Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Construction of Bioreactor Experimental Setup
2.3. Development and Evaluation of Operational Algorithm
2.4. Operational Conditions
2.5. Sampling
2.6. Analytical Method
3. Results and Discussion
3.1. Real-Time BCS (Validation of Real-Time Control of BCS)
3.2. ORP and pH (mV)- Time Profile
3.3. Quantitative Analysis of NKP Detection by ORPmsc and ORPabs and Its Impact on Cycle Characteristics
3.4. Changes of Swine Manure Characteristics in the Slurry Pit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shim, S.M.; Reza, A.; Kim, S.S.; Ahmed, N.; Won, S.G.; Ra, C.S. Simultaneous removal of pollutants and recovery of nutrients from high-strength swine wastewater using a novel integrated treatment process. Animals 2020, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.D.; Lim, D.Y.; Kim, S.J.; Baek, U.I.; Chung, E.G.; Kim, K.H.; Lee, J.K. Struvite precipitation for sustainable recovery of nitrogen and phosphorus from anaerobic digestion effluents of ewine manure. Sustainability 2020, 12, 8574. [Google Scholar] [CrossRef]
- Machete, J.B.; Chabo, R.G. A review of piggery manure management: Generally, across Western, Asian and African Countries. Bots. J. Agric. Appl. Sci. 2020, 14, 17–27. [Google Scholar] [CrossRef]
- Ndambi, O.A.; Pelster, D.E.; Owino, J.O.; de Buisonjé, F.; Vellinga, T. Manure management practices and policies in Sub-Saharan Africa: Implications on manure quality as a fertilizer. Front. Sustain. Food Syst. 2019, 3, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Baek, G.H.; Kim, D.B.; Kim, J.S.; Kim, H.W.; Lee, C.S. Treatment of cattle manure by anaerobic co-digestion with food waste and pig manure: Methane yield and synergistic effect. Int. J. Environ. Res. Public Health 2020, 17, 4737. [Google Scholar] [CrossRef]
- Loyon, L. Overview of animal manure management for beef, pig, and poultry farms in France. Front. Sustain. Food Syst. 2018, 2, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Nahm, K.H. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit. Rev. Environ. Sci. Technol. 2002, 32, 1–16. [Google Scholar] [CrossRef]
- Toor, U.A.; Duong, T.T.; Ko, S.Y.; Hussain, F.; Oh, S.E. Optimization of fenton process for removing TOC and Color from swine wastewater using response surface method (RSM). J. Environ. Manag. 2021, 279, 111624–111625. [Google Scholar] [CrossRef]
- KMOE. Economic Analysis of Waste-to-Energy Project; Korean Ministry of Environment (KMOE): Sejong, Korea, 2008. [Google Scholar]
- Wang, Y.; Dong, H.; Zhu, Z.; Gerber, P.J.; Xin, H.; Smith, P.; Opio, C.; Steinfeld, H.; Chadwick, D. Mitigating greenhouse gas and ammonia emissions from swine manure management: A system analysis. Environ. Sci. Technol. 2017, 51, 4503–4511. [Google Scholar] [CrossRef] [Green Version]
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. Options for Ammonia Mitigation: Guidance from the Unece Task Force on Reactive Nitrogen; Centre for Ecology & Hydrology: Edinburgh, UK, 2014; pp. 50–61. [Google Scholar]
- Kim, S.S.; Reza, A.; Shim, S.M.; Won, S.G.; Ra, C.S. Development of a real-time controlled bio-liquor circulation system for swine farms: A lab-scale study. Animals 2021, 11, 311. [Google Scholar] [CrossRef]
- Lee, D.J.; Bae, J.S.; Seo, D.C. Potential of biogas production from swine nanure in South Korea. Appl. Biol. Chem. 2018, 61, 557–565. [Google Scholar] [CrossRef]
- Lee, J.H.; Febrisiantosa, A. Improvement of nitrogen balance (Land Budget) in South Korea in rerms of livestock manure: A review. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Tangerang, Indonesia, 23–24 October 2019; p. 012011. [Google Scholar]
- Choe, J.H.; Yang, H.S.; Lee, S.H.; Go, G.W. Characteristics of pork belly consumption in South Korea and their health implication. J. Anim. Sci. Technol. 2015, 57, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Jeong, C.H.; Park, M.J.; Jeong, D.W. Reduction of odor from swine manure using soil microorganisms on liquid manure circulation system. J. Korean Soc. Water Sci. Technol. 2019, 27, 97–106. [Google Scholar] [CrossRef]
- Kim, S.S.; Shim, S.M.; Lee, T.H.; Jeon, T.B.; Won, S.G.; Song, J.I.; Jung, B.D.; Lee, J.J.; Ra, C.S. Optimal parameters of bio-liquor circulation type swine manure management system. Ann. Anim. Resour. Sci. 2019, 30, 133–144. [Google Scholar] [CrossRef]
- Ga, C.H.; Ra, C.S. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment. J. Hazard. Mater. 2009, 172, 61–67. [Google Scholar] [CrossRef]
- Ra, C.S. Oxidation Reduction Potential (ORP) as a Real-Time Control Parameter in Swine Manure Treatment Process. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1997. [Google Scholar]
- Won, S.G.; Ra, C.S. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH (mV)-and ORP-time profiles. Water Res. 2011, 45, 171–178. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Cavalcanti, P.F.F.; Van Haandel, A.V.; Lettinga, G. Effect of carbon dioxide and ammonium removal on pH changes in polishing ponds. Water Sci. Technol. 2002, 45, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Lahdhiri, A.; Lesage, G.; Hannachi, A.; Heran, M. Minimum COD needs for denitrification: From niological models to experimental set-up. Desalination Water Treat. 2017, 61, 326–334. [Google Scholar] [CrossRef]
- Martín de la Vega, P.T.; Martínez de Salazar, E.; Jaramillo, M.A.; Cros, J. New contributions to the ORP & DO time profile characterization to improve biological nutrient removal. Bioresour. Technol. 2012, 114, 160–167. [Google Scholar]
- Puig, S.; Vives, M.T.; Corominas, L.; Balaguer, M.D.; Colprim, J. Wastewater nitrogen removal in SBRs, applying a step-feed strategy: From lab-scale to pilot-plant operation. Water Sci. Technol. 2004, 50, 89–96. [Google Scholar] [CrossRef]
- Hwang, O.H.; Park, S.K.; Jung, M.W.; Han, D.W.; Nho, W.G.; Cho, S.B. Effects of pH modulation on the concentrations of odorous compounds from pit slurry of a pig operation building. J. Odor Indoor Environ. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Wi, J.S.; Lee, S.H.; Kim, E.J.; Lee, M.S.; Koziel, J.A.; Ahn, H.K. Evaluation of semi-continuous pit manure recharge system performance on mitigation of ammonia and hydrogen sulfide emissions from a swine finishing barn. Atmosphere 2019, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Wi, J.S.; Lee, S.H.; Kim, E.J.; Lee, M.S.; Koziel, J.A.; Ahn, H.K. Effects of treated manure conditions on ammonia and hydrogen sulfide emissions from a swine finishing barn equipped with semicontinuous pit recharge system in Summer. Atmosphere 2020, 11, 713. [Google Scholar] [CrossRef]
- Choi, Y.J.; Ha, D.M.; Lee, S.R.; Kim, D.H. Effect of aerobically treated manure on odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system. Anim. Biosci. 2022, 35, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.J.; Kamp, J.N.; Adamsen, A.P.S.; Feilberg, A. Low-emission slurry pits for pig houses with straw application. Biosyst. Eng. 2020, 197, 56–63. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
TS * | 8000.0 ± 57.7 |
TVS | 4733.3 ± 230.9 |
MLSS | 6433.3 ± 208.2 |
MLVSS | 3633.3 ± 176.4 |
STOC | 568.8 ± 4.4 |
NH4-N | 1.2 ± 0.1 |
NOX-N | 0.9 ± 0.0 |
TKN | 624.4 ± 3.2 |
T-N | 625.3 ± 4.6 |
Operational Factors | Real Time-Controlled Bio-Liquor Circulation System | Non-Bio-Liquor Circulation System Slurry Pit | |
---|---|---|---|
Bioreactor | Slurry pit | ||
Working volume (m3) | 3 | 6 | 6 |
Initial condition | Filled with bio-liquor | Filled with bio-liquor | Empty |
Default circulation rate (m3/cycle) | 0.12 | 0.12 | |
Circulation rate based on volume (%/cycle) | 4 | 2 | - |
Aeration rate (m3/m3·min) | 0.05 | - | - |
Avg. (Cycles/d) | Avg. Loading Rate Based on NH4-N (g/m3·d) | Avg. F/M * (ratio/d) | Influent (mg/L) | Effluent (mg/L) | Removal (%) | |||
---|---|---|---|---|---|---|---|---|
NH4-N | NOX-N | NH4-N | NOX-N | NH4-N | NH4-N & NOX-N | |||
6.03 ± 2.82 | 81.9 ± 40.8 | 0.0177 ± 0.0431 | 352.8 ± 75.7 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.4 ± 3.0 | 100 ± 0.0 | 98.1 ± 1.0 |
Parameter | ORPmsc (Alone) | ORPabs (Alone) | Both (ORPmsc and ORPabs) |
---|---|---|---|
No of Days | 56.0 | 7.0 | 16.0 |
No of Cycles | 291.0 | 53.0 | 132 (84 ORPmsc, 48 ORPabs) |
Percentage (%) | 78.78 | 21.21 | - |
Parameter (mg/L) | Conventional Slurry Pit System, NBCS (1) | Real Time-Controlled Bio-Liquor Circulation System, BCS (2) | Reduction Efficiency (%) | |
---|---|---|---|---|
NH4- N | 1624.5 ± 244.0 | 418.4 ± 67.7 | 74.2 | |
NOX-N | ND (3) | ND | - | |
STOC | 7406.5 ± 5181.9 | 1791.2 ± 521.3 | 75.8 | |
TKN | 4396.7 ± 2090.2 | 1579.1 ± 722.8 | 64.1 | |
TS | 65,839.3 ± 31,862.7 | 18,462.7 ± 6991.3 | 72.0 | |
TVS | 48,795.6 ± 24,968.3 | 12,192.5 ± 5270.0 | 75.0 | |
TSS | 59,427.8 ± 31,002.7 | 14,694.0 ± 6868.4 | 75.3 | |
TVSS | 44,912.7 ± 24,079.9 | 11,333.3 ± 5349.3 | 74.8 | |
pH | 7.25 ± 0.30 | 7.64 ± 0.21 | - | |
Theoretical NH3 emission (mg/m3·d) | 21.6 | 12.7 | 41.0 | |
NH3 concentration in swine barn (ppm) | Avg. | 14.6 ± 3.4 | 5.6 ± 1.6 | 61.6 |
Max. | 25.6 | 15.4 | 39.8 | |
Min. | 6.7 | 3.1 | 53.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Shim, S.; Won, S.; Kwag, J.; Ra, C. Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study. Animals 2022, 12, 2941. https://doi.org/10.3390/ani12212941
Kim S, Shim S, Won S, Kwag J, Ra C. Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study. Animals. 2022; 12(21):2941. https://doi.org/10.3390/ani12212941
Chicago/Turabian StyleKim, Seungsoo, Soomin Shim, Seunggun Won, Junghoon Kwag, and Changsix Ra. 2022. "Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study" Animals 12, no. 21: 2941. https://doi.org/10.3390/ani12212941
APA StyleKim, S., Shim, S., Won, S., Kwag, J., & Ra, C. (2022). Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study. Animals, 12(21), 2941. https://doi.org/10.3390/ani12212941