Untargeted Metabolomics Profiling Reveals Beneficial Changes in Milk of Sows Supplemented with Fermented Compound Chinese Medicine Feed Additive
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Feeding
2.2. Sample Collection and Preparation
2.3. Analysis of Active Ingredients Using UHPLC-QE-MS Based Untargeted Chinmedomics
2.4. Identification of Differential Metabolites Using UHPLC-QE-MS Based Conventional Untargeted Metabolomics
3. Results
3.1. Differential Metabolites in Colostrum between Experimental and Control Groups Based on Chinmedomics
3.2. Differential Metabolites in Mature Milk between Experimental and Control Groups Based on Chinmedomics
3.3. Differential Metabolites between Colostrum and Mature Milk of Experimental Group Based on Chinmedomics
3.4. Differential Metabolites between Colostrum and Mature Milk of Control Group Based on Chinmedomics
3.5. Differential Metabolites in Colostrum between Experimental and Control Groups Based on Conventional Untargeted Metabolomics
3.6. Differential Metabolites in Mature Milk between Experimental and Control Groups Based on Conventional Untargeted Metabolomics
3.7. Differential Metabolites between Colostrum and Mature Milk of Experimental Group Based on Conventional Untargeted Metabolomics
3.8. Differential Metabolites between Colostrum and Mature Milk of Control Group Based on Conventional Untargeted Metabolomics
3.9. Metabolic Pathways Enrichment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curtasu, M.V.; Theil, P.K.; Hedemann, M.S. Metabolomic profiles of colostrum and milk from lactating sows. J. Anim. Sci. 2016, 94, 272–275. [Google Scholar] [CrossRef]
- Picone, G.; Zappaterra, M.; Luise, D.; Trimigno, A.; Capozzi, F.; Motta, V.; Davoli, R.; Costa, L.N.; Bosi, P.; Trevisi, P. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets’ survival and litter growth rates. J. Anim. Sci. Biotechno. 2018, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Laforest-Lapointe, I.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; Sears, M.R.; Subbarao, P.; Sycuro, L.K.; Azad, M.B.; Arrieta, M.C. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes 2021, 13, 1857513. [Google Scholar] [CrossRef]
- Fehr, K.; Moossavi, S.; Sbihi, H.; Boutin, R.C.T.; Bode, L.; Robertson, B.; Yonemitsu, C.; Field, C.J.; Becker, A.B.; Mandhane, P.J.; et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: The child cohort study. Cell Host Microbe 2020, 28, 285–297. [Google Scholar] [CrossRef]
- Nuntapaitoonab, M.; Juthamaneea, P.; Theilc, P.K.; Tummarukab, P. Impact of sow parity on yield and composition of colostrum and milk in Danish Landrace × Yorkshire crossbred sows. Prev. Vet. Med. 2020, 81, 105085. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Agazzi, A.; Bontempo, V.; Invernizzi, G.; Panseri, S.; Sauerwein, H.; Eckersall, P.D.; Burchmore, R.; Savoini, G. Effects of low ω6:ω3 ratio in sow diet and seaweed supplement in piglet diet on performance, colostrum and milk fatty acid profiles, and oxidative status. Animals 2020, 10, 2049. [Google Scholar] [CrossRef]
- Wang, C.; Wei, S.Y.; Liu, B.J.; Wang, F.Q.; Lu, Z.Q.; Jin, M.L.; Wang, Y.Z. Maternal consumption of a fermented diet protects offspring against intestinal inflammation by regulating the gut microbiota. Gut Microbes 2022, 14, e2057779. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Scano, P.; Murgia, A.; Demuru, M.; Consonni, R.; Caboni, P. Metabolite profiles of formula milk compared to breast milk. Food Res. Int. 2016, 87, 76–82. [Google Scholar] [CrossRef]
- Sindi, A.S.; Geddes, D.T.; Wlodek, M.E.; Muhlhausler, B.S.; Payne, M.S.; Stinson, L.F. Can we modulate the breastfed infant gut microbiota through maternal diet? FEMS Microbiol. Rev. 2021, 45, fuab011. [Google Scholar] [CrossRef]
- Rocchetti, G.; Gallo, A.; Nocetti, M.; Lucini, L.; Masoero, F. Milk metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to discriminate different cows feeding regimens. Food Res. Int. 2020, 134, 109279. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Focant, M.; Froidmont, E.; Archambeau, Q.; Dang Van, Q.C.; Larondelle, Y. The effect of oak tannin (Quercus robur) and hops (Humulus lupulus) on dietary nitrogen efficiency, methane emission, and milk fatty acid composition of dairy cows fed a low-protein diet including linseed. J. Dairy Sci. 2019, 102, 1144–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Tu, Y.; Zhao, S.P.; Hao, Y.H.; Liu, J.X.; Liu, F.H.; Xiong, B.H.; Jiang, L.S. Effect of tea saponins on milk performance, milk fatty acids, and immune function in dairy cow. J. Dairy Sci. 2017, 100, 8043–8052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnzon, C.F.; Dahlberg, J.; Gustafson, A.M.; Waern, I.; Moazzami, A.A.; Östensson, K.; Pejler, G. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: A kinetic approach. Front. Immunol. 2018, 9, 1487. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.H.; Guo, J.J.; Sun, X.S.; Li, N.; Yang, X.Y.; Gao, Y.H.; Qiu, D.R.; Li, X.M.; Wang, Y.N.; Feng, M.; et al. Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. J. Anim. Sci. 2018, 96, 4444–4457. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Z.Q.; Tu, Y.; Si, B.W.; Liu, Y.L.; Yang, L.; Luo, H.L.; Yu, Z. Untargeted metabolomic investigate milk and ruminal fluid of Holstein cows supplemented with Perilla frutescens leaf. Food res. Int. 2021, 140, 110017. [Google Scholar] [CrossRef]
- Jiang, X.J.; Lin, S.; Lin, Y.; Fang, Z.F.; Xu, S.Y.; Feng, B.; Zhuo, Y.; Li, J.Y.; Che, L.Q.; Jiang, X.M.; et al. Effects of silymarin supplementation during transition and lactation on reproductive performance, milk composition and haematological parameters in sows. J. Anim. Physiol. An. N. 2020, 104, 1896–1903. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef]
- Hussain, I.; Khan, A.U.; Ullah, R.; Alsaid, M.S.; Salman, S.; Iftikhar, S.; Marwat, G.A.; Afridi, M.S.; Jan, S.; Adnan, M.; et al. Chemical composition, antioxidant and antibacterial potential of essential oil of medicinal plant Isodon rugosus. J. Essent. Oil Bear. Plants 2018, 20, 1607–1613. [Google Scholar] [CrossRef]
- Tiwari, R.; Latheef, S.K.; Ahmed, I.; Iqbal, H.M.N.; Bule, M.H.; Dhama, K.; Samad, H.A.; Karthik, K.; Alagawany, M.; El-Hack, M.E.A.; et al. Herbal immunomodulators—A remedial panacea for designing and developing effective drugs and medicines: Current scenario and future prospects. Curr. Drug Metab. 2018, 19, 264–301. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.J.; Huang, H.L.; Wu, H.D.; Cao, Y.D.; Lu, W.; He, Y.Y. Preparation, antibacterial potential and antibacterial components of fermented compound Chinese medicine feed additives. Front. Vet. Sci. 2022, 9, 808846. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Zhang, A.H.; Sun, H. Future perspectives of Chinese medical formulae: Chinmedomics as an effector. OMICS 2012, 16, 414–421. [Google Scholar] [CrossRef]
- Zhang, A.H.; Yu, J.B.; Sun, H.; Kong, L.; Wang, X.Q.; Zhang, Q.Y.; Wang, X.J. Identifying quality-markers from Shengmai San protects against transgenic mouse model of Alzheimer’s disease using chinmedomics approach. Phytomedicine 2018, 45, 84–92. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. The Human Serum Metabolome Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef] [PubMed]
- Kouadio, J.H.; Mobio, T.A.; Baudrimont, I.; Moukha, S.; Dano, S.D.; Creppy, E.E. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology 2005, 213, 56–65. [Google Scholar] [CrossRef]
- Diesing, A.K.; Nossol, C.; Panther, P.; Walk, N.; Post, A.; Kluess, J.; Kreutzmann, K.; Dänickec, S.; Rothkötter, H.J.; Kahlert, S. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol. Lett. 2011, 200, 8–18. [Google Scholar] [CrossRef]
- Ventura, A.K.; Beauchamp, G.K.; Mennella, J.A. Infant regulation of intake: The effect of free glutamate content in infant formulas. Am. J. Clin. Nutr. 2012, 95, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Tochitani, S. Functions of maternally-derived taurine in fetal and neonatal brain development. Adv. Exp. Med. Biol. 2017, 975, 17–25. [Google Scholar]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef] [PubMed]
- Soromou, L.W.; Zhang, Y.; Cui, Y.; Wei, M.; Chen, N.; Yang, X.; Huo, M.; Baldé, A.; Guan, S.; Deng, X. Subinhibitory concentrations of pinocembrin exert anti-Staphylococcus aureus activity by reducing alpha-toxin expression. J. Appl. Microbiol. 2013, 115, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Moulai-Hacene, F.; Boufadi, M.Y.; Keddari, S.; Homrani, A. Chemical composition and antimicrobial properties of elettaria cardamomum extract. Pharmacogn. J. 2020, 12, 1058–1063. [Google Scholar] [CrossRef]
- Peng, F.; Wan, F.; Xiong, L.; Peng, C.; Dai, M.; Chen, J.P. In vitro and in vivo antibacterial activity of pogostone. Chin. Med. J. 2014, 127, 4001–4005. [Google Scholar]
- Udono, H.; Kumanogoh, A. Introduction: Special issue-immunometabolism. Int. Immunol. 2020, 32, 433–434. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Kartal, M.; Kurucu, S.; Choudary, M.I. Antifungal activities of different extracts and echimidine-N-oxide from Symphytum sylvaticum Boiss. subsp. sepulcrale (Boiss. & Bal.) Greuter & Burdet var. sepulcrale. Turk. J. Med. Sci. 2001, 31, 487–492. [Google Scholar]
- Stevens, C.; Millar, T.; Clinch, J.; Kanczler, J.; Bodamyali, T.; Blake, D. Antibacterial properties of xanthine oxidase in human milk. The Lancet 2000, 356, 829–830. [Google Scholar] [CrossRef]
- Batey, R.T. Structure and mechanism of purine-binding riboswitches. Q. Rev. Biophys. 2012, 45, 345–381. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.H.; Le Roux, A.; Boyapelly, K.; Lamontagne, A.M.; Archambault, M.A.; Picard-Jean, F.; Lalonde-Seguin, D.; St-Pierre, E.; Najmanovich, R.J.; Fortier, L.C.; et al. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile. Eur. J. Med. Chem. 2018, 143, 755–768. [Google Scholar] [CrossRef]
- Xiao, Y.; Louwies, T.; Smith-Edwards, K.; Beyder, A.; Linden, D.; Farrugia, G.; Kashyap, P. Bacteria-derived hypoxanthine accelerates gastrointestinal transimit. FASEB J. 2022, 36, 1–3. [Google Scholar] [CrossRef]
- Sandle, G.I. Infective and inflammatory diarrhoea: Mechanisms and opportunities for novel therapies. Curr. Opin. Pharmacol. 2011, 11, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Ur Rasool, J.; Sawhney, G.; Shaikh, M.; Nalli, Y.; Madishetti, S.; Ahmed, Z.; Ali, A. Site selective synthesis and anti-inflammatory evaluation of Spiro-isoxazoline stitched adducts of arteannuin B. Bioorg. Chem. 2021, 117, 105408. [Google Scholar] [CrossRef] [PubMed]
- Fila, M.; Chojnacki, J.; Pawlowska, E.; Szczepanska, J.; Chojnacki, C.; Blasiak, J. Kynurenine pathway of tryptophan metabolism in migraine and functional gastrointestinal disorders. Int. J. Mol. Sci. 2021, 22, 10134. [Google Scholar] [CrossRef]
- Szulc-Kielbik, I.; Kielbik, M.; Klink, M. Ferulic acid but not alpha-lipoic acid effectively protects THP-1-derived macrophages from oxidant and pro-inflammatory response to LPS. Immunopharm. Immunot. 2017, 39, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Wang, R.X.; Goldberg, M.S.; Clifford, G.P.; Kao, D.J.; Colgan, S.P. Microbiota-sourced purines support wound healing and mucous barrier function. iScience 2020, 23, 101226. [Google Scholar] [CrossRef] [PubMed]
- Li, D.T.; Feng, Y.; Tian, M.L.; Ji, J.F.; Hu, X.S.; Chen, F. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation. Microbiome 2021, 9, 83. [Google Scholar] [CrossRef]
- Mager, L.F.; Burkhard, R.; Pett, N.; Cooke, N.C.A.; Brown, K.; Ramay, H.; Paik, S.; John Stagg, J.; Groves, R.A.; Gallo, M.; et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 2020, 369, 1481–1489. [Google Scholar] [CrossRef]
- Bellaver, B.; Souza, D.G.; Bobermin, L.D.; Goncalves, C.A.; Souza, D.O.; Quincozes-Santos, A. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinerg. Signal. 2015, 11, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.C.W.; Chen, Y.S.; Chen, C.H.; Chen, Y.H.; Jeng, K.C.G. Protective effect of 1,2,4-benzenetriol on LPS-induced NO production by BV2 microglial cells. J. Biomed. Sci. 2006, 13, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Haskó, G.; Kuhel, D.G.; Nemeth, Z.H.; Mabley, J.G.; Stachlewitz, R.F.; Virag, L.; Lohinai, Z.; Southan, G.J.; Salzman, A.L.; Szabo, C. Inosine inhibits inflammatory cytokine production by a posttranscriptional mechanism and protects against endotoxin-induced shock. J. Immunol. 2000, 164, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, F.P.; Macedo-Júnior, S.J.; Lapa-Costa, F.R.; Cezar-dos-Santos, F.; Santos, A.R.S. Inosine as a tool to understand and treat central nervous system disorders: A neglected actor? Front. Neurosci. 2021, 15, 703783. [Google Scholar] [CrossRef] [PubMed]
- Haskó, G.; Sitkovsky, M.V.; Szabó, C. Immunomodulatory and neuroprotective effects of inosine. Trends in Pharmacol. Sci. 2004, 25, 152–157. [Google Scholar] [CrossRef]
- De Bruyn, F.; Van Brempt, M.; Maertens, J.; Van Bellegem, W.; Duchi, D.; De Mey, M. Metabolic engineering of Escherichia coli into a versatile glycosylation platform: Production of bio-active quercetin glycosides. Microbial Cell Fact. 2015, 14, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, L.; Gutiérrez-del-Río, I.; Entrialgo-Cadierno, R.; Villar, C.J.; Lombó, F. Denovo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE 2018, 13, e0207278. [Google Scholar] [CrossRef] [Green Version]
- Choi, P.; Rhayat, L.; Pinloche, E.; Devillard, E.; De Paepe, E.; Vanhaecke, L.; Haesebrouck, F.; Ducatelle, R.; Immerseel, F.V.; Goossens, E. Bacillus subtilis 29784 as a feed additive for broilers shifts the intestinal microbial composition and supports the production of hypoxanthine and nicotinic acid. Animals 2021, 11, 1335. [Google Scholar] [CrossRef] [PubMed]
- Varadaiah, Y.G.C.; Sivanesan, S.; Nayak, S.B.; Thirumalarao, K.R. Purine metabolites can indicate diabetes progression. Arch. Physiol. Biochem. 2019, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Vicente, R.L.; Spina, L.; Gómez, J.P.L.; Dejean, S.; Franois, J.M. Trehalose-6-phosphate promotes fermentation and glucose repression in Saccharomyces cerevisiae. Microb. Cell 2018, 5, 444–459. [Google Scholar] [CrossRef]
- Hu, K.; Liao, X.X.; Wu, X.Y.; Wang, R.; Hu, Z.W.; Liu, S.Y.; He, W.F.; Zhou, J.J. Effects of the lipid metabolites and the gut microbiota in ApoE−/− mice on atherosclerosis co-depression from the microbiota-gut-brain axis. Front. Mol. Biosci. 2022, 9, 786492. [Google Scholar] [CrossRef]
- Li, X.; Xing, B.; Liu, X.; Jiang, X.W.; Lu, H.Y.; Xu, Z.H.; Yang, Y.; Wu, Q.; Yao, D.; Zhang, Y.S.; et al. Network pharmacology-based research uncovers cold resistance and thermogenesis mechanism of Cinnamomum cassia. Fitoterapia 2021, 149, 104824. [Google Scholar]
- Contreras, C.; Nogueiras, R.; Diéguez, C.; Medina-Gómez, G.; López, M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol. Cell Endocrinol. 2016, 438, 107–115. [Google Scholar] [CrossRef] [PubMed]
Items | Content |
---|---|
Ingredients | |
Corn | 60.00 |
Wheat bran | 15.00 |
Soybean meal | 15.00 |
Rapeseed meal | 4.00 |
Fish meal | 2.00 |
Premix a | 4.00 |
Total | 100.00 |
Nutrient levels b | |
Metabolizable energy (MJ/kg) | 11.91 |
Crude protein | 17.35 |
Ether extract | 4.73 |
Crude fiber | 4.12 |
Calcium | 0.83 |
Total phosphorus | 0.65 |
Lysine | 0.94 |
Methionine + Cystine | 0.72 |
Threonine | 0.53 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Colostrum Based on Chinmedomics(×10−3) | VIP | p-Value | Fold Change (A/B) | |
---|---|---|---|---|---|---|
Experimental Group (A) | Control Group (B) | |||||
Negative ion model | ||||||
Flavonoids | ||||||
Wogonin | 0.996 | 2.744 | 0.035 | 1.322 | 0.363 | 78.400 |
Quercetin-3-O-galactoside | 0.969 | 0.286 | 0.035 | 1.552 | 0.232 | 8.171 |
Quercetin | 0.854 | 0.257 | 0.035 | 3.444 | 0.039 | 7.343 |
Isorhamnetin | 0.999 | 0.416 | 0.063 | 1.058 | 0.212 | 6.603 |
Mulberrin | 0.843 | 0.203 | 0.035 | 1.868 | 0.367 | 5.800 |
Pinocembrin | 0.855 | 2.284 | 0.034 | 2.188 | 0.033 | 67.176 |
Daidzein | 0.986 | 19.279 | 9.152 | 1.137 | 0.518 | 2.106 |
Corylin | 0.901 | 0.750 | 0.539 | 2.012 | 0.627 | 1.392 |
Phenols | ||||||
4-Nitrophenol | 0.827 | 0.097 | 0.035 | 1.778 | 0.374 | 2.771 |
P-Anisic acid | 0.910 | 5.020 | 0.741 | 1.540 | 0.266 | 6.775 |
6-Gingerol | 0.933 | 837.143 | 643.369 | 1.927 | 0.349 | 1.301 |
Alkaloids | ||||||
Thymidine | 0.865 | 27.459 | 26.151 | 1.853 | 0.872 | 1.050 |
Phenylpropanoids | ||||||
Chlorogenic acid | 0.834 | 0.490 | 0.034 | 2.532 | 0.008 | 14.412 |
Methyl chlorogenate | 0.835 | 8.172 | 6.547 | 1.483 | 0.355 | 1.248 |
Terpenoids | ||||||
alpha-Hederin | 0.963 | 0.347 | 0.035 | 1.612 | 0.183 | 9.914 |
Fatty Acyls | ||||||
Citraconic acid | 0.982 | 47.162 | 0.035 | 1.321 | 0.363 | 1347.486 |
Methyl hexadecanoate | 0.987 | 74.305 | 19.187 | 1.832 | 0.359 | 3.873 |
Fatty acids | ||||||
Methyl succinic acid | 0.958 | 21.930 | 0.033 | 2.686 | 0.008 | 664.545 |
Pimelic acid | 0.809 | 11.711 | 6.641 | 1.799 | 0.270 | 1.763 |
Organoheterocyclic compounds | ||||||
L-Tryptophan | 0.851 | 578.724 | 232.278 | 1.135 | 0.002 | 2.492 |
Organic acids and derivatives | ||||||
Threonic acid | 0.979 | 30.264 | 17.162 | 1.525 | 0.647 | 1.763 |
Citrate | 0.998 | 5601.115 | 5086.045 | 1.883 | 0.900 | 1.101 |
Organic oxygen compounds | ||||||
Melibiose | 1.000 | 133.084 | 0.035 | 2.558 | 0.099 | 3802.400 |
Amino acid derivatives | ||||||
Aspartate | 0.890 | 18.378 | 0.035 | 2.036 | 0.274 | 525.086 |
Carbohydrates and derivatives | ||||||
Glyceric acid | 0.984 | 3.274 | 0.035 | 1.975 | 0.363 | 93.543 |
Aliphatics | ||||||
Octyl gallate | 0.888 | 0.527 | 0.035 | 1.278 | 0.361 | 15.057 |
Positive ion model | ||||||
Alkaloids | ||||||
Adenosine | 0.883 | 36.193 | 6.189 | 1.090 | 0.015 | 5.848 |
L-Carnitine | 0.959 | 45.650 | 23.009 | 2.491 | 0.236 | 1.984 |
Guanine | 1.000 | 111.347 | 33.426 | 2.084 | 0.031 | 3.331 |
Guanosine | 0.997 | 49.249 | 32.999 | 2.086 | 0.208 | 1.492 |
Trigonelline HCl | 0.996 | 3.130 | 2.334 | 1.578 | 0.275 | 1.341 |
Jatrorrhizine | 0.941 | 2.599 | 2.361 | 1.004 | 0.508 | 1.101 |
Palmatine | 0.984 | 8.683 | 8.067 | 1.502 | 0.231 | 1.076 |
Phenols | ||||||
Bergenin | 0.936 | 2.310 | 1.654 | 1.296 | 0.429 | 1.397 |
Gallic acid | 0.908 | 15.722 | 14.697 | 1.066 | 0.946 | 1.070 |
Terpenoids | ||||||
Resibufogenin | 0.997 | 1.661 | 0.003 | 1.402 | 0.363 | 553.667 |
Estradiol | 0.835 | 0.121 | 0.003 | 1.387 | 0.364 | 40.333 |
Lovastatin | 0.993 | 0.560 | 0.444 | 1.285 | 0.593 | 1.261 |
Neoandrogsinapixrapholide | 0.947 | 4.384 | 3.605 | 2.065 | 0.153 | 1.216 |
Lindenenol | 0.834 | 1.834 | 1.583 | 2.209 | 0.100 | 1.159 |
Curcumenol | 0.870 | 6.618 | 5.974 | 1.899 | 0.153 | 1.108 |
Arteannuin | 0.956 | 1.103 | 0.941 | 2.778 | 0.049 | 1.172 |
Organooxygen compounds | ||||||
Pogostone | 0.808 | 1.057 | 0.013 | 3.245 | 0.242 | 81.308 |
Amino acid derivatives | ||||||
Isoleucine | 0.881 | 3.730 | 0.003 | 1.404 | 0.363 | 1243.333 |
Aspartic acid | 0.957 | 0.596 | 0.003 | 2.313 | 0.178 | 198.667 |
Lysine | 0.856 | 1.507 | 0.130 | 1.270 | 0.216 | 11.592 |
L-Isoleucine | 0.953 | 913.081 | 209.378 | 1.402 | 0.315 | 4.361 |
Arginine | 0.941 | 5.951 | 2.321 | 1.134 | 0.328 | 2.564 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Mature milk Based on Chinmedomics (×10−3) | VIP | p-Value | Fold Change (C/D) | |
---|---|---|---|---|---|---|
Experimental group (C) | Control group (D) | |||||
Negative ion model | ||||||
Phenols | ||||||
Gallic acid | 0.990 | 3.626 | 0.043 | 1.643 | 0.349 | 84.326 |
4-hydroxybenzaldehyde | 1.000 | 1.673 | 0.043 | 1.056 | 0.363 | 38.907 |
Methyl gallate | 0.993 | 1.087 | 0.043 | 1.202 | 0.363 | 25.280 |
Orcinol | 0.928 | 0.212 | 0.043 | 1.208 | 0.362 | 4.930 |
Phenylpropanoids | ||||||
Danshensu | 0.812 | 0.991 | 0.043 | 1.202 | 0.363 | 23.047 |
rosmarinic acid | 1.000 | 0.318 | 0.043 | 1.206 | 0.362 | 7.395 |
Sinapic acid | 0.979 | 0.193 | 0.043 | 1.945 | 0.164 | 4.488 |
Ferulic acid | 0.977 | 6.375 | 2.057 | 2.092 | 0.020 | 3.099 |
Xanthones | ||||||
Gentisic acid | 0.840 | 1.230 | 0.043 | 1.201 | 0.363 | 28.605 |
Sesquiterpenoids | ||||||
Abscisic acid | 0.972 | 0.283 | 0.043 | 1.081 | 0.360 | 6.581 |
Amino acid derivatives | ||||||
N-Acetyl-DL-glutamic acid | 0.908 | 0.436 | 0.043 | 1.205 | 0.363 | 10.140 |
Positive ion model | ||||||
Alkaloids | ||||||
Boldine | 0.843 | 0.124 | 0.003 | 1.220 | 0.363 | 41.333 |
Securinine | 0.824 | 0.037 | 0.003 | 1.218 | 0.363 | 12.333 |
Actidione | 0.900 | 0.022 | 0.005 | 2.188 | 0.072 | 4.400 |
Echimidine N-oxide | 0.835 | 1.010 | 0.758 | 2.126 | 0.026 | 1.333 |
Flavonoids | ||||||
Kaempferol | 0.995 | 0.007 | 0.003 | 1.106 | 0.350 | 2.333 |
Isoquercitrin | 0.822 | 0.006 | 0.003 | 1.001 | 0.342 | 2.000 |
Biochanin A | 0.977 | 3.386 | 2.587 | 1.187 | 0.263 | 1.309 |
Chalcones | ||||||
Loureirin A | 0.952 | 0.017 | 0.003 | 1.215 | 0.364 | 5.667 |
Phenylpropanoids | ||||||
Ethyl ferulate | 0.963 | 0.070 | 0.003 | 1.237 | 0.363 | 23.333 |
p-Coumaric acid | 0.976 | 0.137 | 0.039 | 1.137 | 0.133 | 3.513 |
Eudesmin | 0.837 | 0.970 | 0.451 | 1.354 | 0.552 | 2.151 |
Terpenoids | ||||||
Grosheimin | 0.833 | 0.017 | 0.003 | 1.254 | 0.360 | 5.667 |
Reynosin | 0.855 | 0.012 | 0.003 | 1.078 | 0.358 | 4.000 |
Estradiol | 0.835 | 0.312 | 0.137 | 1.068 | 0.593 | 2.277 |
Andrographolide | 0.932 | 0.025 | 0.014 | 1.359 | 0.307 | 1.786 |
Sesquiterpenoids | ||||||
Germacrone | 0.947 | 3.949 | 2.849 | 1.241 | 0.287 | 1.386 |
Organooxygen compounds | ||||||
Pogostone | 0.807 | 0.487 | 0.003 | 3.311 | 0.021 | 162.333 |
Fatty acids | ||||||
Chaulmoogric Acid | 0.920 | 1.686 | 1.351 | 1.856 | 0.549 | 1.248 |
Amino acid derivatives | ||||||
Isoleucine | 0.881 | 1.588 | 0.003 | 1.222 | 0.363 | 529.333 |
Kynurenine | 0.928 | 1.038 | 0.433 | 2.093 | 0.012 | 2.397 |
Carboxylic acids and derivatives | ||||||
L-Tyrosine | 0.914 | 1.171 | 0.003 | 1.384 | 0.360 | 390.333 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Experimental Group Based on Chinmedomics (×10−3) | VIP | p-Value | Fold Change (A/C) | |
---|---|---|---|---|---|---|
Colostrum (A) | Mature Milk (C) | |||||
Negative ion model | ||||||
Flavonoids | ||||||
Pinocembrin | 0.855 | 1.163 | 0.045 | 1.076 | 0.091 | 25.844 |
Positive ion model | ||||||
Phenols | ||||||
Bergenin | 0.936 | 2.310 | 0.003 | 2.621 | 0.027 | 770.000 |
Alkaloids | ||||||
3-Furfuryl 2-pyrrolecarboxylate | 0.887 | 0.806 | 0.003 | 2.364 | 0.010 | 268.667 |
Boldine | 0.843 | 11.892 | 0.124 | 2.554 | 0.052 | 95.903 |
Adenosine | 0.883 | 60.919 | 8.436 | 1.804 | 0.215 | 7.221 |
Guanosine | 0.997 | 49.249 | 12.557 | 2.397 | 0.008 | 3.922 |
Guanine | 1.000 | 0.083 | 0.0252 | 2.281 | 0.017 | 3.290 |
Nicotinamide | 0.920 | 75.339 | 26.165 | 1.407 | 0.321 | 2.879 |
Jatrorrhizine | 0.941 | 2.599 | 2.011 | 1.220 | 0.137 | 1.292 |
Palmatine | 0.984 | 8.683 | 6.861 | 2.029 | 0.006 | 1.266 |
Terpenoids | ||||||
Beta-Caryophyllene alcohol | 0.872 | 46.866 | 0.092 | 2.628 | 0.080 | 509.413 |
Cortodoxone | 0.901 | 0.210 | 0.003 | 1.013 | 0.364 | 70.000 |
Celastrol | 0.864 | 7.865 | 2.272 | 1.953 | 0.016 | 3.462 |
Lindenenol | 0.834 | 1.834 | 1.481 | 1.758 | 0.027 | 1.238 |
Artemisinin | 0.873 | 2.594 | 2.120 | 1.906 | 0.012 | 1.224 |
Curcumenol | 0.870 | 6.618 | 5.482 | 1.740 | 0.033 | 1.207 |
Aucubin | 0.882 | 0.232 | 0.003 | 2.652 | 0.020 | 77.333 |
Phenylpropanoids | ||||||
Suberosin | 0.898 | 0.878 | 0.456 | 1.947 | 0.051 | 1.925 |
Eudesmin | 0.837 | 1.768 | 0.970 | 1.729 | 0.412 | 1.8230 |
Coumarins and derivatives | ||||||
7-Hydroxycoumarin | 0.909 | 1.183 | 0.841 | 1.026 | 0.139 | 1.407 |
Phospholipids | ||||||
Monolinolein | 0.957 | 0.548 | 0.441 | 1.002 | 0.761 | 1.243 |
Organoheterocyclic compounds | ||||||
L-Tryptophan | 0.846 | 0.245 | 0.086 | 1.060 | 0.278 | 2.846 |
Fatty acids | ||||||
Chaulmoogric acid | 0.920 | 2.006 | 1.686 | 1.376 | 0.832 | 1.190 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Control Group Based on Chinmedomics (×10−3) | VIP | p-Value | Fold Change (B/D) | |
---|---|---|---|---|---|---|
Colostrum (B) | Mature Milk (D) | |||||
Negative Ion Model | ||||||
Organic acids and derivatives | ||||||
Threonic acid | 0.979 | 17.162 | 5.260 | 1.041 | 0.016 | 3.263 |
Positive ion model | ||||||
Phenols | ||||||
Bergenin | 0.936 | 1.654 | 0.003 | 3.086 | 0.002 | 551.333 |
Alkaloids | ||||||
Boldine | 0.843 | 7.322 | 0.003 | 3.083 | 0.016 | 2440.667 |
3-Furfuryl 2-pyrrolecarboxylate | 0.887 | 0.761 | 0.003 | 2.800 | 0.013 | 253.667 |
L-Phenylalanine | 0.980 | 2.546 | 0.364 | 1.655 | 0.137 | 6.995 |
Nicotinamide | 0.920 | 58.747 | 23.622 | 1.372 | 0.298 | 2.487 |
Adenosine | 0.883 | 19.129 | 8.003 | 1.088 | 0.200 | 2.390 |
Guanosine | 0.997 | 32.999 | 19.168 | 1.448 | 0.158 | 1.722 |
Guanine | 1.000 | 54.502 | 32.312 | 1.431 | 0.132 | 1.687 |
Echimidine N-oxide | 0.835 | 1.046 | 0.758 | 1.785 | 0.074 | 1.380 |
Terpenoids | ||||||
Beta-Caryophyllene alcohol | 0.872 | 35.370 | 0.003 | 2.340 | 0.243 | 116.733 |
Judaicin | 0.943 | 0.304 | 0.003 | 1.062 | 0.363 | 101.333 |
Cortodoxone | 0.901 | 0.065 | 0.003 | 1.047 | 0.363 | 21.667 |
Dehydrocostus lactone | 0.977 | 0.026 | 0.003 | 1.045 | 0.364 | 8.667 |
Aucubin | 0.882 | 0.360 | 0.003 | 2.476 | 0.033 | 120.000 |
Celastrol | 0.864 | 8.732 | 3.345 | 2.352 | 0.002 | 2.610 |
Phenylpropanoids | ||||||
Eudesmin | 0.837 | 2.262 | 0.451 | 2.562 | 0.001 | 5.016 |
Suberosin | 0.898 | 0.790 | 0.587 | 1.506 | 0.190 | 1.346 |
Coumarins and derivatives | ||||||
7-Hydroxycoumarin | 0.909 | 1.047 | 0.743 | 1.365 | 0.267 | 1.409 |
Organooxygen compounds | ||||||
Pogostone | 0.808 | 0.013 | 0.003 | 1.043 | 0.364 | 4.333 |
Benzene and substituted derivatives | ||||||
Phenethylacetate | 0.868 | 0.022 | 0.003 | 1.651 | 0.182 | 7.333 |
Amino acid derivatives | ||||||
Kynurenine | 0.928 | 1.325 | 0.433 | 1.491 | 0.246 | 3.060 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Colostrum Based on Conventional Untargeted Metabolomics | VIP | p-Value | Fold Change (A/B) | |
---|---|---|---|---|---|---|
Experimental Group (A) | Control Group (B) | |||||
Negative ion model | ||||||
Organic acids and derivatives | ||||||
L-Phenylalanine | 0.959 | 1.712 | 0.393 | 1.001 | 0.252 | 4.356 |
Succinic acid | 0.965 | 0.710 | 0.301 | 1.220 | 0.322 | 2.359 |
Maleic acid | 0.995 | 0.518 | 0.372 | 1.203 | 0.431 | 1.392 |
Citric acid | 0.989 | 94.808 | 71.197 | 1.490 | 0.118 | 1.332 |
Glycine | 0.994 | 0.043 | 0.032 | 1.295 | 0.203 | 1.344 |
Malonic acid | 0.957 | 2.430 | 2.094 | 1.069 | 0.319 | 1.160 |
Pyruvic acid | 0.987 | 3.497 | 3.047 | 1.106 | 0.466 | 1.148 |
Creatinine | 0.805 | 2.702 | 2.420 | 1.145 | 0.556 | 1.117 |
Acrylic acid | 0.994 | 1.519 | 1.386 | 1.057 | 0.466 | 1.096 |
Organoheterocyclic compounds | ||||||
2-Hydroxyxanthone | 0.970 | 0.035 | 0.029 | 1.543 | 0.144 | 1.207 |
Quinolinic acid | 0.913 | 0.493 | 0.404 | 1.039 | 0.212 | 1.220 |
Pyrrole-2-carboxylic acid | 0.997 | 0.764 | 0.636 | 1.151 | 0.452 | 1.201 |
Guanine | 0.985 | 0.846 | 0.358 | 1.264 | 0.163 | 2.363 |
Organooxygen compounds | ||||||
D-Ribulose 5-phosphate | 0.903 | 1.045 | 0.814 | 1.116 | 0.242 | 1.284 |
Organic oxygen compounds | ||||||
N-Acetylneuraminic acid | 0.988 | 0.762 | 0.409 | 1.492 | 0.209 | 1.863 |
Myo-Inositol | 0.911 | 20.558 | 16.271 | 1.208 | 0.229 | 1.263 |
6-Phosphogluconic acid | 0.841 | 0.547 | 0.242 | 1.328 | 0.136 | 2.260 |
Nucleosides, nucleotides, and analogues | ||||||
Uridine diphosphate glucuronic acid | 0.842 | 2.257 | 1.036 | 1.209 | 0.258 | 2.179 |
Uridine diphosphategalactose | 0.882 | 4.969 | 2.321 | 1.372 | 0.107 | 2.141 |
Uridine 5′-diphosphate | 0.903 | 0.423 | 0.204 | 1.575 | 0.158 | 2.074 |
Inosine | 0.962 | 2.588 | 1.361 | 2.424 | 0.017 | 1.902 |
Guanosine | 0.944 | 1.024 | 0.581 | 1.912 | 0.043 | 1.762 |
Uridine 5′-monophosphate | 0.867 | 32.048 | 20.522 | 1.047 | 0.260 | 1.562 |
2-Methylguanosine | 0.865 | 0.034 | 0.024 | 1.654 | 0.143 | 1.417 |
S-Adenosylhomocysteine | 0.836 | 0.037 | 0.027 | 1.951 | 0.121 | 1.370 |
Lipids and lipid-like molecules | ||||||
Tetradecanedioic acid | 0.977 | 0.019 | 0.013 | 1.298 | 0.216 | 1.462 |
9-Decenoic acid | 0.998 | 0.031 | 0.018 | 1.991 | 0.104 | 1.722 |
12-Methyltridecanoic acid | 0.985 | 0.507 | 0.294 | 1.562 | 0.139 | 1.724 |
Heptanoic acid | 0.856 | 0.171 | 0.134 | 1.638 | 0.137 | 1.276 |
FA(18:2) | 1.000 | 0.817 | 0.216 | 1.042 | 0.373 | 3.782 |
LPC(16:0) | 0.891 | 0.390 | 0.106 | 1.086 | 0.267 | 3.679 |
LPC(18:1) | 0.850 | 0.234 | 0.082 | 1.829 | 0.180 | 2.854 |
Dodecanedioic acid | 0.912 | 0.025 | 0.012 | 1.579 | 0.158 | 2.083 |
Benzenoids | ||||||
benzene-1,2,4-triol | 0.928 | 0.362 | 0.219 | 2.241 | 0.037 | 1.653 |
Butylparaben | 0.979 | 0.108 | 0.086 | 1.550 | 0.125 | 1.256 |
4-Nitrophenol | 1.000 | 0.410 | 0.343 | 1.811 | 0.105 | 1.195 |
N-acetyl-5-aminosalicylic acid | 0.891 | 0.076 | 0.024 | 1.423 | 0.123 | 3.167 |
Positive ion model | ||||||
Organic acids and derivatives | ||||||
Phenylalanylproline | 0.969 | 0.112 | 0.011 | 1.460 | 0.186 | 10.182 |
ACar(18:1) | 0.883 | 0.684 | 0.075 | 1.227 | 0.348 | 9.120 |
ACar(14:0) | 0.959 | 0.129 | 0.014 | 1.282 | 0.331 | 9.214 |
ACar(6:1) | 0.997 | 0.158 | 0.052 | 1.918 | 0.091 | 3.038 |
ACar(6:0) | 0.993 | 1.050 | 0.641 | 1.267 | 0.224 | 1.638 |
L-Glutamine | 0.995 | 0.108 | 0.014 | 1.389 | 0.247 | 7.714 |
1-Methylhistidine | 0.943 | 0.091 | 0.014 | 1.463 | 0.241 | 6.500 |
ACar(16:1) | 0.960 | 0.087 | 0.014 | 1.402 | 0.311 | 6.214 |
ACar(8:0) | 0.979 | 0.032 | 0.006 | 2.478 | 0.091 | 5.333 |
L-Tryptophan | 0.978 | 0.377 | 0.089 | 1.015 | 0.285 | 4.236 |
Pipecolic acid | 0.983 | 0.180 | 0.172 | 1.018 | 0.523 | 1.047 |
Elenaic acid | 0.871 | 0.042 | 0.022 | 1.180 | 0.198 | 1.909 |
Proline betaine | 0.941 | 0.301 | 0.240 | 1.187 | 0.442 | 1.254 |
Betaine | 0.999 | 2.490 | 2.144 | 1.066 | 0.573 | 1.161 |
Palmitoylethanolamide | 0.897 | 0.309 | 0.105 | 1.342 | 0.259 | 2.943 |
Organic nitrogen compounds | ||||||
L-Carnitine | 0.996 | 0.405 | 0.231 | 1.869 | 0.178 | 1.753 |
Organic oxygen compounds | ||||||
Adenosine 2’-phosphate | 0.943 | 1.002 | 0.444 | 1.170 | 0.448 | 2.257 |
Organoheterocyclic compounds | ||||||
Pyridoxal | 0.996 | 0.143 | 0.117 | 1.432 | 0.185 | 1.222 |
Hypoxanthine | 1.000 | 1.426 | 0.907 | 2.027 | 0.035 | 1.572 |
3-Pyridinebutanoic acid | 0.973 | 1.416 | 0.331 | 1.324 | 0.267 | 4.278 |
Adenine | 0.998 | 0.081 | 0.021 | 1.825 | 0.017 | 3.857 |
Nucleosides, nucleotides, and analogues | ||||||
5′-Methylthioadenosine | 0.988 | 0.023 | 0.010 | 1.006 | 0.245 | 2.300 |
Guanosine diphosphate | 0.976 | 0.575 | 0.266 | 1.732 | 0.157 | 2.162 |
Deoxyguanosine | 1.000 | 0.098 | 0.059 | 1.534 | 0.191 | 1.661 |
Lipids and lipid-like molecules | ||||||
L-Palmitoylcarnitine | 0.957 | 1.813 | 0.121 | 1.120 | 0.344 | 14.983 |
LysoPE(20:1(11Z)/0:0) | 0.931 | 0.019 | 0.005 | 1.382 | 0.225 | 3.800 |
LysoPE(18:1(11Z)/0:0) | 0.898 | 1.032 | 0.539 | 1.981 | 0.084 | 1.915 |
LysoPE(16:1(9Z)/0:0) | 0.970 | 0.025 | 0.010 | 1.359 | 0.245 | 2.500 |
PE(14:1(9Z)/14:0) | 0.912 | 0.025 | 0.009 | 1.508 | 0.172 | 2.778 |
LPC(16:1) | 0.888 | 0.125 | 0.056 | 1.145 | 0.340 | 2.232 |
LPC(18:0) | 0.879 | 0.145 | 0.069 | 1.790 | 0.210 | 2.101 |
LPE(18:0) | 0.891 | 2.616 | 1.251 | 1.736 | 0.130 | 2.091 |
Oleamide | 0.992 | 0.814 | 0.396 | 1.027 | 0.278 | 2.056 |
Glycerol tripropanoate | 0.999 | 0.034 | 0.019 | 1.422 | 0.155 | 1.789 |
Cohibin C | 0.831 | 0.218 | 0.189 | 1.116 | 0.446 | 1.153 |
Stearoylcarnitine | 0.925 | 0.598 | 0.082 | 1.456 | 0.276 | 7.293 |
L-Acetylcarnitine | 0.929 | 14.567 | 11.410 | 1.109 | 0.337 | 1.277 |
Benzenoids | ||||||
Dibutyl phthalate | 0.998 | 0.094 | 0.089 | 1.288 | 0.287 | 1.056 |
p-Aminobenzoic acid | 0.983 | 0.126 | 0.051 | 1.237 | 0.367 | 2.471 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Mature Milk Based on Conventional Untargeted Metabolomics | VIP | p-Value | Fold Change (C/D) | |
---|---|---|---|---|---|---|
Experimental Group (C) | Control Group (D) | |||||
Negative ion model | ||||||
Organic acids and derivatives | ||||||
Glycolic acid | 1.000 | 2.025 | 1.768 | 1.167 | 0.322 | 1.145 |
3-Sialyl-N-acetyllactosamine | 0.895 | 0.081 | 0.016 | 1.930 | 0.337 | 5.063 |
N-Acetylneuraminic acid | 0.988 | 0.047 | 0.021 | 2.355 | 0.096 | 2.238 |
Trehalose 6-phosphate | 0.948 | 0.552 | 0.345 | 2.377 | 0.047 | 1.600 |
Gluconic acid | 0.934 | 1.145 | 0.893 | 1.009 | 0.587 | 1.282 |
Organoheterocyclic compounds | ||||||
Pyrrole-2-carboxylic acid | 0.997 | 1.081 | 0.782 | 1.790 | 0.221 | 1.382 |
Nucleosides, nucleotides, and analogues | ||||||
Uridine 5′-monophosphate | 0.867 | 14.577 | 7.388 | 1.206 | 0.275 | 1.973 |
S-Adenosylhomocysteine | 0.836 | 0.015 | 0.010 | 1.094 | 0.490 | 1.500 |
Lipids and lipid-like molecules | ||||||
SHexCer(d30:3) | 1.000 | 0.736 | 0.017 | 1.445 | 0.368 | 43.294 |
FA(20:5) | 1.000 | 0.039 | 0.017 | 2.205 | 0.165 | 2.294 |
Dihydrojasmonic acid | 0.968 | 0.155 | 0.121 | 1.232 | 0.458 | 1.281 |
Benzenoids | ||||||
4-Nitrophenol | 1.000 | 0.520 | 0.447 | 1.642 | 0.311 | 1.163 |
benzene-1,2,4-triol | 0.928 | 0.469 | 0.363 | 1.938 | 0.097 | 1.292 |
Positive ion model | ||||||
Organic acids and derivatives | ||||||
O-Acetylserine | 0.990 | 0.061 | 0.046 | 1.781 | 0.145 | 1.326 |
Oxypinnatanine | 0.995 | 0.125 | 0.112 | 1.641 | 0.255 | 1.116 |
Organic oxygen compounds | ||||||
Falcarinone | 0.992 | 0.231 | 0.177 | 1.066 | 0.283 | 1.305 |
N,O-Didesmethylvenlafaxine | 0.997 | 0.486 | 0.441 | 1.826 | 0.122 | 1.102 |
L-Gulose | 0.986 | 0.436 | 0.388 | 1.128 | 0.694 | 1.124 |
Organic nitrogen compounds | ||||||
Choline | 1.000 | 1.134 | 0.820 | 2.212 | 0.110 | 1.383 |
Organoheterocyclic compounds | ||||||
5-Methyl-2(3H)-furanone | 0.956 | 0.316 | 0.303 | 1.078 | 0.621 | 1.043 |
Lipids and lipid-like molecules | ||||||
Montecristin | 0.837 | 0.031 | 0.024 | 1.593 | 0.426 | 1.292 |
Ginkgolide J | 0.958 | 0.039 | 0.032 | 1.295 | 0.501 | 1.219 |
Nucleosides, nucleotides, and analogues | ||||||
Guanosine | 0.997 | 0.151 | 0.139 | 1.099 | 0.719 | 1.086 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Experimental Group Based on Conventional Untargeted Metabolomics | VIP | p-Value | Fold Change (A/C) | |
---|---|---|---|---|---|---|
Colostrum (A) | Mature Milk (C) | |||||
Negative ion model | ||||||
Organic acids and derivatives | ||||||
Citric acid | 0.989 | 94.808 | 47.751 | 1.341 | 0.010 | 1.985 |
D-Alanine | 0.999 | 2.926 | 2.086 | 1.162 | 0.024 | 1.403 |
N-Acetylneuraminic acid | 0.988 | 0.762 | 0.047 | 1.787 | 0.031 | 16.213 |
6-Phosphogluconic acid | 0.841 | 0.547 | 0.035 | 1.326 | 0.028 | 15.629 |
3′-Sialyllactose | 0.908 | 13.631 | 1.917 | 1.695 | 0.008 | 7.111 |
3-Sialyl-N-acetyllactosamine | 0.895 | 0.532 | 0.081 | 1.433 | 0.044 | 6.568 |
Gluconic acid | 0.934 | 2.801 | 1.145 | 1.339 | 0.030 | 2.446 |
Organoheterocyclic compounds | ||||||
Riboflavin | 0.968 | 0.170 | 0.015 | 1.619 | 0.072 | 11.333 |
Lipids and lipid-like molecules | ||||||
PI(18:2/18:2) | 0.873 | 2.903 | 2.097 | 1.027 | 0.138 | 1.384 |
PI(18:1/20:3) | 0.876 | 23.702 | 3.781 | 1.713 | 0.000 | 6.269 |
PI(18:0/20:3) | 0.889 | 4.429 | 1.115 | 1.696 | 0.001 | 3.972 |
PI(18:0/22:6) | 0.825 | 0.209 | 0.063 | 1.551 | 0.043 | 3.317 |
PI(18:0/18:1) | 0.915 | 2.468 | 1.189 | 1.269 | 0.085 | 2.076 |
PI(18:0/18:2) | 0.886 | 25.133 | 12.184 | 1.307 | 0.078 | 2.063 |
OxPI(18:0/18:1 + 3O) | 0.957 | 0.488 | 0.094 | 1.732 | 0.006 | 5.191 |
OxPI(16:0/18:1 + 3O) | 0.954 | 4.880 | 3.619 | 1.036 | 0.119 | 1.348 |
FA(19:4) | 1.000 | 0.057 | 0.006 | 1.113 | 0.313 | 9.500 |
FA(16:2) | 1.000 | 20.175 | 0.894 | 1.057 | 0.315 | 22.567 |
Nucleosides, nucleotides, and analogues | ||||||
2-Methylguanosine | 0.865 | 0.034 | 0.018 | 1.202 | 0.021 | 1.889 |
Positive ion model | ||||||
Organic acids and derivatives | ||||||
Elenaic acid | 0.871 | 0.042 | 0.007 | 1.713 | 0.043 | 6.000 |
Palmitoylethanolamide | 0.897 | 0.309 | 0.084 | 1.089 | 0.218 | 3.679 |
ACar(6:1) | 0.997 | 0.158 | 0.015 | 1.697 | 0.037 | 10.533 |
trans-Aconitic acid | 0.803 | 0.193 | 0.052 | 1.758 | 0.004 | 3.712 |
Organic oxygen compounds | ||||||
Picraquassioside A | 0.994 | 0.158 | 0.009 | 1.888 | 0.039 | 17.556 |
Pseudouridine 5′-phosphate | 0.921 | 3.103 | 0.661 | 1.298 | 0.027 | 4.694 |
L-Gulose | 0.986 | 1.744 | 0.436 | 1.877 | 0.014 | 4.000 |
Falcarinone | 0.992 | 0.893 | 0.231 | 1.626 | 0.043 | 3.866 |
N-Acetylmannosamine | 0.927 | 0.388 | 0.101 | 1.603 | 0.035 | 3.842 |
Organoheterocyclic compounds | ||||||
Isolinderanolide | 0.854 | 0.063 | 0.016 | 1.052 | 0.303 | 3.938 |
Guanine | 0.999 | 0.933 | 0.319 | 1.243 | 0.122 | 2.925 |
Hypoxanthine | 1.000 | 1.426 | 0.711 | 1.468 | 0.006 | 2.006 |
Thiamine | 0.997 | 0.690 | 0.187 | 1.442 | 0.038 | 3.690 |
Safrole | 0.974 | 3.080 | 2.859 | 1.284 | 0.022 | 1.077 |
Organohalogen compounds | ||||||
Chloral hydrate | 0.907 | 0.087 | 0.018 | 1.736 | 0.023 | 4.833 |
Lipids and lipid-like molecules | ||||||
13-HOTE | 0.813 | 0.292 | 0.010 | 1.129 | 0.307 | 29.200 |
Caryoptosidic acid | 0.833 | 0.014 | 0.001 | 1.911 | 0.012 | 14.000 |
Stearoylcarnitine | 0.925 | 0.598 | 0.047 | 1.220 | 0.248 | 12.723 |
LPC(22:4) | 0.869 | 0.029 | 0.003 | 1.384 | 0.286 | 9.667 |
LPC(22:5) | 0.834 | 0.028 | 0.005 | 1.684 | 0.122 | 5.600 |
L-Acetylcarnitine | 0.929 | 14.567 | 3.852 | 1.803 | 0.012 | 3.782 |
Asitrilobin C | 0.813 | 0.152 | 0.069 | 1.687 | 0.001 | 2.203 |
Turanose | 1.000 | 0.849 | 0.777 | 1.062 | 0.913 | 1.093 |
Nucleosides, nucleotides, and analogues | ||||||
Cyclic AMP | 0.897 | 0.041 | 0.002 | 1.220 | 0.066 | 20.500 |
Cyclic GMP | 0.924 | 0.194 | 0.023 | 1.671 | 0.020 | 8.435 |
N6-Methyladenosine | 0.999 | 0.730 | 0.158 | 1.549 | 0.020 | 4.620 |
Guanosine | 0.997 | 0.541 | 0.133 | 1.787 | 0.002 | 4.068 |
S-Adenosylhomocysteine | 0.861 | 0.045 | 0.012 | 1.592 | 0.000 | 3.750 |
1-Methylguanosine | 0.992 | 0.051 | 0.023 | 1.717 | 0.001 | 2.217 |
Inosine | 0.999 | 0.615 | 0.289 | 1.505 | 0.007 | 2.128 |
7-Methylinosine | 0.960 | 0.014 | 0.007 | 1.556 | 0.006 | 2.000 |
Benzenoids | ||||||
N-cis-Feruloyltyramine | 0.992 | 0.024 | 0.014 | 1.258 | 0.041 | 1.714 |
MS2 Name | MS2 Score | Average of Differential Metabolites in Control Group Based on Conventional Untargeted Metabolomics | VIP | p-Value | Fold Change (B/D) | |
---|---|---|---|---|---|---|
Colostrum (B) | Mature Milk (D) | |||||
Negative ion model | ||||||
Organic acids and derivatives | ||||||
Indoxyl sulfate | 0.982 | 0.139 | 0.084 | 1.078 | 0.339 | 1.655 |
Citric acid | 0.989 | 71.197 | 47.904 | 1.024 | 0.014 | 1.486 |
Organic oxygen compounds | ||||||
3-Sialyl-N-acetyllactosamine | 0.895 | 0.520 | 0.016 | 1.481 | 0.009 | 32.500 |
N-Acetylneuraminic acid | 0.988 | 0.409 | 0.021 | 1.578 | 0.002 | 19.476 |
6-Phosphogluconic acid | 0.841 | 0.242 | 0.043 | 1.323 | 0.023 | 5.628 |
Trehalose 6-phosphate | 0.948 | 1.681 | 0.345 | 1.268 | 0.048 | 4.872 |
Gluconic acid | 0.934 | 2.744 | 0.893 | 1.205 | 0.003 | 3.073 |
Organoheterocyclic compounds | ||||||
Dehydroascorbic acid | 0.963 | 5.568 | 2.982 | 1.298 | 0.004 | 1.867 |
Lipids and lipid-like molecules | ||||||
PI(18:1/20:3) | 0.876 | 22.868 | 4.606 | 1.479 | 0.001 | 4.965 |
PI(18:0/22:6) | 0.825 | 0.240 | 0.081 | 1.365 | 0.021 | 2.963 |
PI(18:0/20:3) | 0.889 | 4.412 | 1.285 | 1.422 | 0.008 | 3.433 |
PI(18:0/18:2) | 0.886 | 24.813 | 13.422 | 1.169 | 0.051 | 1.849 |
Positive ion model | ||||||
Organic acids and derivatives | ||||||
ACar(6:1) | 0.997 | 0.052 | 0.023 | 1.125 | 0.055 | 2.261 |
ACar(5:0) | 1.000 | 41.315 | 22.319 | 1.147 | 0.067 | 1.851 |
Elenaic acid | 0.871 | 0.022 | 0.008 | 1.113 | 0.103 | 2.750 |
Organic oxygen compounds | ||||||
Picraquassioside A | 0.994 | 0.122 | 0.006 | 1.691 | 0.008 | 20.333 |
Pseudouridine 5′-phosphate | 0.921 | 2.390 | 0.176 | 1.501 | 0.021 | 13.580 |
Falcarinone | 0.992 | 1.017 | 0.177 | 1.818 | 0.000 | 5.746 |
L-Gulose | 0.986 | 2.105 | 0.388 | 1.065 | 0.000 | 5.425 |
N-Acetylmannosamine | 0.927 | 0.434 | 0.093 | 1.794 | 0.003 | 4.667 |
3′-Sialyllactose | 0.924 | 0.381 | 0.035 | 1.746 | 0.002 | 10.886 |
2-Carboxyarabinitol 5-phosphate | 0.888 | 0.152 | 0.070 | 1.293 | 0.008 | 2.171 |
Organoheterocyclic compounds | ||||||
Riboflavin | 0.995 | 0.851 | 0.036 | 1.681 | 0.012 | 23.639 |
Guanine | 0.999 | 0.540 | 0.268 | 1.235 | 0.058 | 2.015 |
Thiamine | 0.997 | 0.467 | 0.240 | 1.113 | 0.047 | 1.946 |
Organohalogen compounds | ||||||
Chloral hydrate | 0.907 | 0.105 | 0.015 | 1.608 | 0.001 | 7.000 |
Nucleosides, nucleotides, and analogues | ||||||
Cyclic AMP | 0.897 | 0.030 | 0.001 | 1.074 | 0.095 | 30.000 |
Cyclic GMP | 0.924 | 0.179 | 0.026 | 1.655 | 0.019 | 6.885 |
S-Adenosylhomocysteine | 0.861 | 0.037 | 0.009 | 1.717 | 0.000 | 4.111 |
N6-Methyladenosine | 0.999 | 0.551 | 0.148 | 1.531 | 0.015 | 3.723 |
Guanosine monophosphate | 0.993 | 0.133 | 0.038 | 1.217 | 0.077 | 3.500 |
7-Methylinosine | 0.960 | 0.018 | 0.009 | 1.722 | 0.000 | 2.000 |
1-Methylguanosine | 0.992 | 0.049 | 0.026 | 1.822 | 0.000 | 1.885 |
Guanosine | 0.997 | 0.320 | 0.209 | 1.005 | 0.252 | 1.531 |
Lipids and lipid-like molecules | ||||||
LPC(22:4) | 0.869 | 0.008 | 0.002 | 1.151 | 0.079 | 4.000 |
L-Acetylcarnitine | 0.929 | 11.410 | 3.590 | 1.684 | 0.001 | 3.178 |
Asitrilobin C | 0.813 | 0.154 | 0.069 | 1.563 | 0.001 | 2.232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, W.; Deng, L.; Wu, H.; Liu, Z.; Lu, W.; He, Y. Untargeted Metabolomics Profiling Reveals Beneficial Changes in Milk of Sows Supplemented with Fermented Compound Chinese Medicine Feed Additive. Animals 2022, 12, 2879. https://doi.org/10.3390/ani12202879
Zou W, Deng L, Wu H, Liu Z, Lu W, He Y. Untargeted Metabolomics Profiling Reveals Beneficial Changes in Milk of Sows Supplemented with Fermented Compound Chinese Medicine Feed Additive. Animals. 2022; 12(20):2879. https://doi.org/10.3390/ani12202879
Chicago/Turabian StyleZou, Wanjie, Linglan Deng, Huadong Wu, Zhiyong Liu, Wei Lu, and Yuyong He. 2022. "Untargeted Metabolomics Profiling Reveals Beneficial Changes in Milk of Sows Supplemented with Fermented Compound Chinese Medicine Feed Additive" Animals 12, no. 20: 2879. https://doi.org/10.3390/ani12202879
APA StyleZou, W., Deng, L., Wu, H., Liu, Z., Lu, W., & He, Y. (2022). Untargeted Metabolomics Profiling Reveals Beneficial Changes in Milk of Sows Supplemented with Fermented Compound Chinese Medicine Feed Additive. Animals, 12(20), 2879. https://doi.org/10.3390/ani12202879