Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Rapeseed Meal (FRSM)
2.2. Experimental Design
2.3. Animal Diets
2.4. Analysed Nutrient Levels in Experimental Diets
2.5. Sampling and Measurements
2.5.1. Diets and Faeces
2.5.2. Blood Plasma
2.5.3. Blood Plasma and Faecal Chemical Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Liu, L.; Piao, X.S. Predicting the digestible energy of rapeseed meal from its chemical composition in growing-finishing pigs. Asian-Australas. J. Anim. Sci. 2012, 25, 375–381. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Jiang, B.; Zhu, P.; Ding, W.; Ma, H. Study on solid-state fermentation of rapeseed meal for preparation of peptides and degradation of glucosinolates by Bacillus Subtilis. Sci. Technol. Food Ind. 2014, 10, 228–233. [Google Scholar] [CrossRef]
- Shi, C.; He, J.; Yu, J.; Yu, B.; Mao, X.; Zheng, P.; Huang, Z.; Chen, D. Physicochemical properties analysis and secretome of Aspergillus niger in fermented rapeseed meal. PLoS ONE 2016, 11, e0153230. [Google Scholar] [CrossRef]
- Satessa, G.D.; Tamez-Hidalgo, P.; Hui, Y.; Cieplak, T.; Krych, L.; Kjærulff, S.; Brunsgaard, G.; Nielsen, D.S.; Nielsen, M.O. Impact of dietary supplementation of lactic acid bacteria fermented rapeseed with or without macroalgae on performance and health of piglets following omission of medicinal zinc from weaner diets. Animals 2020, 10, 137. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Liu, X.; Zhang, K. Effects of microbial fermented feed on serum biochemical profile, carcass traits, meat amino acid and fatty acid profile, and gut microbiome composition of finishing pigs. Front. Vet. Sci. 2021, 8, 74463. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of dietary probiotic (bacillus subtilis) supplementation on carcass traits, meat quality, amino acid, and fatty acid profile of broiler chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef]
- Rybarczyk, A.; Bogusławska-Wąs, E.; Dłubała, A. Effect of BioPlus YC probiotic supplementation on gut microbiota, production performance, carcass and meat quality of pigs. Animals 2021, 11, 1581. [Google Scholar] [CrossRef]
- Lee, N.-K.; Kim, W.-S.; Paik, H.-D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef]
- Becker, S.L.; Li, Q.; Burrough, E.R.; Kenne, D.; Sahin, O.; Gould, S.A.; Patience, J.F. Effects of an F18 enterotoxigenic Escherichia coli challenge on growth performance, immunological status, and gastrointestinal structure of weaned pigs and the potential protective effect of direct-fed microbial blends. J. Anim. Sci. 2020, 98, skaa113. [Google Scholar] [CrossRef]
- He, Y.; Kim, K.; Kovanda, L.; Jinno, C.; Song, M.; Chase, J.; Li, X.; Tan, B.; Liu, Y. Bacillus subtilis: A potential growth promoter in weaned pigs in comparison to carbadox. J. Anim. Sci. 2020, 98, skaa290. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Nowakowicz-Dębek, B.; Czech, A.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Kułażyński, M.; Łukaszewicz, M.; Krasowska, A. Fermented rapeseed meal as a component of the mink diet (Neovison Vison) modulating the gastrointestinal tract microbiota. Animals 2021, 11, 1337. [Google Scholar] [CrossRef]
- Hui, Y.; Tamez-Hidalgo, P.; Cieplak, T.; Satessa, G.D.; Kot, W.; Kjærulff, S.; Nielsen, M.O.; Nielsen, D.S.; Krych, L. Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets. J. Anim. Sci. Biotechnol. 2021, 12, 85. [Google Scholar] [CrossRef]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Long, C.; de Vries, S.; Venema, K. Differently pre-treated rapeseed meals affect in vitro swine gut microbiota composition. Front. Microbiol. 2020, 11, 570985. [Google Scholar] [CrossRef]
- Lindecrona, R.H.; Jensen, T.K.; Jensen, B.B.; Leser, T.D.; Jiufeng, W.; Møller, K. The Influence of diet on the development of swine dysentery upno experimental infection. Anim. Sci. 2003, 76, 81–87. [Google Scholar] [CrossRef]
- Czech, A.; Grela, E.R.; Kiesz, M. Dietary fermented rapeseed or/and soybean meal additives on performance and intestinal health of piglets. Sci. Rep. 2021, 11, 16952. [Google Scholar] [CrossRef]
- Nowakowicz-Dębek, B.; Wlazło, Ł.; Czech, A.; Kowalska, D.; Bielański, P.; Ryszkowska-Siwko, M.; Łukaszewicz, M.; Florek, M. Effects of fermented rapeseed meal on gastrointestinal morphometry and meat quality of rabbits (Oryctolagus Cuniculus). Livest. Sci. 2021, 251, 104663. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Kowalska, D.; Bielański, P.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Łukaszewicz, M.; Czech, A.; Nowakowicz-Dębek, B. Effect of fermented rapeseed meal on the gastrointestinal microbiota and immune status of rabbit (Oryctolagus Cuniculus). Animals 2021, 11, 716. [Google Scholar] [CrossRef]
- Al-Shammari, K.I.A.; Batkowska, J.; Gryzińska, M.; Wlazło, Ł.; Ossowski, M.; Nowakowicz-Dębek, B. The use of selected herbal preparations for the disinfection of japanese quail hatching eggs. Poult. Sci. 2022, 101, 102066. [Google Scholar] [CrossRef]
- Grela, E.R.; Czech, A.; Kiesz, M.; Wlazło, Ł.; Nowakowicz-Dębek, B. A Fermented rapeseed meal additive: Effects on production performance, nutrient digestibility, colostrum immunoglobulin content and microbial flora in sows. Anim. Nutr. 2019, 5, 373–379. [Google Scholar] [CrossRef]
- Satessa, G.D.; Kjeldsen, N.J.; Mansouryar, M.; Hansen, H.H.; Bache, J.K.; Nielsen, M.O. Effects of alternative feed additives to medicinal zinc oxide on productivity, diarrhoea incidence and gut development in weaned piglets. Animal 2020, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Czech, A.; Nowakowicz-Dębek, B.; Łukaszewicz, M.; Florek, M.; Ossowski, M.; Wlazło, Ł. Effect of fermented rapeseed meal in the mixture for growing pigs on the gastrointestinal tract, antioxidant status, and immune response. Sci. Rep. 2022, 12, 15764. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Fiske, C.H.; Subbarow, Y.J. The colorimetric determination of phosphorus. Biol. Chem. 1925, 66, 375–400. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Tułodziecka, A. Comparison of a silver nanoparticle-based method and the modified spectrophotometric methods for assessing antioxidant capacity of rapeseed varieties. Food Chem. 2013, 141, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Abeysekera, W.P.K.M.; Arachchige, S.P.G.; Abeysekera, W.K.S.M.; Ratnasooriya, W.D.; Medawatta, H.M.U.I. Antioxidant and glycemic regulatory properties potential of different maturity stages of leaf of Ceylon cinnamon (Cinnamomum zeylanicum Blume) in vitro. Evid. Based Complement. Alternat. Med. 2019, 2019, 2693795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacity, phenolic acids, and fatty acid composition of rapeseed varieties. J. Agric. Food Chem. 2010, 58, 7502–7509. [Google Scholar] [CrossRef] [PubMed]
- ISO 6887-1:2017. Microbiology of the Food Chain—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. 2017. Available online: https://www.iso.org/standard/63335.html (accessed on 15 September 2022).
- ISO 4833-2:2013. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique. 2013. Available online: https://www.iso.org/standard/59509.html (accessed on 15 September 2022).
- ISO 21527-2:2008. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. 2008. Available online: https://www.iso.org/standard/38276.html (accessed on 15 September 2022).
- ISO 4832:2006. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. 2006. Available online: https://www.iso.org/standard/38282.html (accessed on 15 September 2022).
- ISO 16649-2:2001. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. 2001. Available online: https://www.iso.org/standard/29824.html (accessed on 15 September 2022).
- ISO 7937:2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Clostridium Perfringens—Colony-Count Technique. 2001. Available online: https://www.iso.org/standard/36588.html (accessed on 15 September 2022).
- Chi, C.-H.; Cho, S.-J. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Sci. Technol. 2016, 68, 619–625. [Google Scholar] [CrossRef]
- He, R.; Ju, X.; Yuan, J.; Wang, L.; Girgih, A.T.; Aluko, R.E. Antioxidant activities of rapeseed peptides produced by solid state fermentation. Food Res. Int. 2012, 49, 432–438. [Google Scholar] [CrossRef]
- Van Winsen, R.L.; Urlings, B.A.P.; Lipman, L.J.A.; Snijders, J.M.A.; Keuzenkamp, D.; Verheijden, J.H.M.; van Knapen, F. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl. Environ. Microbiol. 2001, 67, 3071–3076. [Google Scholar] [CrossRef]
- Bunte, S.; Grone, R.; Kamphues, J. The “controlled fermentation” as feeding concept for pigs–A characterization from the point of view of animal nutrition and veterinary medicine. Übers. Tierernäh. 2019, 43, 165–203. [Google Scholar]
- Lau, N.; Hummel, J.; Kramer, E.; Hünerberg, M. Fermentation of liquid feed with lactic acid bacteria reduces dry matter losses, lysine breakdown, formation of biogenic amines, and phytate-phosphorus. Transl. Anim. Sci. 2022, 6, txac007. [Google Scholar] [CrossRef]
- Fransen, N.G.; Urlings, B.A.; Bijker, P.G.; Van Gils, B.G. Utilization of fermented flocculated poultry sludge as a feed constituent for pigs. Poult. Sci. 1995, 74, 1948–1960. [Google Scholar] [CrossRef]
- Czech, A.; Grela, E.R. Biochemical and haematological blood parameters of sows during pregnancy and lactation fed the diet with different source and activity of phytase. Anim. Feed Sci. Technol. 2004, 116, 211–223. [Google Scholar] [CrossRef]
- Klem, T.B.; Bleken, E.; Morberg, H.; Thoresen, S.I.; Framstad, T. Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Vet. Clin. Pathol. 2010, 39, 221–226. [Google Scholar] [CrossRef]
- Suiryanrayna, M.V.A.N.; Ramana, J.V. A Review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol. 2015, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Kristoffersen, S.; Gjefsen, T.; Svihus, B.; Kjos, N.P. The Effect of reduced feed pH, phytase addition and their interaction on mineral utilization in pigs. Livest. Sci. 2021, 248, 104498. [Google Scholar] [CrossRef]
- Czech, A.; Grela, E.R.; Kiesz, M.; Kłys, S. Biochemical and haematological blood parameters of sows and piglets fed a diet with a dried fermented rapeseed meal. Ann. Anim. Sci. 2020, 20, 535–550. [Google Scholar] [CrossRef]
- Long, C.; Venema, K. Pretreatment of rapeseed meal increases its recalcitrant fiber fermentation and alters the microbial community in an in vitro model of swine large intestine. Front. Microbiol. 2020, 11, 588264. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashayerizadeh, A.; Dastar, B.; Shams Shargh, M.; Sadeghi Mahoonak, A.; Zerehdaran, S. Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Vet. Microbiol. 2017, 201, 93–102. [Google Scholar] [CrossRef]
- Jazi, V.; Mohebodini, H.; Ashayerizadeh, A.; Shabani, A.; Barekatain, R. Fermented soybean meal ameliorates Salmonella typhimurium infection in young broiler chickens. Poult. Sci. 2019, 98, 5648–5660. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Walkowiak, J.; Mądry, E.; Lisowska, A.; Szaflarska-Popławska, A.; Grzymisławski, M.; Stankowiak-Kulpa, H.; Przysławski, J. Adaptive changes of pancreatic protease secretion to a short-term vegan diet: Influence of reduced intake and modification of protein. Br. J. Nutr. 2012, 107, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Bosco, R.; Leeuwenburgh, S.C.G.; Jansen, J.A.; van den Beucken, J.J.J.P. Configurational effects of collagen/ALP coatings on enzyme immobilization and surface mineralization. Appl. Surf. Sci. 2014, 311, 292–299. [Google Scholar] [CrossRef]
- Hu, Z.P.; Kou, T.; Zhang, L.L.; Wang, T. Effect of natamycin on mould proof and nutrient value in feed. Acta Ecol. Anim. Domast. 2015, 36, 29–35. [Google Scholar]
- Zareba, D.; Ziarno, M. Alternatywne probiotyczne napoje warzywne i owocowe [Alternative probiotic vegetables and fruit drinks]. Bromat. Chem. Toksykol. 2011, 2, 160–168. [Google Scholar]
- Mojka, K. Probiotyki, prebiotyki i synbiotyki-charakterystyka i funkcje [Probiotics, prebiotics and synbiotics-characteristics and functions]. Probl. Hig. Epidemiol. 2014, 95, 541–549. [Google Scholar]
- Mikelsaar, M.; Zilmer, M. Lactobacillus fermentum ME-3-an antimicrobial and antioxidative probiotic. Microb. Ecol. Health Dis. 2009, 21, 1–27. [Google Scholar] [CrossRef]
Ingredient | Group | ||
---|---|---|---|
C | FRA | FR | |
Wheat | 60.48 | 68.33 | 58.8 |
Barley | 20 | 20 | 20 |
Soybean meal, 46.5% protein | 9.24 | 3.46 | 3.32 |
Fermented rapeseed meal (FRSMb) | 0 | 8 | 8 |
Fish meal 65% | 4 | 4 | 4 |
Soybean oil | 2.1 | 2.13 | 2.13 |
Chalk | 0.95 | 0.87 | 0.87 |
L-Lysine∙HCl, 78% | 0.82 | 0.91 | 0.91 |
L-Threonine | 0.37 | 0.4 | 0.4 |
DL-Methionine | 0.26 | 0.25 | 0.25 |
NaCl | 0.43 | 0.39 | 0.39 |
Calcium monophosphate | 0.52 | 0.43 | 0.43 |
Premix 0.5% | 0.5 | 0.5 | 0.5 |
Feed additives | 0.33 | 0.33 | 0 |
Nutrient | Group | ||
---|---|---|---|
C | FRA * | FR * | |
Dry matter | −0.6 | 0.0 | |
Crude ash | 9.7 | −1.1 | |
Crude protein | −0.4 | −0.6 | |
Crude fat | 3.7 | 7.4 | |
Crude fibre | 9.2 | 11.1 | |
ME | 0.2 | 0.1 | |
Total phosphorus | 1.3 | −0.7 | |
Calcium | −1.0 | 1.0 | |
Iron | 2.5 | 0.5 | |
Copper | 6.7 | 0.0 | |
Zinc | 1.2 | −76.0 | |
Phytin phosphorus | −15.8 | −17.4 | |
Glucosinolates | 877.2 | 1028.7 | |
Lactic acid | 496.6 | 465.0 | |
Tannins | 54.7 | 55.6 | |
pH | −1.6 | −1.3 | |
Phytase | −0.7 | −53.9 | |
Antioxidant parameters | |||
Total polyphenols, g sinapic acid kg−1 | 3.43 | 5.89 | 5.61 |
DPPH, mmol Trolox kg−1 | 111.9 | 254.9 | 177.4 |
FRAP, mmol Trolox kg−1 | 67.9 | 182.0 | 101.23 |
Mycotoxins, µg/kg | |||
Aflatoxin B1 | <LOQ = 1.0 | <LOQ = 1.0 | <LOQ = 1.0 |
Aflatoxin B2 | <LOQ = 1.0 | <LOQ = 1.0 | <LOQ = 1.0 |
Aflatoxin G1 | <LOQ = 1.0 | <LOQ = 1.0 | <LOQ = 1.0 |
Aflatoxin G2 | <LOQ = 1.0 | <LOQ = 1.0 | <LOQ = 1.0 |
Ochratoxin A | <LOQ = 1.0 | <LOQ = 1.0 | <LOQ = 1.0 |
Deoxynivalenol | <LOQ = 25.0 | <LOQ = 25.0 | <LOQ = 25.0 |
Zearalenone | <LOQ = 25.0 | <LOQ = 25.0 | <LOQ = 25.0 |
Parameter | Group | SEM | p-Value | ||
---|---|---|---|---|---|
C | FRA | FR | |||
First sampling | |||||
Total number of mesophilic bacteria | 3.5 × 103 | 2.5 × 103 | 3.6 × 103 | 252.5 | 0.426 |
Total number of fungi | 3.9 × 10 a | 2.5 × 10 b | 1.0 × 10 c | 3.99 | <0.001 |
Total number of coliforms | 2.9 × 102 | 3.0 × 102 | 2.5 × 102 | 3.99 | 0.436 |
Total number of Escherichia coli | ng | ng | ng | – | – |
Total number of LAB of the genus Lactobacillus | ng b | 5.1 × 103 a | 5.4 × 103 a | 727.9 | <0.001 |
Total number of Clostridium perfringens | ng | ng | ng | – | – |
Second sampling | |||||
Total number of mesophilic bacteria | 3.3 × 103 | 2.8 × 103 | 3.4 × 103 | 332.1 | 0.750 |
Total number of fungi | 3.8 × 10 a | 2.9 × 10 b | 1.8 × 10 c | 2.66 | <0.001 |
Total number of coliforms | 2.6 × 102 | 2.9 × 102 | 2.6 × 102 | 34.50 | 0.926 |
Total number of Escherichia coli | ng | ng | ng | – | – |
Total number of LAB of the genus Lactobacillus | ng c | 4.0 × 103 b | 5.2 × 103 a | 683.4 | <0.001 |
Total number of Clostridium perfringens | ng | ng | ng | – | – |
Parameter | Group | SEM | p-Value | ||
---|---|---|---|---|---|
C | FRA | FR | |||
First sampling | |||||
Total number of mesophilic bacteria | 8.4 × 104 a | 3.1 × 105 b | 3.3 × 105 b | 46,786.4 | 0.034 |
Total number of fungi | 9.1 × 103 | 1.4 × 104 | 9.9 × 103 | 1012.3 | 0.367 |
Total number of coliforms | 1.4 × 105 | 1.2 × 105 | 1.2 × 105 | 6732.8 | 0.117 |
Total number of Escherichia coli | 1.3 × 105 | 1.1 × 105 | 1.1 × 105 | 6419.4 | 0.617 |
Total number of LAB of the genus Lactobacillus | 3.3 × 104 a | 5.1 × 105 b | 5.1 × 105 b | 89,247.4 | 0.033 |
Total number of Clostridium perfringens | 3.1 × 105 | 2.6 × 105 | 1.6 × 105 | 30,158.11 | 0.238 |
Second sampling | |||||
Total number of mesophilic bacteria | 6.2 × 105 a | 2.4 × 105 a | 2.2 × 106 b | 290,071.0 | 0.003 |
Total number of fungi | 3.3 × 103 b | 5.6 × 103 c | 1.8 × 103 a | 580.3 | 0.045 |
Total number of coliforms | 3.3 × 105 b | 2.1 × 105 a | 2.5 × 105 ab | 20,789.3 | 0.035 |
Total number of Escherichia coli | 1.1 × 105 | 1.9 × 105 | 3.3 × 105 | 105,633.0 | 0.110 |
Total number of LAB of the genus Lactobacillus | 7.2 × 106 a | 3.3 × 107 b | 3.7 × 107 b | 4,113,519 | 0.009 |
Total number of Clostridium perfringens | 2.1 × 105 c | 9.1 × 104 b | 2.9 × 104 a | 24,666.09 | 0.040 |
Parameter | Group | SEM | p-Value | ||
---|---|---|---|---|---|
C | FRA | FR | |||
GLU; mmol L−1 | 3.41 | 3.26 | 3.38 | 0.051 | 0.461 |
TP; g L−1 | 54.95 b | 62.43 a | 59.75 a | 0.944 | 0.049 |
ALB; g L−1 | 30.43 b | 36.88 a | 35.45 a | 0.324 | 0.023 |
CHOL; mmol L−1 | 1.90 b | 1.95 b | 2.24 a | 0.042 | <0.001 |
HDL; mmol L−1 | 1.10 b | 1.36 ab | 1.61 a | 0.053 | 0.032 |
LDL; mmol L−1 | 0.575 a | 0.387 b | 0.424 b | 0.027 | 0.003 |
% HDL | 58.02 b | 69.84 a | 72.05 a | 1.64 | <0.001 |
CHOL/HDL | 1.73 a | 1.43 b | 1.39 b | 0.040 | <0.001 |
TG; mmol L−1 | 0.496 a | 0.446 b | 0.444 b | 0.009 | 0.048 |
ALP; U L−1 | 157.2 b | 178.7 b | 250.2 a | 10.68 | <0.001 |
ALT; U L−1 | 47.97 a | 40.18 b | 38.90 b | 1.38 | 0.006 |
AST; U L−1 | 46.40 b | 57.02 a | 45.37 b | 1.54 | <0.001 |
Parameter | Group | SEM | p-Value | ||
---|---|---|---|---|---|
C | FRA | FR | |||
Blood plasma | |||||
Phosphorus; mmol L−1 | 3.28 b | 3.48 a | 3.50 a | 0.033 | 0.015 |
Calcium; mmol L−1 | 2.99 b | 3.21 a | 3.23 a | 0.046 | <0.001 |
Magnesium; mmol L−1 | 0.946 b | 1.00 a | 1.01 a | 0.010 | 0.015 |
Manganese; µmol L−1 | 0.218 | 0.243 | 0.230 | 0.008 | 0.519 |
Chromium; µmol L−1 | 0.554 a | 0.404 b | 0.495 ab | 0.024 | 0.042 |
Sodium; mmol L−1 | 80.02 | 78.21 | 77.53 | 0.205 | 0.061 |
Potassium; mmol L−1 | 4.72 | 4.47 | 4.48 | 0.054 | 0.120 |
Faeces (per kg DW) | |||||
Total phosphorus, g | 3.63 a | 2.77 b | 3.26 a | 0.088 | <0.001 |
Calcium, g | 5.55 a | 4.83 b | 5.05 ab | 0.079 | <0.001 |
Magnesium, g | 1.93 a | 1.79 b | 1.80 ab | 0.017 | <0.001 |
Manganese, g | 0.073 a | 0.065 b | 0.070 a | 0.001 | <0.001 |
Chromium, mg | 0.274 a | 0.160 c | 0.235 b | 0.012 | <0.001 |
Sodium, g | 0.240 | 0.255 | 0.267 | 0.003 | 0.058 |
Potassium, g | 2.85 | 2.71 | 2.70 | 0.016 | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wlazło, Ł.; Nowakowicz-Dębek, B.; Ossowski, M.; Łukaszewicz, M.; Czech, A. Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces. Animals 2022, 12, 2972. https://doi.org/10.3390/ani12212972
Wlazło Ł, Nowakowicz-Dębek B, Ossowski M, Łukaszewicz M, Czech A. Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces. Animals. 2022; 12(21):2972. https://doi.org/10.3390/ani12212972
Chicago/Turabian StyleWlazło, Łukasz, Bożena Nowakowicz-Dębek, Mateusz Ossowski, Marcin Łukaszewicz, and Anna Czech. 2022. "Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces" Animals 12, no. 21: 2972. https://doi.org/10.3390/ani12212972
APA StyleWlazło, Ł., Nowakowicz-Dębek, B., Ossowski, M., Łukaszewicz, M., & Czech, A. (2022). Effect of Fermented Rapeseed Meal in Diets for Piglets on Blood Biochemical Parameters and the Microbial Composition of the Feed and Faeces. Animals, 12(21), 2972. https://doi.org/10.3390/ani12212972