Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sample Collection and Carcass Traits
2.3. Determination of Serum Biochemical Indicators
2.4. Determination of Serum Inflammatory Cytokines and Immunoglobulins Concentrations
2.5. Determination of Serum Diamine Oxidase (DAO) and D-Lactate Levels
2.6. Determination of Hepatic Injury Indexes, Inflammatory Cytokines, and Caspases Activities
2.7. Determination of Hepatic Malondialdehyde (MDA) Concentration in Livers
2.8. Determination of Relative mRNA Expression in Livers
2.9. Statistical Analyses
3. Results
3.1. Effects of PFA Supplementation on Growth Performance
3.2. Effects of PFA Supplementation on Carcass Traits
3.3. Effects of PFA Supplementation on Serum Biochemical Indicators
3.4. Effects of PFA Supplementation on Serum Inflammatory Cytokines and Immunoglobulins Concentrations
3.5. Effects of PFA Supplementation on Serum DAO and D-Lactate Levels
3.6. Effects of PFA Supplementation on Hepatic Injury Indexes
3.7. Effects of PFA Supplementation on Hepatic Apoptosis Indicators
3.8. Effects of PFA Supplementation on Hepatic Inflammatory Cytokines and Genes Expressions
3.9. Effects of PFA Supplementation on Hepatic MDA Concentration and Antioxidant Genes Expressions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, C.; Wei, Y.; Wang, X.; Ba, C.; Shi, W. Protective effect of Salvia miltiorrhiza polysaccharides on liver injury in chickens. Poult. Sci. 2019, 98, 3496–3503. [Google Scholar] [CrossRef]
- Zeeh, J. The aging liver: Consequences for drug treatment in old age. Arch. Gerontol. Geriatr. 2001, 32, 255–263. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhang, H.; Wang, T. Pterostilbene as a protective antioxidant attenuates diquat-induced liver injury and oxidative stress in 21-day-old broiler chickens. Poult. Sci. 2020, 99, 3158–3167. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, X.; Jiang, X.; Chen, L.; Hong, L.; Zhuo, Y.; Lin, Y.; Fang, Z.; Che, L.; Feng, B.; et al. Effects of dietary supplementation with exogenous catalase on growth performance, oxidative stress, and hepatic apoptosis in weaned piglets challenged with lipopolysaccharide. J. Anim. Sci. 2020, 98, skaa067. [Google Scholar] [CrossRef]
- Abdollahi, M.; Zaefarian, F.; Hall, L.; Jendza, J. Feed acidification and steam-conditioning temperature influence nutrient utilization in broiler chickens fed wheat-based diets. Poult. Sci. 2020, 99, 5037–5046. [Google Scholar] [CrossRef] [PubMed]
- Ragaa, N.M.; Korany, R.M. Studying the effect of formic acid and potassium diformate on performance, immunity and gut health of broiler chickens. Anim. Nutr. 2016, 2, 296–302. [Google Scholar] [CrossRef]
- Al-Natour, M.Q.; Alshawabkeh, K.M. Using Varying Levels of Formic Acid to Limit Growth of Salmonella gallinarum in Contaminated Broiler Feed. Asian-Australas. J. Anim. Sci. 2005, 18, 390–395. [Google Scholar] [CrossRef]
- Luise, D.; Correa, F.; Bosi, P.; Trevisi, P. A Review of the Effect of Formic Acid and Its Salts on the Gastrointestinal Microbiota and Performance of Pigs. Animals 2020, 10, 887. [Google Scholar] [CrossRef]
- Chen, J.L.; Zheng, P.; Zhang, C.; Yu, B.; He, J.; Yu, J.; Luo, J.Q.; Mao, X.B.; Huang, Z.Q.; Chen, D.W. Benzoic acid beneficially affects growth performance of weaned pigs which was associated with changes in gut bacterial populations, morphology indices and growth factor gene expression. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1137–1146. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Niu, J.; Jing, C.; Jiao, N.; Huang, L.; Jiang, S.; Yan, L.; Yang, W.; Li, Y. Supplementation with paraformic acid in the diet improved intestinal development through modulating intestinal inflammation and microbiota in broiler chickens. Front. Microbiol. 2022, 13, 975056. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Niu, J.; Liu, H.; Jiao, N.; Huang, L.; Jiang, S.; Yan, L.; Yang, W. Effects of Dietary Macleaya cordata Extract Containing Isoquinoline Alkaloids Supplementation as an Alternative to Antibiotics in the Diets on Growth Performance and Liver Health of Broiler Chickens. Front. Vet. Sci. 2022, 9, 950174. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Shi, L.; Li, Y.; Ni, A.; Ma, H.; Sun, Y.; Chen, J. Effects of replacing dietary Aureomycin with a combination of plant essential oils on production performance and gastrointestinal health of broilers. Poult. Sci. 2020, 99, 4521–4529. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fu, G.; Liu, S.; Li, L.; Zhao, X. Effects of oxygen levels and a Lactobacillus plantarum strain on mortality and immune response of chickens at high altitude. Sci. Rep. 2019, 9, 16037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Li, J.; Xing, T.; Zhang, L.; Gao, F. Effects of guanidinoacetic acid and complex antioxidant supplementation on growth performance, meat quality, and antioxidant function of broiler chickens. J. Sci. Food Agric. 2020, 101, 3961–3968. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Xing, T.; Li, C.; Xu, X.; Zhou, G. The Effect of Breed and Age on the Growth Performance, Carcass Traits and Metabolic Profile in Breast Muscle of Chinese Indigenous Chickens. Foods 2022, 11, 483. [Google Scholar] [CrossRef]
- Chen, J.; Li, F.; Yang, W.; Jiang, S.; Li, Y. Supplementation with Exogenous Catalase from Penicillium notatum in the Diet Ameliorates Lipopolysaccharide-Induced Intestinal Oxidative Damage through Affecting Intestinal Antioxidant Capacity and Microbiota in Weaned Pigs. Microbiol. Spectr. 2021, 9, e0065421. [Google Scholar] [CrossRef]
- Ko, M.J.; Lim, C.-Y. General considerations for sample size estimation in animal study. Korean J. Anesthesiol. 2021, 74, 23–29. [Google Scholar] [CrossRef]
- Högberg, L.D.; Heddini, A.; Cars, O. The global need for effective antibiotics: Challenges and recent advances. Trends Pharmacol. Sci. 2010, 31, 509–515. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R.H. Towards Sustainable Production of Formic Acid. ChemSusChem 2018, 11, 821–836. [Google Scholar] [CrossRef] [Green Version]
- Bampidis, V.; Azimonti, G.; de Lourdes Bastos, M.; Christensen, H.; Dusemund, B.; Kos Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Efficacy of calcium formate as a technological feed additive (preservative) for all animal species. EFSA J. 2020, 18, e06077. [Google Scholar] [CrossRef]
- Sun, Y.; Ni, A.; Jiang, Y.; Li, Y.; Huang, Z.; Shi, L.; Xu, H.; Chen, C.; Li, D.; Han, Y.; et al. Effects of Replacing In-feed Antibiotics with Synergistic Organic Acids on Growth Performance, Health, Carcass, and Immune and Oxidative Statuses of Broiler Chickens under Clostridium perfringens Type A Challenge. Avian Dis. 2020, 64, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, B.; Wang, L.; Sun, Q.; Deng, W.; Wei, F.; Ma, H.; Fu, C.; Wang, G.; Li, S. Effects of Clostridium butyricum on Growth Performance, Gut Microbiota and Intestinal Barrier Function of Broilers. Front. Microbiol. 2021, 12, 777456. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, S.Y.; Peñuela-Sierra, L.M.; Ospina, M.A. Effects of oregano (Lippia origanoides) essential oil supplementation on the performance, egg quality, and intestinal morphometry of Isa Brown laying hens. Vet. World 2021, 14, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Qi, L.; Lv, Z.; Jin, S.; Wei, X.; Shi, F. Dietary Stevioside Supplementation Alleviates Lipopolysaccharide-Induced Intestinal Mucosal Damage through Anti-Inflammatory and Antioxidant Effects in Broiler Chickens. Antioxidants 2019, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Li, A.; Wang, Y.; Song, G.; Cheng, J.; Wang, L.; Liu, K.; Min, Y.; Wang, W. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers. Animal 2022, 16, 100497. [Google Scholar] [CrossRef]
- Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef]
- Chen, X.-W.; Zhou, S.-F. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Des. Dev. Ther. 2015, 9, 2941–2946. [Google Scholar] [CrossRef] [Green Version]
- Oh, K.; Lee, O.-Y.; Park, Y.; Seo, M.W.; Lee, D.-S. IL-1β induces IL-6 production and increases invasiveness and estrogen-independent growth in a TG2-dependent manner in human breast cancer cells. BMC Cancer 2016, 16, 724. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef]
- Jndoyan, Z.T.; Bablumyan, A.Y.; Ginosyan, K.V.; Shekoyan, S.V. Correlations between indicators of interleukin-10 and interleukin-6 in patients with periodic disease. Ter. Arkhiv 2018, 90, 38–41. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Xiong, E.; Hong, R.; Lu, Q.; Ohno, H.; Wang, J.-Y. Role of the IgM Fc Receptor in Immunity and Tolerance. Front. Immunol. 2019, 10, 529. [Google Scholar] [CrossRef]
- Monteiro, R.C. Role of IgA and IgA Fc Receptors in Inflammation. J. Clin. Immunol. 2009, 30, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Lin, Y.; Fang, Z.; Che, L.; Xu, S.; Wu, D. Effects of replacing soybean meal with detoxified Jatropha curcas kernel meal in the diet on growth performance and histopathological parameters of growing pigs. Anim. Feed Sci. Technol. 2015, 204, 18–27. [Google Scholar] [CrossRef]
- Ellison, R.T., 3rd; Horsburgh, C.R., Jr.; Curd, J. Complement levels in patients with hepatic dysfunction. Dig. Dis. Sci. 1990, 35, 231–235. [Google Scholar] [CrossRef]
- Cadet, J. Oxidative degradation pathways of cellular DNA: Product formation and mechanistic insights. Free Radic. Biol. Med. 2014, 75 (Suppl. S1), S2. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Wang, B.; Cao, X.; Fu, A.; Li, Y.; Li, W. Effects of probiotic Bacillus as a substitute for antibiotics on antioxidant capacity and intestinal autophagy of piglets. AMB Express 2017, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R. The bcl-2 family of proteins. Br. Med. Bull. 1997, 53, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamkanfi, M.; Dixit, V.M. Inflammasomes: Guardians of cytosolic sanctity. Immunol. Rev. 2008, 227, 95–105. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, X.; Liu, N.; Tang, L.; Peng, C.; Chen, X. Pyroptosis: Mechanisms and diseases. Signal Transduct. Target. Ther. 2021, 6, 128. [Google Scholar] [CrossRef]
- Boaru, S.G.; Borkham-Kamphorst, E.; Van de Leur, E.; Lehnen, E.; Liedtke, C.; Weiskirchen, R. NLRP3 inflammasome expression is driven by NF-κB in cultured hepatocytes. Biochem. Biophys. Res. Commun. 2015, 458, 700–706. [Google Scholar] [CrossRef]
- Yao, J.; Du, X.; Chen, S.; Shao, Y.; Deng, K.; Jiang, M.; Liu, J.; Shen, Z.; Chen, X.; Feng, G. Rv2346c enhances mycobacterial survival within macrophages by inhibiting TNF-α and IL-6 production via the p38/miRNA/NF-κB pathway. Emerg. Microbes. Infect 2018, 7, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martine, P.; Chevriaux, A.; Derangère, V.; Apetoh, L.; Garrido, C.; Ghiringhelli, F.; Rébé, C. HSP70 is a negative regulator of NLRP3 inflammasome activation. Cell Death Dis. 2019, 10, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.-H.; Huang, C.-C.; Chang, C.-P.; Lin, M.-T.; Niu, K.-C.; Tian, Y.-F. Heat Shock Protein 70 (HSP70) Reduces Hepatic Inflammatory and Oxidative Damage in a Rat Model of Liver Ischemia/Reperfusion Injury with Hyperbaric Oxygen Preconditioning. Med. Sci. Monit. 2018, 24, 8096–8104. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, T.; Zhou, L.; Zhou, L.; Xing, G.; Chen, Y.; Xin, Y. Schisandrin B attenuates acetaminophen-induced hepatic injury through heat-shock protein 27 and 70 in mice. J. Gastroenterol. Hepatol. 2013, 29, 640–647. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Teng, X. The Antagonistic Effect of Selenium on Lead-Induced Inflammatory Factors and Heat Shock Proteins mRNA Expression in Chicken Livers. Biol. Trace Elem. Res. 2015, 171, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.S.; Amin, M.A.; Li, X.; Kalyana-Sundaram, S.; Veeneman, B.A.; Wang, L.; Ghosh, A.; Aslam, A.; Ramanand, S.G.; Rabquer, B.J.; et al. Inflammation-Induced Oxidative Stress Mediates Gene Fusion Formation in Prostate Cancer. Cell Rep. 2016, 17, 2620–2631. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liu, H.; Zhang, L.; Yang, Y.; Lin, Y.; Zhuo, Y.; Fang, Z.; Che, L.; Feng, B.; Xu, S.; et al. Maternal Dietary Fiber Composition during Gestation Induces Changes in Offspring Antioxidative Capacity, Inflammatory Response, and Gut Microbiota in a Sow Model. Int. J. Mol. Sci. 2019, 21, 31. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Li, H.; Liu, Z.; Li, C.; Chen, Y.; Jiang, C.; Yu, Y.; Tian, Z. Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol. Med. Rep. 2019, 20, 3292–3300. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef]
- Wu, W.; Xiao, Z.; An, W.; Dong, Y.; Zhang, B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS ONE 2018, 13, e0197762. [Google Scholar] [CrossRef]
- Seki, E.; Schnabl, B. Role of innate immunity and the microbiota in liver fibrosis: Crosstalk between the liver and gut. J. Physiol. 2012, 590, 447–458. [Google Scholar] [CrossRef] [PubMed]
Items | Phases | |
---|---|---|
0–21 d | 21–42 d | |
Ingredients, % | ||
Corn | 55.91 | 55.91 |
Soybean meal, 44% CP | 13.78 | 10.18 |
Wheat bran | 11.98 | 12.98 |
Corn starch residue | 7.99 | 9.98 |
Corn gluten meal | 3.99 | 3.99 |
Extruded soybean | 1.50 | 2.10 |
Limestone | 1.70 | 1.70 |
Calcium monophosphate | 1.10 | 1.10 |
L-Lysine HCl | 1.00 | 1.00 |
DL-Methionine | 0.20 | 0.20 |
L-Threonine | 0.10 | 0.10 |
Sodium chloride | 0.40 | 0.40 |
Choline | 0.10 | 0.10 |
Phytase | 0.10 | 0.10 |
Complex enzyme | 0.02 | 0.02 |
Trace mineral premix 1 | 0.10 | 0.10 |
Vitamin premix 2 | 0.02 | 0.02 |
Antioxidant | 0.02 | 0.02 |
Total | 100 | 100 |
Calculated analysis, % | ||
Metabolizable energy, MJ/kg | 12.33 | 12.50 |
Crude protein | 19.47 | 17.93 |
Crude fat | 3.45 | 3.74 |
Calcium, % | 0.94 | 0.87 |
Available phosphorus, % | 0.35 | 0.33 |
Lysine, % | 1.15 | 1.00 |
Methionine, % | 0.50 | 0.40 |
Genes | Gene Bank No. | Primer Sequences a (5’-3’) | Size, bp |
---|---|---|---|
β-actin | NM_205518.1 | F: TTGGTTTGTCAAGCAAGCGG | 100 |
R: CCCCCACATACTGGCACTTT | |||
TLR4 | NM_001030693.1 | F: AGGCACCTGAGCTTTTCCTC | 96 |
R: TACCAACGTGAGGTTGAGCC | |||
MyD88 | XM_046910878.1 | F: TGATGCCTTCATCTGCTACTG | 174 |
R: TCCCTCCGACACCTTCTTTCTA | |||
NF-κB | NM_001396038.1 | F: CAGCCCATCTATGACAACCG | 152 |
R: TCAGCCCAGAAACGAACCTC | |||
Bax | XM_422067 | F: GGTGACAGGGATCGTCACAG | 108 |
R: TAGGCCAGGAACAGGGTGAAG | |||
Blc-2 | NM_205339.2 | F: GCTGCTTTACTCTTGGGGGT | 128 |
R: CTTCAGCACTATCTCGCGGT | |||
Sirt1 | XM_046920057.1 | F: GATCAGCAAAAGGCTGGATGGT | 143 |
R: ACGAGCCGCTTTCGCTACTAC | |||
Nrf2 | XM_015289381.2 | F: CCCGCACCATGGAGATCGAG | 180 |
R: GGAGCTGCTCTTGTCTTTCCT | |||
HO-1 | NM_205344.1 | F: GTCGTTGGCAAGAAGCATCC | 106 |
R: GGGCCTTTTGGGCGATTTTC | |||
SOD1 | NM_205064.1 | F: GGCAATGTGACTGCAAAGGG | 133 |
R: CCCCTCTACCCAGGTCATCA | |||
SOD2 | NM_204211.2 | F: CTTGGTCGCAAGGCAGAAG | 120 |
R: ACGTAGGTGGCGTGGTGTT | |||
CAT | NM_001031215.1 | F: GGTTCGGTGGGGTTGTCTTT | 211 |
R: CACCAGTGGTCAAGGCATCT | |||
GPX1 | HM590226 | F: AACCAATTCGGGCACCAG | 122 |
R: CCGTTCACCTCGCACTTCTC | |||
NQO1 | NM_001277619.1 | F: AACCTCTTTCAACCACGCCA | 113 |
R: GTGAGAGCACGGCATTGAAC |
Items | Treatments a | SEM | p Value | ||
---|---|---|---|---|---|
CON | AB | PFA | |||
Body weight, g | |||||
d 0 | 47.60 | 47.63 | 47.60 | 0.59 | 0.999 |
d 21 | 775.70 | 765.39 | 789.37 | 8.60 | 0.544 |
d 42 | 2171.33 | 2234.93 | 2252.67 | 33.81 | 0.604 |
Average daily feed intake, g/d | |||||
d 0–21 | 57.32 | 57.33 | 58.37 | 0.60 | 0.723 |
d 21–42 | 142.12 | 137.91 | 140.26 | 2.84 | 0.835 |
d 0–42 | 99.72 | 97.62 | 99.32 | 1.56 | 0.846 |
Average daily gain, g/d | |||||
d 0–21 | 34.67 | 34.18 | 35.32 | 0.41 | 0.549 |
d 21–42 | 66.46 | 69.98 | 69.68 | 1.50 | 0.590 |
d 0–42 | 50.57 | 52.08 | 52.50 | 0.81 | 0.610 |
Feed-to-gain ratio | |||||
d 0–21 | 1.66 | 1.68 | 1.65 | 0.01 | 0.558 |
d 21–42 | 2.14 a | 1.97 b | 2.01 b | 0.02 | 0.036 |
d 0–42 | 1.90 | 1.83 | 1.83 | 0.01 | 0.058 |
Items, % | Treatments a | SEM | p Value | ||
---|---|---|---|---|---|
CON | AB | PFA | |||
Eviscerated yield percentage | 73.68 | 71.61 | 72.46 | 1.44 | 0.399 |
Abdominal fat percentage | 1.26 | 1.18 | 1.36 | 0.07 | 0.221 |
Breast muscle percentage | 23.02 b | 26.89 a | 22.88 b | 0.92 | 0.014 |
Thigh muscle percentage | 16.71 | 18.06 | 19.24 | 0.39 | 0.310 |
Items | Treatments a | SEM | p Value | ||
---|---|---|---|---|---|
CON | AB | PFA | |||
TP, g/L | 28.55 | 26.42 | 31.22 | 1.63 | 0.499 |
ALB, g/L | 7.55 | 6.63 | 7.57 | 0.42 | 0.594 |
HDL, mmol/L | 1.50 | 1.41 | 1.67 | 0.06 | 0.205 |
LDL, mmol/L | 0.46 | 0.48 | 0.61 | 0.05 | 0.430 |
TCHO, mmol/L | 2.81 | 2.49 | 3.08 | 0.12 | 0.158 |
TG, mmol/L | 0.56 | 0.40 | 0.47 | 0.05 | 0.439 |
GLU, mmol/L | 11.12 | 10.52 | 11.60 | 0.49 | 0.673 |
Items | Treatments a | SEM | p Values | ||
---|---|---|---|---|---|
CON | AB | PFA | |||
Diamine oxidase, pg/mL | 144.28 a | 126.78 b | 128.57 b | 1.04 | <0.001 |
D-lactate, μg/L | 487.66 a | 452.83 b | 460.83 b | 4.02 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Niu, J.; Liu, Y.; Jiao, N.; Huang, L.; Jiang, S.; Yan, L.; Yang, W.; Li, Y. Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens. Animals 2022, 12, 2825. https://doi.org/10.3390/ani12202825
Wang Q, Niu J, Liu Y, Jiao N, Huang L, Jiang S, Yan L, Yang W, Li Y. Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens. Animals. 2022; 12(20):2825. https://doi.org/10.3390/ani12202825
Chicago/Turabian StyleWang, Qinjin, Jiaxing Niu, Yang Liu, Ning Jiao, Libo Huang, Shuzhen Jiang, Lei Yan, Weiren Yang, and Yang Li. 2022. "Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens" Animals 12, no. 20: 2825. https://doi.org/10.3390/ani12202825
APA StyleWang, Q., Niu, J., Liu, Y., Jiao, N., Huang, L., Jiang, S., Yan, L., Yang, W., & Li, Y. (2022). Supplementation of Paraformic Acid as a Substitute for Antibiotics in the Diet Improves Growth Performance and Liver Health in Broiler Chickens. Animals, 12(20), 2825. https://doi.org/10.3390/ani12202825