLR-15 | NM_001037835 | Immunity-related | Forward | GGCTGTGGTATGTGAGAATG | 20 | 113 | - |
Reverse | ATCGTGCTCGCTGTATGA | 18 | |||||
MyD88 | NM_001030962 | Immunity-related | Forward | ATGGGCATGGAACAGAGATG | 20 | 138 | - |
Reverse | GCAAGACATCCCGATCAAAC | 20 | |||||
1α-hydroxylase | XM_422077 | Vitamin D activity-related | Forward | TCGTGGCAGGAATACAGAGA | 20 | 125 | - |
Reverse | ACTGCCACATCTTTGGGTTT | 20 | |||||
25-hydroxylase | NM_001277354 | Vitamin D activity-related | Forward | GCTGTCACTGGGATTCTTTGC | 21 | 160 | Shanmugasundaram and selvaraj [12] |
Reverse | CCAACCGAAAGGCACAAGTC | 20 | |||||
24-hydroxylase | AF019142.1 | Vitamin D activity-related | Forward | AAACCCTGGAAAGCCTATCG | 20 | 133 | Shanmugasundaram and selvaraj [12] |
Reverse | CCAGTTTCACCACCTCCTTG | 20 | |||||
VDR | AF011356.1 | Vitamin D activity-related | Forward | CGTGAGAAGCAAATTCAGCA | 20 | 157 | - |
Reverse | GAGGTCCAGGTTGGAAAACA | 20 |
Treatment | n | IL-2 | IL-6 | IL10 | IFN-γ | TGF-β4 | TLR4 | TLR-15 | MyD88 |
---|---|---|---|---|---|---|---|---|---|
14 doa | |||||||||
Non-injected 1 | 8 | 0.90 | 1.53 | 1.14 | 0.87 | 0.91 | 0.93 | 1.53 | 1.10 |
Diluent 2 | 8 | 1.04 | 1.07 | 1.04 | 1.06 | 1.06 | 1.01 | 1.12 | 1.03 |
D3 3 | 8 | 1.12 | 1.69 | 1.27 | 1.49 | 1.03 | 1.20 | 1.38 | 1.31 |
25OHD3 4 | 8 | 1.05 | 1.06 | 1.33 | 0.91 | 2.16 | 0.92 | 0.95 | 1.17 |
D3 + 25OHD3 5 | 8 | 1.00 | 1.03 | 1.11 | 0.80 | 1.14 | 1.11 | 1.01 | 1.11 |
SEM | 0.195 | 0.435 | 0.309 | 0.196 | 0.522 | 0.178 | 0.277 | 0.153 | |
p-value | 0.758 | 0.489 | 0.869 | 0.103 | 0.274 | 0.522 | 0.556 | 0.763 | |
28 doa | |||||||||
Diluent | 8 | 1.05 | 1.06 b | 1.18 c | 1.10 | 1.03 b | 1.17 | 1.06 | 1.04 |
D3 | 8 | 1.25 | 4.41 a | 1.70 c | 0.89 | 1.53 b | 1.34 | 0.96 | 1.31 |
25OHD3 | 8 | 1.41 | 0.93 b | 9.00 a | 0.46 | 4.70 a | 1.56 | 0.97 | 1.34 |
D3 + 25OHD3 | 8 | 1.50 | 2.52 ab | 3.40 b | 1.03 | 2.29 b | 1.47 | 1.50 | 1.40 |
SEM | 0.212 | 0.832 | 0.553 | 0.223 | 0.505 | 0.279 | 0.223 | 0.218 | |
p-value | 0.471 | 0.012 | 0.001 | 0.198 | <0.001 | 0.777 | 0.294 | 0.660 |
Treatment | n | 1α-hydroxylase | 25-hydroxylase | 24-hydroxylase | VDR 1 |
---|---|---|---|---|---|
14 doa | |||||
Non-injected 2 | 8 | 1.01 | 0.89 | 2.02 | 0.91 |
Diluent 3 | 8 | 1.02 | 1.02 | 1.14 | 1.01 |
D3 4 | 8 | 1.34 | 1.17 | 2.64 | 1.32 |
25OHD3 5 | 8 | 1.34 | 1.07 | 1.49 | 1.19 |
D3 + 25OHD3 6 | 8 | 1.16 | 1.03 | 1.89 | 1.15 |
SEM | 0.246 | 0.160 | 0.606 | 0.195 | |
p-value | 0.549 | 0.580 | 0.299 | 0.381 | |
28 doa | |||||
Diluent | 8 | 1.04 b | 1.02 | 1.03 | 1.25 |
D3 | 8 | 1.16 b | 1.13 | 2.08 | 1.82 |
25OHD3 | 8 | 3.43 a | 1.25 | 0.47 | 1.56 |
D3 + 25OHD3 | 8 | 1.80 b | 1.91 | 2.08 | 1.70 |
SEM | 0.383 | 0.329 | 0.437 | 0.274 | |
p-value | 0.001 | 0.243 | 0.072 | 0.512 |
Genes | n | 14 doa 1 | 28 doa 2 | SEM | p-Value |
---|---|---|---|---|---|
IL-2 | 16 | 1.017 b | 1.30 a | 0.130 | 0.031 |
IL-6 | 16 | 1.34 b | 2.48 a | 0.508 | 0.028 |
IL10 | 16 | 1.21 b | 3.82 a | 0.581 | 0.002 |
IFN-γ | 16 | 1.08 | 0.88 | 0.139 | 0.135 |
TGF-β4 | 16 | 1.29 b | 2.39 a | 0.410 | 0.010 |
TLR4 | 16 | 1.02 b | 1.39 a | 0.156 | 0.021 |
TLR-15 | 16 | 1.25 | 1.12 | 0.185 | 0.509 |
MyD88 | 16 | 1.15 | 1.27 | 0.124 | 0.380 |
1α-hydroxylase | 16 | 1.18 b | 1.86 a | 0.260 | 0.011 |
25-hydroxylase | 16 | 1.04 | 1.33 | 0.177 | 0.110 |
24-hydroxylase | 16 | 1.82 | 1.42 | 0.377 | 0.285 |
VDR | 16 | 1.11 b | 1.58 a | 0.153 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatemi, S.A.; Macklin, K.S.; Zhang, L.; Mousstaaid, A.; Poudel, S.; Poudel, I.; Peebles, E.D. Improvement in the Immunity- and Vitamin D3-Activity-Related Gene Expression of Coccidiosis-Challenged Ross 708 Broilers in Response to the In Ovo Injection of 25-Hydroxyvitamin D3 . Animals 2022, 12, 2517. https://doi.org/10.3390/ani12192517
Fatemi SA, Macklin KS, Zhang L, Mousstaaid A, Poudel S, Poudel I, Peebles ED. Improvement in the Immunity- and Vitamin D3-Activity-Related Gene Expression of Coccidiosis-Challenged Ross 708 Broilers in Response to the In Ovo Injection of 25-Hydroxyvitamin D3 . Animals. 2022; 12(19):2517. https://doi.org/10.3390/ani12192517
Chicago/Turabian StyleFatemi, Seyed Abolghasem, Kenneth S. Macklin, Li Zhang, Ayoub Mousstaaid, Sabin Poudel, Ishab Poudel, and Edgar David Peebles. 2022. "Improvement in the Immunity- and Vitamin D3-Activity-Related Gene Expression of Coccidiosis-Challenged Ross 708 Broilers in Response to the In Ovo Injection of 25-Hydroxyvitamin D3 " Animals 12, no. 19: 2517. https://doi.org/10.3390/ani12192517
APA StyleFatemi, S. A., Macklin, K. S., Zhang, L., Mousstaaid, A., Poudel, S., Poudel, I., & Peebles, E. D. (2022). Improvement in the Immunity- and Vitamin D3-Activity-Related Gene Expression of Coccidiosis-Challenged Ross 708 Broilers in Response to the In Ovo Injection of 25-Hydroxyvitamin D3 . Animals, 12(19), 2517. https://doi.org/10.3390/ani12192517