Impact of Variability Factors on Hair Cortisol, Blood Count and Milk Production of Donkeys
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
- −
- Blood: Peripheral blood samples were collected in EDTA tubes for complete blood cell count (CBC).
- −
- Milk: Individual milk yield was measured by a lactometer connected to the milking machine. Each sample was obtained by mixing the two individual daily milkings refrigerated at 4 °C from which homogeneous samples of 100 mL of milk were collected.
- −
- Mane hair: Individual samples of mane hair were collected using scissors from the midneck region, as close as possible to the skin. Since the donkey hair growth rate is still unknown, the segment length was based on previously reported hair growth rates in horses [18]. Based on Duran et al. [19], 2 cm hair segments were considered to contain the cortisol that had accumulated over one month. We divided each hair sample clump into two segments, starting from the extremity proximal to the root, two centimetres each (0–2 cm and 2–4 cm). The excess hair length was excluded. The mean value obtained for the 0–2 and 2–4 cm hair segments was used for statistical analysis, thus the hair cortisol levels referred to the two months preceding the collection.
2.2. Milk Analysis
2.3. Hair Cortisol Analysis
2.4. Complete Blood Count Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Donkey and human milk: Insights into their compositional similarities. Int. Dairy J. 2019, 89, 111–118. [Google Scholar] [CrossRef]
- Barni, S.; Sarti, L.; Mori, F.; Muscas, G.; Belli, F.; Pucci, N.; Novembre, E. Tolerability and palatability of donkey’s milk in children with cow’s milk allergy. Pediatr. Allergy Immunol. 2018, 29, 29–331. [Google Scholar] [CrossRef] [PubMed]
- Bibbiani, C.; Biagini, P.; Salari, F.; Martini, M. Dairy donkey: An alternative building layout. J. Agric. Eng. 2017, 48, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sauveroche, M.; Henriksson, J.; Theodorsson, E.; Holm, A.C.S.; Roth, L.S. Hair cortisol in horses (Equus caballus) in relation to management regimes, personality, and breed. J. Vet. Behav. 2020, 37, 1–7. [Google Scholar] [CrossRef]
- Keeling, L.; Jensen, P. Abnormal Behaviour, Stress and Welfar. In The Ethology of Domestic Animals: An Introductory Text, Modular Texts, 2nd ed.; Jensen, P., Ed.; CABI: Wallingford, UK, 2009; pp. 85–101. [Google Scholar]
- Gácsi, M.; Maros, K.; Sernkvist, S.; Faragó, T.; Miklósi, Á. Human analogue safe haven effect of the owner: Behavioural and heart rate response to stressful social stimuli in dogs. PLoS ONE 2013, 8, e58475–e58479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koolhaas, J.M.; Bartolomucci, A.; Buwalda, B.; de Boer, S.F.; Flügge, G.; Korte, S.M.; Meerlo, P.; Murison, R.; Olivier, B.; Palanza, P.; et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Salaberger, T.; Millard, M.; El Makarem, S.; Möstl, E.; Grünberger, V.; Krametter-Frötscher, R.; Wittek, T.; Palme, R. Influence of external factors on hair cortisol concentrations. Gen. Comp. Endocrinol. 2016, 233, 73–78. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress, chronic inflammation, and emotional and physical well being: Concurrent effects and chronic sequelae. J. Allergy Clin. Immunol. 2000, 106, S275–S291. [Google Scholar] [CrossRef]
- Russell, E.; Koren, G.; Rieder, M.; Van Uum, S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology 2012, 37, 589–601. [Google Scholar] [CrossRef]
- Davenport, M.; Tiefenbacher, S.; Lutz, C.K.; Novak, M.A.; Meyer, J.S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006, 147, 255–261. [Google Scholar] [CrossRef]
- Roth, L.S.; Faresjö, Å.; Theodorsson, E.; Jensen, P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Sci. Rep. 2016, 6, 19631. [Google Scholar] [CrossRef] [PubMed]
- Mariti, C.; Diverio, S.; Gutierrez, J.; Baragli, P.; Gazzano, A. Partial analytic validation of determination of cortisol in dog hair using a commercial EIA kit. Dog Behav. 2020, 3, 1–15. [Google Scholar]
- Mori, E.; Mirandola, M.S.; Ferreira, R.; Oliveira, J.V.; Gacek, F.; Fernandes, W.R. Reference values on hematologic parameters of the brazilian donkey (Equus asinus) breed. J. Equine Vet. Sci. 2004, 24, 271–276. [Google Scholar] [CrossRef]
- Dezutto, D.; Barbero, R.; Valle, E.; Giribaldi, M.; Raspa, F.; Biasato, I.; Cavallarin, L.; Bergagna, S.; McLean, A.; Gennero, M.S. Observations of the hematological, hematochemical, and electrophoretic parameters in lactating donkeys (Equus asinus). J. Equine Vet. Sci. 2018, 65, 1–5. [Google Scholar] [CrossRef]
- Salari, F.; Ciampolini, R.; Mariti, C.; Millanta, F.; Altomonte, I.; Licitra, R.; Auzino, B.; D’ Ascenzi, C.; Bibbiani, C.; Giuliotti, L.; et al. A multi-approach study of the performance of dairy donkey during lactation: Preliminary results. Ital. J. Anim. Sci. 2019, 18, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Lizarraga, I.; Beeler-Marfisi, J.; Marshall, D.L.; Hassana, M.; Castillo-Alcala, F.; Simone, B.T.; Fraites, T.; Thrall, M.A. Reference intervals for hematological and biochemical analytes in a single herd of clinically healthy gelding donkeys in Saint Kitts. J. Equine Vet. Sci. 2022, 110, 103858. [Google Scholar] [CrossRef]
- Schlupp, A.; Anielski, P.; Thieme, D.; Müller, R.K.; Meyer, H.; Ellendorff, F. The beta-agonist clenbuterol in mane and tail hair of horses. Equine Vet. J. 2004, 36, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Duran, M.C.; Janz, D.M.; Waldner, C.L.; Campbell, J.R.; Marques, F.J. Hair cortisol concentration as a stress biomarker in horses: Associations with body location and surgical castration. J. Equine Vet. Sci. 2017, 55, 27–33. [Google Scholar] [CrossRef]
- Macbeth, B.J.; Cattet, M.R.L.; Stenhouse, G.B.; Gibeau, M.L.; Janz, D.M. Hair cortisol concentration as a non invasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): Considerations with implications for other wildlife. Can. J. Zool. 2010, 88, 935–949. [Google Scholar] [CrossRef]
- Casal, N.; Manteca, X.; Peña, R.L.; Bassols, A.; Fàbrega, E. Analysis of cortisol in hair samples as an indicator of stress in pigs. J. Vet. Behav. 2017, 19, 1–6. [Google Scholar] [CrossRef]
- Albar, W.; Russell, E.W.; Koren, G.; Rieder, M.J.; Van Umm, S.H. Human hair cortisol analysis: Comparison of the internationally reported ELISA method. Clin. Investig. Med. 2013, 36, E312–E316. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.; Hayssen, V. Measuring cortisol in hair and saliva from dogs: Coat color and pigment differences. Domest. Anim. Endocrinol. 2010, 39, 171–180. [Google Scholar] [CrossRef]
- SAS Institute. JMP User’s Guide; Version 5.0; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Morel, M.C.D. Equine Reproductive Physiology, Breeding and Stud Management; Farming Press Books: Ipswich, UK, 1993. [Google Scholar]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and nutraceutical quality of donkey milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Licitra, R.; Li, J.; Liang, X.; Altomonte, I.; Salari, F.; Yan, J.; Martini, M. Profile and content of sialylated oligosaccharides in donkey milk at early lactation. LWT 2019, 115, 108437. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Salari, F.; Caroli, A.M. Short communication: Monitoring nutritional quality of Amiata donkey milk: Effects of lactation and productive season. J. Dairy Sci. 2014, 97, 6819–6822. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New insights into chemical and mineral composition of donkey milk throughout nine months of lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salimei, E.; Fantuz, F.; Coppola, R.; Chiofalo, B.; Polidori, P.; Varisco, G. Composition and characteristics of ass’s milk. Anim. Res. 2004, 53, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Ragona, G.; Corrias, F.; Benedetti, M.; Paladini, M.; Salari, F.; Martini, M. Amiata donkey milk chain: Animal health evaluation and milk quality. Ital. J. Food Saf. 2016, 5, 5951. [Google Scholar] [CrossRef] [Green Version]
- Pilla, R.; Dalpra’, V.; Zecconi, A.; Piccinini, R. Hygienic and health characteristics of donkey milk during a follow-up study. J. Dairy Res. 2010, 77, 392–397. [Google Scholar] [CrossRef]
- Shubham, K.; Anukiruthika, T.; Dutta, S.; Kashyap, A.V.; Moses, J.A.; Anandharamakrishnan, C. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches. Trends Food Sci. Technol. 2020, 99, 58–75. [Google Scholar] [CrossRef]
- Muhatai, G.; Cheng, L.; Rugoho, I.; Xiao, G.; Chen, G.; Hodge, S.; Zhou, X. Effect of parity, milking time and stage of lactation on milk yield of Jiangyue donkey (Equus asinus) in North West China. J. Dairy Res. 2017, 84, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Marchiș, Z.; Odagiu, A.; Coroian, A.; Oroian, I.; Răducu, C. Testing the influence of the environmental climatic factors upon donkey milk quality. Sci. Work Ser. C Vet. Med. 2017, 63, 155–163. [Google Scholar]
- Sarti, L.; Martini, M.; Brajon, G.; Barni, S.; Salari, F.; Altomonte, I.; Ragona, G.; Mori, F.; Pucci, N.; Muscas, G.; et al. Donkey’s Milk in the Management of Children with Cow’s Milk protein allergy: Nutritional and hygienic aspects. Ital. J. Pediatr. 2019, 45, 102. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, M.C.; Gloria, A.; Panzani, S.; Sfirro, M.P.; Carluccio, A.; Contri, A. Blood analysis in newborn donkeys: Hematology, biochemistry, and blood gases analysis. Theriogenology 2014, 82, 294–303. [Google Scholar] [CrossRef]
- Zakari, F.O.; Ayo, J.O.; Rekwot, P.I.; Kawu, M.U. Effects of age and season on haematological parameters of donkeys during the rainy and cold–dry seasons. Int. J. Biometeorol. 2015, 59, 1813–1824. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Ayo, O.; Dzenda, T.; Olaifa, F.; Ake, S.A.; Sani, I. Diurnal and seasonal fluctuations in rectal temperature, respiration and heart rate of pack donkeys in a tropical savannah zone. J. Equine Sci. 2013, 25, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Sargentini, C.; Tocci, R.; Andrenelli, L.; Giorgetti, A. Preliminary studies on hoof characteristics in Amiata donkey. Ital. J. Anim. Sci. 2012, 11, e22. [Google Scholar] [CrossRef] [Green Version]
- Minka, N.S.; Ayo, J.O. Effects of shade provision on some physiological parameters, behaviour and performance of pack donkeys (Equinus asinus) during the hot-dry season. J. Equine Sci. 2007, 18, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Koubkova, M.; Knizkova, I.; Kunc, P.; Hartlova, H.; Flusser, J.; Dolezal, O. Influence of high environmental temperature and evaporative cooling on some physiological, haematological and biochemical parameters in high-yielding dairy cows. Czech. J. Anim. Sci. 2002, 47, 309–318. [Google Scholar]
- Zakari, F.O.; Ayo, J.O.; Rekwot, P.I.; Kawu, M.U. Effect of age, sex, physical activity and meteorological factors on haematological parameters of donkeys (Equus asinus). Comp. Clin. Pathol. 2016, 25, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
1 Month | 6 Months | 10 Months | p | RMSE | |
---|---|---|---|---|---|
Mane hair | |||||
HCCs (pg/mg) | 11.74A | 8.66B | 9.37B | 0.010 | 3.802 |
Milk yield and composition | |||||
Milk yield/day (mL) | 1535.01A | 1337.67A | 868.91B | 0.001 | 425.418 |
Fat (%) | 0.55 | 0.39 | 0.41 | 0.354 | 0.426 |
Protein (%) | 1.57A | 1.44B | 1.41B | 0.001 | 0.128 |
Casein (%) | 0.88 | 0.83 | 0.82 | 0.060 | 0.089 |
Lactose (%) | 6.85 | 6.88 | 6.87 | 0.790 | 0.133 |
Dry Matter (%) | 9.39 | 9.32 | 9.45 | 0.728 | 0.520 |
SCC (number ×1000) | 8.67AB | 3.73B | 12.80A | 0.007 | 6.739 |
Urea (mg/mL) | 20.74C | 37.63B | 43.82A | 0.001 | 5.990 |
Blood analysis | |||||
WBC (number × 109) | 13.63 | 13.26 | 11.59 | 0.122 | 3.771 |
RBC (number × 1012) | 6.83 | 7.91 | 7.41 | 0.159 | 1.578 |
HGB (g/dL) | 13.17 | 15.36 | 14.21 | 0.227 | 3.558 |
HCT (%) | 40.72 | 48.62 | 45.08 | 0.082 | 9.887 |
MCV (fl) | 60.50 | 60.95 | 61.10 | 0.790 | 2.982 |
MCH (pg) | 19.56 | 19.72 | 19.10 | 0.095 | 1.021 |
MCHC (g/dL) | 32.45A | 32.38A | 31.32B | ≤0.001 | 0.917 |
Primiparous | Secondiparous | Pluriparous | p | RMSE | |
---|---|---|---|---|---|
Mane hair | |||||
HCCs (pg/mg) | 8.97 | 10.04 | 10.76 | 0.169 | 3.802 |
Milk yield and composition | |||||
Milk yield/day (mL) | 1213.02 | 1348.29 | 1281.17 | 0.468 | 425.418 |
Fat (%) | 0.16b | 0.61a | 0.58ab | 0.015 | 0.426 |
Protein (%) | 1.64A | 1.51B | 1.27C | 0.003 | 0.128 |
Casein (%) | 1.01A | 0.90B | 0.63C | 0.001 | 0.089 |
Lactose (%) | 6.86 | 6.86 | 6.88 | 0.665 | 0.133 |
Dry Matter (%) | 9.29 | 9.60 | 9.27 | 0.013 | 0.520 |
SCC (number × 1000) | 10.31 | 7.44 | 7.45 | 0.265 | 6.739 |
Urea (mg/mL) | 31.35 | 37.15 | 33.68 | 0.249 | 5.990 |
Blood analysis | |||||
WBC (number × 109) | 12.63ab | 14.38a | 11.49b | 0.013 | 3.771 |
RBC (number × 1012) | 8.10a | 7.04b | 7.00b | 0.022 | 1.578 |
Hgb (g/dL) | 15.48a | 12.86b | 13.41b | 0.023 | 3.558 |
HCT (%) | 47.79 | 42.14 | 44.50 | 0.114 | 9.887 |
MCV (fl) | 59.05B | 60.53B | 62.97A | ≤0.001 | 2.982 |
MCH (pg) | 19.03 | 19.21 | 20.14 | 0.784 | 1.021 |
MCHC (g/dL) | 32.26 | 31.81 | 32.09 | 0.475 | 0.917 |
Spring-Summer | Autumn-Winter | p | RMSE | |
---|---|---|---|---|
Mane hair | ||||
HCCs (pg/mg) | 9.29 | 10.08 | 0.437 | 3.802 |
Milk yield and composition | ||||
Milk yield/day (mL) | 1411.62a | 1188.46b | 0.049 | 425.418 |
Fat (%) | 0.33 | 0.54 | 0.067 | 0.426 |
Protein (%) | 1.51 | 1.46 | 0.181 | 0.128 |
Casein (%) | 0.80B | 0.88A | 0.001 | 0.089 |
Lactose (%) | 6.79B | 6.90A | 0.003 | 0.133 |
Dry Matter (%) | 9.26 | 9.47 | 0.128 | 0.520 |
SCC (number × 1000) | 7.56 | 10.20 | 0.397 | 6.739 |
Urea (mg/mL) | 38.95A | 30.89B | 0.001 | 5.990 |
Blood analysis | ||||
WBC (number × 109) | 12.41 | 13.29 | 0.465 | 3.771 |
RBC (number × 1012) | 7.49 | 7.28 | 0.655 | 1.578 |
Hgb (g/dL) | 14.25 | 14.25 | 0.998 | 3.558 |
HCT (%) | 45.74 | 43.87 | 0.534 | 9.887 |
MCV (fl) | 60.82 | 60.95 | 0.948 | 2.982 |
MCH (pg) | 18.92B | 20.01A | ≤0.001 | 1.021 |
MCHC (g/dL) | 31.17B | 32.93A | ≤0.001 | 0.917 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salari, F.; Mariti, C.; Altomonte, I.; Gazzano, A.; Martini, M. Impact of Variability Factors on Hair Cortisol, Blood Count and Milk Production of Donkeys. Animals 2022, 12, 3009. https://doi.org/10.3390/ani12213009
Salari F, Mariti C, Altomonte I, Gazzano A, Martini M. Impact of Variability Factors on Hair Cortisol, Blood Count and Milk Production of Donkeys. Animals. 2022; 12(21):3009. https://doi.org/10.3390/ani12213009
Chicago/Turabian StyleSalari, Federica, Chiara Mariti, Iolanda Altomonte, Angelo Gazzano, and Mina Martini. 2022. "Impact of Variability Factors on Hair Cortisol, Blood Count and Milk Production of Donkeys" Animals 12, no. 21: 3009. https://doi.org/10.3390/ani12213009
APA StyleSalari, F., Mariti, C., Altomonte, I., Gazzano, A., & Martini, M. (2022). Impact of Variability Factors on Hair Cortisol, Blood Count and Milk Production of Donkeys. Animals, 12(21), 3009. https://doi.org/10.3390/ani12213009