Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Nutrient Analyses
2.3. Analysis of Biochemical Blood Parameters
2.4. Analysis of Prooxidant—Antioxidant Balance in Blood and Breast Muscle
2.5. Measurement of Lipid Peroxidation in Blood and Breast Muscle
2.6. Myokine Assay
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oluwafemi, R.A.; Olawale, A.I.; Alagbe, J.O. Recent trends in the utilization of medicinal plants as growth promoters in poultry nutrition—A review. Agric. Vet. Sci. 2020, 4, 5–11. [Google Scholar]
- Puvača, N.; Brkić, I.; Jahić, M.; Nikolić, S.R.; Radović, G.; Ivanišević, D.; Dokić, M.; Bošković, D.; Illić, D.; Brkanlić, S.; et al. The effect of using natural or biotic dietary supplements in poultry nutrition on the effectiveness of meat production. Sustainability 2020, 12, 4373. [Google Scholar] [CrossRef]
- Righi, F.; Pitino, R.; Manuelian, C.L.; Simoni, M.; Quarantelli, A.; De Marchi, M.; Tsiplakou, E. Plant feed additives as natural alternatives to the use of synthetic antioxidant vitamins on poultry performances, health, and oxidative status: A review of the literature in the last 20 years. Antioxidants 2021, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Olawuwo, O.S.; Abdalla, M.A.; Mühling, K.H.; McGaw, L.J. Proximate analysis of nutrients and in vitro radical scavenging efficacy in selected medicinal plant powders with potential use as poultry feed additives. S. Afr. J. Bot. 2022, 146, 103–110. [Google Scholar] [CrossRef]
- Vidanarachchi, J.K.; Mikkelsen, L.L.; Sims, I.; Iji, P.A.; Choct, M. Phytobiotics: Alternatives to antibiotic growth promoters in monogastric animal feeds. Rec. Adv. Anim. Nutr. Aust. 2005, 15, 131–144. [Google Scholar]
- Elkohouly, M.A.; Khairy, M.H.; Abd-El Alim, A.-E.A.F.; Ali, A.M. Effect of Phytobiotics, Probiotics and Toltrazuril on Chicken Coccidiosis. Zagazig Vet. J. 2016, 44, 214–223. [Google Scholar] [CrossRef]
- Konkol, D.; Korzeniowska, M.; Różański, H.; Górniak, W.; Andrys, M.; Opaliński, S.; Popiela, E.; Korczyński, M. The use of selenium yeast and phytobiotic in improving the quality of broiler chicken meat. Foods 2021, 10, 2558. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv. 2010, 9, 2295–2304. [Google Scholar] [CrossRef]
- Gheisar, M.M.; Kim, I.H. Phytobiotics in poultry and swine nutrition—A review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef]
- Musfiroh, I.; Mutakin, M.; Angelina, T.; Muchtaridi, M. Capsaicin level of various Capsicum fruits. Int. J. Pharm. Pharm. Sci. 2013, 5, 248–251. [Google Scholar]
- Shirani, F.; Foshati, S.; Tavassoly, M.; Clark, C.C.T.; Rouhani, M.H. The effect of red pepper/capsaicin on blood pressure and heart rate: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2021, 35, 6080–6088. [Google Scholar] [CrossRef] [PubMed]
- Munglang, N.; Vidyarthi, V.K. Hot red pepper powder supplementation diet of broiler chicken—A review. Int. J. Livest. Res. 2019, 7, 159–167. [Google Scholar]
- Reda, F.M.; Alagawany, M.; Mahmoud, H.K.; Mahgoub, S.A.; Elnesr, S.S. Use of red pepper oil in quail diets and its effect on performance, carcass measurements, intestinal microbiota, antioxidant indices, immunity and blood constituents. Animal 2020, 14, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.K.; Al-Afifi, S.F. The productive performance, intestinal bacteria and histomorphology of broiler chicks fed diets containing hot red pepper. Egypt. Poult. Sci. 2020, 40, 345–357. [Google Scholar]
- Toribio, A.; Nuzillard, J.-M.; Pinel, B.; Boudesocque, L.; Lafosse, M.; de la Poype, F.; Renault, J.-H. Pilot-scale ion-exchange centrifugal partition chromatography: Purification of sinalbin from white mustard seeds. J. Sep. Sci. 2009, 32, 1801–1807. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Kozak, M.; Kotecki, A. Effect of different sulfur fertilizer doses on the glucosinolate content and profile of white mustard seeds. J. Elem. 2020, 25, 1413–1422. [Google Scholar] [CrossRef]
- Ekanayake, A.; Kester, J.J.; Li, J.J.; Zehentbauer, G.N.; Bunke, P.R.; Zent, J.B. IsogardTM: A natural anti-microbial agent derived from white mustard seed. Acta Hortic. 2006, 709, 101–108. [Google Scholar] [CrossRef]
- Dufour, V.; Stahl, M.; Baysse, C. The antibacterial properties of isothiocyanates. Microbiology 2015, 161, 229–243. [Google Scholar] [CrossRef]
- Jurado Gonzalez, P.; Sörensen, P.M. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocoll. 2020, 101, 105541. [Google Scholar] [CrossRef]
- Fleck, J.D.; Betti, A.H.; Pereira da Silva, F.; Troian, E.A.; Olivaro, C.; Ferreira, F.; Verza, S.G. Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular chemical characteristics and biological activities. Molecules 2019, 24, 171. [Google Scholar] [CrossRef]
- Dalkilic, B.; Ozcelik, M.; Cambay, Z.; Alayunt, N.O.; Simsek, U.G.; Mutlu, S.I.; Ciftci, M. Soapwort extract supplementation alters antioxidant status of serum, liver and heart tissues in growing Japanese quails reared under chronic intermittent cold stress. Acta Vet. Brno 2017, 86, 159–165. [Google Scholar] [CrossRef]
- Mohammed, G.J.; Hameed, I.H. Anti-fungal, antitumour and anti-inflammatory activity of Acorus calamus. Indian J. Public Health Res. Dev. 2018, 9, 254–258. [Google Scholar] [CrossRef]
- Nanda, B.L.; Sayeeda Nigar, S.G.; Radhakrishnan, T.T. Determination of phytochemicals and antioxidant activity of Acorus calamus rhizome. J. Drug Deliv. Ther. 2014, 4, 117–121. [Google Scholar]
- Velichkova, K.; Sirakov, I.; Stoyanova, S. Growth efficiency, biochemical blood parameters and meat quality of rainbow trout (Oncorhynchus mykiss W.), fed with supplement of sweet flag extract (Acorus calamus L.). Bulg. J. Agric. Sci. 2020, 26 (Suppl. S1), 180–185. [Google Scholar]
- Al-Sultan, S.I.; Gameel, A.A. Histopathological changes in the livers of broiler chicken supplemented with turmeric (Curcuma longa). Int. J. Poult. Sci. 2004, 3, 333–336. [Google Scholar]
- Tilak, J.C.; Banerjee, M.; Mohan, H.; Devasagayam, T.P.A. Antioxidant availability of turmeric in relation to its medicinal and culinary uses. Phytother. Res. 2004, 18, 798–804. [Google Scholar] [CrossRef]
- Bareswill, S.; Muñoz, M.; Fischer, A.; Plickert, R.; Haag, L.-M.; Otto, B.; Kühl, A.A.; Loddenkemper, C.; Göbel, U.B.; Heimesaat, M.M. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS ONE 2010, 5, e15099. [Google Scholar] [CrossRef]
- Aljedaie, M.M.; Al-Malki, E.S. Anticoccidial activities of Salvadora persica (arak), Zingiber officinale (ginger) and Curcuma longa (turmeric) extracts on the control of chicken coccidiosis. J. King Saud Univ. Sci. 2020, 32, 2810–2817. [Google Scholar] [CrossRef]
- Hikal, W.M.; Tkachenko, K.G.; Said-Al Ahl, H.A.H.; Sany, H.; Sabra, A.S.; Baeshen, R.S.; Bratovcic, A. Chemical composition and biological significance of thymol as antiparasitic. Open J. Ecol. 2021, 11, 240–266. [Google Scholar] [CrossRef]
- Azeemuddin, M.M.; Rao, C.M.; Rafiq, M.; Onkaramurthy, M.; Singh, P.; Baig, M.R.; Babu, U.V. A herbal combination attenuates muscle atrophy and cancer cachexia: A preclinical study. J. App. Pharm. Sci. 2022, 12, 119–126. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jun, H.S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Koliakos, G.; Hamidi Alamdari, D. Measurement of the oxidants-antioxidants balance in liquids. United States Patent Application Publication No. US 2009/0123956 A1 (USA), 2009. [Google Scholar]
- Bochicchio, M.; Latronico, N.; Zani, D.G.; Mariotti, M.; Morandini, L.; Acquarolo, A.M.; Candiani, A. Free radical-induced lipoperoxidation and severe head injury. Int. Care Med. 1990, 16, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkhair, R.; Ahmed, H.A.; Selim, S. Effects of black pepper (Piper nigrum), turmeric powder (Curcuma longa) and coriander seeds (Coriandrum sativum) and their combinations as feed additives on growth performance, carcass traits, some blood parameters and humoral immune response of broiler chickens. Asian Australas. J. Anim. Sci. 2014, 27, 847–854. [Google Scholar] [PubMed]
- El-Deek, A.A.; Al-Harthi, M.A.; Osman, M.; Al-Jassas, F.; Nassar, R. Hot pepper (Capsicum annum) as an alternative to oxytetracycline in broiler diets and effects on productive traits, meat quality, immunological responses and plasma lipids. Arch. Geflügelk. 2012, 76, 73–80. [Google Scholar]
- Al-Yasiry, A.R.M.; Kiczorowska, B.; Samolińska, W.; Kowalczuk-Vasilev, E.; Kowalczyk-Pecka, D. The effect of Boswellia serrata resin diet supplementation on production, hematological, biochemical and immunological parameters in broiler chickens. Animal 2017, 11, 1890–1898. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Suliman, G.M.; Abdullatif, A.A.; Abudabos, A.M. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. Poult. Sci. 2020, 99, 5744–5751. [Google Scholar] [CrossRef] [PubMed]
- Basit, M.A.; Kadir, A.A.; Loh, T.C.; Aziz, S.A.; Salleh, A.; Kaka, U.; Idris, S.B. Effect of inclusion of different doses of Persicaria odorata leaf meal (POLM) in broiler chicken feed on biochemical and haematological blood indicators and liver histomorphological changes. Animals 2020, 10, 1209. [Google Scholar]
- Krauze, M.; Cendrowska-Pinkosz, M.; Matuseviĉius, P.; Stępniowska, A.; Jurczak, P.; Ognik, K. The effect of administration of a phytobiotic containing cinnamon oil and citric acid on the metabolism, immunity, and growth performance of broiler chickens. Animals 2021, 11, 399. [Google Scholar] [CrossRef]
- Alagawany, M.; Salah, A.S.; Mahmoud, M.A.; Reda, F.M. Dietary cold-press red and black pepper oil mixture enhances growth, carcass, blood chemistry, antioxidant, immunity and caecal pathogens of quails. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1712–1718. [Google Scholar] [CrossRef]
- Zdanowska-Sąsiadek, Ż.; Lipińska-Palka, P.; Damaziak, K.; Michalczuk, M.; Grzybek, W.; Kruzińska, B.; Jasińska, K.; Róg, D.; Kordos, K.; Ząbek, K.; et al. Antioxidant effects of phytogenic herbal-vegetable mixtures additives used in chicken feed on breast meat quality. Anim. Sci. Pap. Rep. 2019, 37, 393–408. [Google Scholar]
- Chen, S.E.; Gerken, E.; Zhang, Y.; Zhan, M.; Mohan, R.K.; Li, A.S.; Reid, M.B.; Li, Y.-P. Role of TNF-α signaling in regeneration of cardiotoxin-injured muscle. Am. J. Physiol. Cell Physiol. 2005, 289, C1179–C1187. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Hulderman, T.; Jensen, N.; McKinstry, M.; Mishra, M.; Luster, M.I.; Simeonova, P.P. Physiological role of tumor necrosis factor α in traumatic muscle injury. FASEB J. 2002, 16, 1630–1632. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.M.; DeOcesano-Pereira, C.; Teixeira, C.; Moreira, V. IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells 2020, 9, 2005. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Gupta, S.C.; Sung, B. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br. J. Pharmacol. 2013, 169, 1672–1692. [Google Scholar] [CrossRef]
- McFarlin, B.K.; Venable, A.S.; Henning, A.L.; Best Sampson, J.N.; Pennel, K.; Vingren, J.L.; Hill, D.W. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin. 2016, 5, 72–78. [Google Scholar] [CrossRef]
- Drobnic, F.; Riera, J.; Appendino, G.; Togni, S.; Franceschi, F.; Valle, X.; Tur, J. Reduction of delayed onset muscle soreness by a novel curcumin delivery system (Meriva®): A randomised, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2014, 11, 31. [Google Scholar] [CrossRef]
- Marques, F.M.; Figueira, M.M.; Schmitt, E.F.P.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway. Inflammopharmacology 2019, 27, 281–289. [Google Scholar] [CrossRef]
- Park, J.Y.; Kawada, T.; Han, I.S.; Kim, B.S.; Goto, T.; Takahashi, N.; Yu, R. Capsaicin inhibits the production of tumor necrosis factor α by LPS-stimulated murine macrophages, RAW 264.7: A PPARγ ligand-like action as a novel mechanism. FEBS Lett. 2004, 572, 266–270. [Google Scholar] [CrossRef]
- Song, Y.N.; Yuan, D.; Zhang, C.C.; Wang, L.P.; He, Y.M.; Wang, T.; Zhou, Z.Y. Effect of saponins extracted from Panax japonicus on inhibiting cardiomyocyte apoptosis by AMPK/Sirt1/NF-κB signaling pathway in aging rats. Zhongguo Zhong Yao Za Zhi 2017, 42, 4656–4660. [Google Scholar]
- Wong, W.Y.; Lee, M.M.L.; Chan, B.D.; Wan-San Ma, V.; Zhang, W.; Yip, T.T.C.; Tai, W.C.S. Gynostemma pentaphyllum saponins attenuate inflammation in vitro and in vivo by inhibition of NF-κB and STAT3 signaling. Oncotarget 2017, 8, 87401. [Google Scholar] [CrossRef] [PubMed]
- Joe, A.W.B.; Yi, L.; Natarajan, A.; Le Grand, F.; So, L.; Wang, J.; Rudnicki, M.A.; Rossi, F.M.V. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 2010, 12, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Li, Y.; Wu, Y.; Wang, L.; Wang, X.; Du, J. Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J. Biol. Chem. 2013, 288, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.L.; Baeza-Raja, B.; Perdiguero, E.; Jardí, M.; Muñoz-Cánovez, P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008, 7, 33–44. [Google Scholar] [CrossRef]
- Nihashi, Y.; Ono, T.; Kagami, H.; Takaya, T. Toll-like receptor ligand-dependent inflammatory responses in chick skeletal muscle myoblasts. Dev. Comp. Immunol. 2019, 91, 115–122. [Google Scholar] [CrossRef]
- Lee, S.J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 9306–9311. [Google Scholar] [CrossRef]
- Sato, F.; Kurokawa, M.; Yamauchi, N.; Hattori, M. Gene silencing of myostatin in differentiation of chicken embryonic myoblasts by small interfering RNA. Am. J. Physiol. Cell Physiol. 2006, 291, C538–C545. [Google Scholar] [CrossRef]
- Chen, L.; Su, X.; Hu, Y. Berberine down-regulated myostatin expression and facilitated metabolism via Smad pathway in insulin resistant mice. Diabetes Metab. Syndr. Obes. 2020, 13, 4561–4569. [Google Scholar] [CrossRef]
Item | Diets | ||
---|---|---|---|
Starter (1–10 Day) | Grower (11–28 Day) | Finisher (29–35 Day) | |
Ingredients (%) | |||
Corn meal | 32.44 | 32.07 | 31.80 |
Soybean meal | 30.70 | 30.11 | 24.68 |
Wheat | 30.00 | 30.00 | 35.00 |
Rapeseed oil | 3.08 | 4.53 | 5.41 |
Premix with salinomycin | 3.00 | 3.00 | 3.00 |
Monocalcium phosphate | 0.41 | 0.24 | 0.11 |
Methionine | 0.28 | 0.03 | |
Lysine HCl | 0.07 | ||
Calcium carbonate | 0.02 | 0.02 | |
Nutrient content (%) | |||
Dry matter | 90.68 1/91.17 2 | 90.87 1/90.90 2 | 90.81 1/90.98 2 |
Crude protein | 20.25 1/20.44 2 | 19.75 1/19.25 2 | 17.56 1/17.88 2 |
Crude ash | 4.40 1/4.79 2 | 4.20 1/4.21 2 | 3.74 1/3.62 2 |
Crude fat | 5.41 1/5.92 2 | 6.76 1/6.98 2 | 8.22 1/8.02 2 |
Crude fibre | 2.54 1/2.48 2 | 2.67 1/2.62 2 | 2.76 1/2.69 2 |
Gross energy (MJ/kg) | 17.6 1/18.2 2 | 18.2 1/18.9 2 | 18.6 1/18.8 2 |
Parameter | PBC (mg/kg) | SEM | p Value | Contrast | ||
---|---|---|---|---|---|---|
0 | 60 | 100 | ||||
Starter (1–10 day of life) | ||||||
Feed intake, g | 272.1 | 288.2 | 272.8 | |||
Body weight gain, g | 111.9 | 118.9 | 107.6 | |||
FCR | 1.36 | 1.34 | 1.41 | |||
Grower + finisher (11–35 day of life) | ||||||
Feed intake, g | 2731 | 2736 | 2538 | 87.2 | 0.192 | |
Body weight gain, g | 2080 | 2166 | 2098 | 58.4 | 0.563 | |
FCR | 1.39 b | 1.37 a,b | 1.22 a | 0.049 | 0.032 | linear |
Final body weight, g | 2343 | 2444 | 2388 | 58.3 | 0.479 |
Parameter | PBC (mg/kg) | SEM | p Value | ||
---|---|---|---|---|---|
0 | 60 | 100 | |||
ALP 1 (U/L) | 4064 | 3446 | 4081 | 305.6 | 0.643 |
ALT 2 (U/L) | 23.7 | 20.4 | 17.7 | 1.50 | 0.272 |
Amylase (U/L) | 549 | 454 | 398 | 44.8 | 0.390 |
AST 3 (U/L) | 356 | 377 | 405 | 22.3 | 0.682 |
CK 4 (U/L) | 30,125 | 37,555 | 35,548 | 3665.0 | 0.708 |
GGTP 5 (U/L) | 17.9 | 20.9 | 18.6 | 0.63 | 0.124 |
Glucose (mmol/L) | 16.2 | 16.7 | 16.5 | 0.16 | 0.501 |
Lipase (U/L) | 6.37 | 7.07 | 6.19 | 0.558 | 0.804 |
Parameter | PBC (mg/kg) | SEM | p Value | ||
---|---|---|---|---|---|
0 | 60 | 100 | |||
Blood | |||||
PAB 1 (HKU/mL) | 955 | 821 | 1141 | 69.8 | 0.172 |
TBARS 2 (μmol/L) | 0.32 | 0.36 | 0.37 | 0.038 | 0.854 |
Pectoral muscle | |||||
PAB (HKU/g) | 7434 | 7866 | 7095 | 216.3 | 0.354 |
TBARS (μmol/g) | 2.43 | 1.99 | 3.47 | 0.483 | 0.444 |
Parameter | PBC (mg/kg) | SEM | p Value | Contrast | ||
---|---|---|---|---|---|---|
0 | 60 | 100 | ||||
Blood | ||||||
IL-6 1(pg/mL) | 404 a | 580 a,b | 605 b | 33.6 | 0.022 | linear |
TNF-α 2 (ng/L) | 10.87 b | 9.00 a | 9.98 a,b | 0.313 | 0.045 | quadratic |
MSTN 3 (ng/mL) | 0.48 | 0.54 | 0.25 | 0.108 | 0.533 | |
Pectoral muscle | ||||||
IL-6 (ng/g tissue) | 19.5 | 14.6 | 20.2 | 2.04 | 0.492 | |
IL-6 (pg/mg protein) | 520 | 536 | 471 | 72.7 | 0.934 | |
TNF-α (pg/g tissue) | 148 b | 112 a | 107 a | 4.19 | <0.001 | quadratic |
TNF-α (pg/mg protein) | 3.85 | 3.52 | 2.68 | 0.267 | 0.190 | |
MSTN (ng/g tissue) | 78 | 110 | 83 | 6.7 | 0.111 | |
MSTN (ng/mg protein) | 2.01 a | 3.46 b | 1.93 a | 0.258 | 0.019 | quadratic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chodkowska, K.A.; Abramowicz-Pindor, P.A.; Tuśnio, A.; Gawin, K.; Taciak, M.; Barszcz, M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals 2022, 12, 2625. https://doi.org/10.3390/ani12192625
Chodkowska KA, Abramowicz-Pindor PA, Tuśnio A, Gawin K, Taciak M, Barszcz M. Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals. 2022; 12(19):2625. https://doi.org/10.3390/ani12192625
Chicago/Turabian StyleChodkowska, Karolina A., Paulina A. Abramowicz-Pindor, Anna Tuśnio, Kamil Gawin, Marcin Taciak, and Marcin Barszcz. 2022. "Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens" Animals 12, no. 19: 2625. https://doi.org/10.3390/ani12192625
APA StyleChodkowska, K. A., Abramowicz-Pindor, P. A., Tuśnio, A., Gawin, K., Taciak, M., & Barszcz, M. (2022). Effect of Phytobiotic Composition on Production Parameters, Oxidative Stress Markers and Myokine Levels in Blood and Pectoral Muscle of Broiler Chickens. Animals, 12(19), 2625. https://doi.org/10.3390/ani12192625